Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

VAV proteins as signal integrators for multi-subunit immune-recognition receptors

Key Points

  • The VAV proteins belong to the DBL family of RHO guanine nucleotide exchange factors (GEFs) and are known to have an important role in regulating early events in receptor signalling.

  • The domains of VAV proteins that are required for their recruitment to activated receptors on lymphocytes, as well as the domains that regulate their GEF activity, are discussed.

  • The physiological importance of the VAV proteins for the development and function of cells of the immune system has been revealed by gene-targeting experiments.

  • VAV proteins function in GTPase-dependent and -independent ways. GTPase-dependent aspects of VAV-mediated signalling include a role in signalling events downstream of cytoskeletal reorganization, VAV-mediated control of gene expression and interactions with TEC-family kinases. VAV proteins also have GEF-independent functions.

  • The VAV family of proteins is, therefore, crucial for the regulation of immune-cell development and activation.

Abstract

In recent years, substantial progress has been made towards the identification of intracellular signalling molecules that couple multi-subunit immune-recognition receptors (MIRRs) to their various effector functions. Among these, the VAV proteins have been observed to have a crucial role in regulating some of the earliest events in receptor signalling. VAV proteins function, in part, as guanine-nucleotide exchange factors (GEFs) for the RHO/RAC family of GTPases. This review focuses on the role of VAV proteins in the regulation of lymphocyte development and function, and emphasizes the regulatory roles that these proteins have through both GEF-dependent and -independent mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of action of VAV proteins.
Figure 2: VAV and the signalosome.

Similar content being viewed by others

References

  1. Bishop, A. B. & Hall, A. Rho GTPases and their effector proteins. Biochem. J. 348, 241–255 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bustelo, X. R. Vav proteins, adaptors and cell signalling. Oncogene 20, 6372–6381 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Henning, S. & Cleverley, S. Small GTPases in lymphocyte biology — Rho proteins take center stage. Immunol. Res. 20, 29–42 (1999).

    CAS  PubMed  Google Scholar 

  4. Deckert, M., Tartare-Deckert, S., Couture, C. & Altman, A. Functional and physical interactions of Syk family kinases with the Vav proto-oncogene. Immunity 5, 591–604 (1996).

    CAS  PubMed  Google Scholar 

  5. Han, J. et al. Lck regulates Vav activation of members of the Rho family of GTPases. Mol. Cell. Biol. 17, 1346–1353 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schuebel, K. E., Movilla, N., Rosa, J. L. & Bustelo, X. R. Phosphorylation-dependent and constitutive activation of Rho proteins by wild-type and oncogenic Vav-2. EMBO J. 17, 6608–6621 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Michel, F., Grimaud, L., Tuosto, L. & Acuto, O. Fyn and ZAP-70 are required for Vav phosphorylation in T cells stimulated by antigen-presenting cells. J. Biol. Chem. 273, 31932–31938 (1998).

    CAS  PubMed  Google Scholar 

  8. Huang, J., Tilly, D., Altman, A., Sugie, K. & Grey, H. M. T-cell receptor antagonists induce Vav phosphorylation by selective activation of Fyn kinase. Proc. Natl Acad. Sci. USA 97, 10923–10929 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Aghazadeh, B., Lowry, W. E., Huang, X.-Y. & Rosen, M. Structural basis for relief of autoinhibition of the Dbl homology domain of proto-oncogene Vav by tyrosine phosphorylation. Cell 102, 625–633 (2000).This paper describes a unique mechanism for the activation of the enzymatic function of VAV1.

    CAS  PubMed  Google Scholar 

  10. Lopez-Lago, M., Lee, H., Cruz, C., Movilla, N. & Bustelo, X. R. Tyrosine phosphorylation mediates both activation and downmodulation of the biological activity of Vav. Mol. Cell. Biol. 20, 1678–1691 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Billadeau, D. D., Mackie, S. M., Schoon, R. A. & Leibson, P. J. Specific subdomains of Vav differentially affect T-cell and NK-cell activation. J. Immunol. 164, 3971–3981 (2000).

    CAS  PubMed  Google Scholar 

  12. Kuhne, M. R., Ku, G. & Weiss, A. A guanine nucleotide exchange factor-independent function of Vav-1 in transcriptional activation. J. Biol. Chem. 275, 2185–2190 (2000).

    CAS  PubMed  Google Scholar 

  13. Bustelo, X. R. Regulatory and signalling properties of the Vav family. Mol. Cell. Biol. 20, 1461–1477 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Koretzky, G. A. & Myung, P. S. Positive and negative regulation of T-cell activation by adaptor proteins. Nature Rev Immunol 1, 95–107 (2001).

    CAS  Google Scholar 

  15. Tuosto, L., Michel, F. & Acuto, O. p95vav associates with tyrosine-phosphorylated SLP-76 in antigen-stimulated T cells. J. Exp. Med. 184, 1161–1166 (1996).

    CAS  PubMed  Google Scholar 

  16. Tartare-Deckert, S. et al. Vav2 activates c-Fos serum response element and CD69 expression but negatively regulates nuclear factor of activated T cells and interleukin-2 gene activation in T lymphocytes. J. Biol. Chem. 276, 20849–20857 (2001).

    CAS  PubMed  Google Scholar 

  17. Fu, C. & Chan, A. C. Identification of two tyrosine phosphoproteins, pp70 and pp68, which interact with phospholipase Cγ, Grb2 and Vav after B-cell antigen receptor activation. J. Biol. Chem. 272, 27362–27368 (1997).

    CAS  PubMed  Google Scholar 

  18. Myung, P. S. et al. Differential requirement for SLP-76 domains in T-cell development and function. Immunity 15, 1011–1026 (2001).

    CAS  PubMed  Google Scholar 

  19. Nunes, J. A., Collette, Y., Truneh, A., Olive, D. & Cantrell, D. A. The role of p21ras in CD28 signal transduction: triggering of CD28 with antibodies, but not the ligand B7-1, activates p21ras. J. Exp. Med. 180, 1067–1076 (1994).

    CAS  PubMed  Google Scholar 

  20. Klasen, S., Pages, F., Peyron, J.-F., Cantrell, D. A. & Olive, D. Two distinct regions of the CD28 intracytoplasmic domain are involved in the tyrosine phosphorylation of Vav and GTPase activating protein-associated p62 protein. Int. Immunol. 10, 481–489 (1998).

    CAS  PubMed  Google Scholar 

  21. Hehner, S. P., Hofmann, T. G., Dienz, O., Droge, W. & Schmitz, M. L. Tyrosine-phosphorylated Vav1 as a point of integration for T-cell-receptor- and CD28-mediated activation of JNK, p38 and interleukin-2 transcription. J. Biol. Chem. 275, 18160–18171 (2000).

    CAS  PubMed  Google Scholar 

  22. Raab, M., Pfister, S. & Rudd, C. E. CD28 signalling via Vav/SLP-76 adaptors: regulation of cytokine transcription independent of TCR ligation. Immunity 15, 921–933 (2001).

    CAS  PubMed  Google Scholar 

  23. Weng, W. K., Jarvis, L. & LeBien, T. W. Signaling through CD19 activates Vav/mitogen-activated protein kinase pathway and induces formation of a CD19/Vav/phosphatidylinositol 3-kinase complex in human B-cell precursors. J. Biol. Chem. 269, 32514–32521 (1994).

    CAS  PubMed  Google Scholar 

  24. O'Rourke, L. et al. CD19 as a membrane-anchored adaptor protein of B lymphocytes: costimulation of lipid and protein kinases by recruitment of Vav. Immunity 8, 635–645 (1998).

    CAS  PubMed  Google Scholar 

  25. Doody, G. M. et al. Vav-2 controls NFAT-dependent transcription in B but not T lymphocytes. EMBO J. 19, 6173–6184 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sato, S., Jansen, P. J., & Tedder, T. F. CD19 and CD22 expression reciprocally regulates tyrosine phosphorylation of Vav protein during B-lymphocyte signalling. Proc. Natl Acad. Sci. USA 94, 13158–13162 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fujimoto, M. et al. CD19 regulates Src family protein tyrosine kinase activation in B lymphocytes through processive amplification. Immunity 13, 47–57 (2000).

    CAS  PubMed  Google Scholar 

  28. Finco, T. S., Kadlecek, T., Zhang, W., Samelson, L. E. & Weiss, A. LAT is required for the TCR-mediated activation of PLCγ1 and the Ras pathway. Immunity 9, 617–626 (1998).

    CAS  PubMed  Google Scholar 

  29. Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R. & Samelson, L. LAT: the ZAP-70 tyrosine kinase substrate that links T-cell receptor to cellular activation. Cell 92, 83–92 (1998).

    CAS  PubMed  Google Scholar 

  30. Songyang, Z. et al. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk and Vav. Mol. Cell. Biol. 14, 2777–2785 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ye, Z. S. & Baltimore, D. Binding of Vav to Grb2 through dimerization of Src-homology 3 domains. Proc. Natl Acad. Sci. USA 91, 12629–12633 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nishida, M. et al. Novel recognition mode between Vav and Grb2 SH3 domains. EMBO J. 20, 2995–3007 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Katzav, S., Cleveland, J. L., Heslop, H. E. & Pulido, D. Loss of the amino-terminal helix–loop–helix domain of the Vav proto-oncogene activates its transforming potential. Mol. Cell. Biol. 11, 1912–1920 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Movilla, N. & Bustelo, X. R. Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins. Mol. Cell. Biol. 19, 7870–7885 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Han, J. et al. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphates by Vav. Science 279, 558–560 (1998).

    CAS  PubMed  Google Scholar 

  36. Das, B. et al. Control of intramolecular interactions between the pleckstrin homology and Dbl homology domains of Vav and SOS1 regulates Rac binding. J. Biol. Chem. 275, 15074–15081 (2000).

    CAS  PubMed  Google Scholar 

  37. Fang, D. & Liu, Y.-C. Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nature Immunol. 2, 870–875 (2001).

    CAS  Google Scholar 

  38. Djouder, N. et al. Rac and phosphatidylinositol 3-kinase regulate the protein kinase B in FcɛRI signalling in RBL 2H3 mast cells. J. Immunol. 166, 1627–1634 (2001).

    CAS  PubMed  Google Scholar 

  39. Inabe, K. et al. Vav3 modulates B-cell receptor responses by regulating phosphoinositide 3-kinase activation. J. Exp. Med. 195, 189–200 (2002).References 38 and 39 show that the activation of VAV is not dependent on PI3K.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Billadeau, D. D., Mackie, S. M., Schoon, R. A. & Leibson, P. J. The Rho family guanine nucleotide exchange factor Vav-2 regulates the development of cell-mediated cytotoxicity. J. Exp. Med. 192, 381–391 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Villalba, M. et al. A novel functional interaction between Vav and PKCθ is required for TCR-induced T-cell activation. Immunity 12, 151–160 (2000).

    CAS  PubMed  Google Scholar 

  42. Ferguson, K. M. et al. Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains. Mol. Cell. 6, 373–384 (2000).

    CAS  PubMed  Google Scholar 

  43. Lietzke, S. E. et al. Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains. Mol. Cell. 6, 385–394 (2000).

    CAS  PubMed  Google Scholar 

  44. Isakoff, S. J. et al. Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. EMBO J. 17, 5374–5387 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zheng, Y. Dbl family guanine nucleotide exchange factors. Trends Biochem. Sci. 26, 724–732 (2001).

    CAS  PubMed  Google Scholar 

  46. Billadeau, D. D. et al. The Vav–Rac pathway in cytotoxic lymphocytes regulates the generation of cell-mediated killing. J. Exp. Med. 188, 549–559 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Crespo, P. et al. Rac-1-dependent stimulation of the JNK/SAPK signaling pathway by Vav. Oncogene 13, 455–460 (1996).

    CAS  PubMed  Google Scholar 

  48. Crespo, P., Schuebel, K. E., Ostrom, A. A., Gutkind, J. S. & Bustelo, X. R. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the Vav proto-oncogene product. Nature 385, 169–172 (1997).

    CAS  PubMed  Google Scholar 

  49. Meffre, E., Casellas, R. & Nussenzweig, M. C. Antibody regulation of B-cell development. Nature Immunol. 1, 379–385 (2000).

    CAS  Google Scholar 

  50. Doody, G. M. et al. Signal transduction through Vav-2 participates in humoral immune responses and B-cell maturation. Nature Immunol. 2, 542–547 (2001).

    CAS  Google Scholar 

  51. Tedford, K. et al. Compensation betwenn Vav1 and Vav2 in B-cell receptor development and antigen-receptor signalling. Nature Immunol. 2, 548–555 (2001).References 50 and 51 describe the redundant and non-redundant roles of Vav proteins in lymphocytes using mouse models.

    CAS  Google Scholar 

  52. Glassford, J. et al. Vav is required for cyclin D2 induction and proliferation of mouse B lymphocytes activated via the antigen receptor. J. Biol. Chem. 276, 41040–41048 (2001).

    CAS  PubMed  Google Scholar 

  53. Tarakhovsky, A. et al. Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature 374, 467–470 (1995).

    CAS  PubMed  Google Scholar 

  54. Zhang, R., Alt, F. W., Davidson, L., Orkin, S. H. & Swat, W. Defective signalling through the T- and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene. Nature 374, 470–473 (1995).

    CAS  PubMed  Google Scholar 

  55. Gulbranson-Judge, A. et al. Defective immunoglobulin class switching in Vav-deficient mice is attributable to compromised T-cell help. Eur. J. Immunol. 29, 477–487 (1999).

    CAS  PubMed  Google Scholar 

  56. Fehling, H. J. & von Boehmer, H. Early αβ T-cell development in the thymus of normal and genetically altered mice. Curr. Opin. Immunol. 9, 263–275 (1997).

    CAS  PubMed  Google Scholar 

  57. Fischer, K. et al. Defective T-cell receptor signalling and positive selection of Vav-deficient CD4+CD8+ thymocytes. Nature 374, 474–477 (1995).

    CAS  PubMed  Google Scholar 

  58. Turner, M. et al. A requirement for the Rho-family GTP exchange factor Vav in positive and negative selection of thymocytes. Immunity 7, 451–460 (1997).

    CAS  PubMed  Google Scholar 

  59. Gomez, M., Tybulewicz, V. & Cantrell, D. A. Control of pre- T-cell proliferation and differentiation by the GTPase Rac-1. Nature Immunol. 1, 348–352 (2000).

    CAS  Google Scholar 

  60. Corre, I., Gomez, M., Vielkind, S. & Cantrell, D. A. Analysis of thymocyte development reveals that the GTPase RhoA is a positive regulator of T-cell receptor responses in vivo. J. Exp. Med. 194, 903–913 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Fischer, K. D. et al. Vav is a regulator of cytoskeletal reorganisation mediated by the T-cell receptor. Curr. Biol. 8, 554–562 (1998).

    CAS  PubMed  Google Scholar 

  62. Chan, G., Hanke, T. & Fischer, K.-D. Vav1 regulates NK T-cell development and NK-cell cytotoxicity. Eur. J. Immunol. 31, 2403–2410 (2001).

    CAS  PubMed  Google Scholar 

  63. Holsinger, L. J. et al. Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction. Curr. Biol. 8, 563–572 (1998).This reference, together with reference 62 , was the first to document cytoskeletal impairment in Vav1-deficient T cells.

    CAS  PubMed  Google Scholar 

  64. Costello, P. S. et al. The Rho-family GTP exchange factor Vav is a critical transducer of T-cell receptor signals to the calcium, ERK and NF-κB pathways. Proc. Natl Acad. Sci. USA 96, 3035–3040 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kong, Y. Y. et al. Vav regulates peptide-specific apoptosis in thymocytes. J. Exp. Med. 188, 2099–2111 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Moores, S. L. et al. Vav family proteins couple to diverse cell-surface receptors. Mol. Cell. Biol. 20, 6364–6373 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Krawczyk, C. et al. Cbl-b is a negative regulator of receptor clustering and raft aggregation in T cells. Immunity 13, 463–473 (2000).

    CAS  PubMed  Google Scholar 

  68. Bachmann, M. F. et al. The guanine-nucleotide exchange factor Vav is a crucial regulator of B-cell receptor activation and B-cell responses to non-repetitive antigens. J. Immunol. 163, 137–142 (1999).

    CAS  PubMed  Google Scholar 

  69. Penninger, J. M. et al. The oncogene product Vav is a crucial regulator of primary cytotoxic T-cell responses but has no apparent role in CD28-mediated co-stimulation. Eur. J. Immunol. 29, 1709–1718 (1999).

    CAS  PubMed  Google Scholar 

  70. Raulet, D. H., Vance, R. E. & McMahon, C. W. Regulation of the natural killer cell receptor repertoire. Annu. Rev. Immunol. 19, 291–331 (2001).

    CAS  PubMed  Google Scholar 

  71. Galandrini, R., Palmieri, G., Piccloi, M., Fragati, L. & Santoni, A. Role for the Rac1 exchange factor Vav in the signalling pathways leading to NK-cell cytotoxicity. J. Immunol. 162, 3148–3152 (1999).

    CAS  PubMed  Google Scholar 

  72. Jiang, K. et al. Pivotal role of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer cells. Nature Immunol. 1, 419–425 (2000).

    CAS  Google Scholar 

  73. Colucci, F. et al. Functional dichotomy in NK-cell signalling: Vav1-dependent and -independent mechanisms. J. Exp. Med. 193, 1413–1424 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wedemeyer, J., Tsai, M. & Galli, S. J. Roles of mast cells in innate and acquired immunity. Curr. Opin. Immunol. 12, 624–631 (2000).

    CAS  PubMed  Google Scholar 

  75. Manetz, T. S. et al. Vav1 regulates phospholipase Cγ activation and calcium responses in mast cells. Mol. Cell. Biol. 21, 3763–3774 (2001).This paper was the first to document a defect in the production of PtdInsP 3 in Vav1-deficient mast cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu, B. P. & Burridge, K. Vav2 activates Rac1, Cdc42 and RhoA downstream from growth-factor receptors but not β1-integrins. Mol. Cell. Biol. 20, 7160–7169 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Abe, K. et al. Vav2 is an activator of Cdc42, Rac1 and RhoA. J. Biol. Chem. 275, 10141–10149 (2000).

    CAS  PubMed  Google Scholar 

  78. Marignani, P. A. & Carpenter, C. L. Vav2 is required for cell spreading. J. Cell. Biol. 154, 177–186 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Movilla, N., Dosil, M., Zheng, Y. & Bustelo, X. R. How Vav proteins discriminate the GTPases Rac1 and RhoA from Cdc42. Oncogene 20, 8057–8065 (2001).

    CAS  PubMed  Google Scholar 

  80. Reynolds, L. F. et al. Vav1 transduces T-cell receptor signals to the activation of phospholipase Cγ1 via phosphoinositide-3-kinase-dependent and -independent pathways. J. Exp. Med. 195, 1103–1114 (2002).Together with references 39 and 75 , this study documents the impairment of the PI3K–Tec axis in Vav-deficient cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wulfing, C., Bauch, A., Crabtree, G. R. & Davis, M. M. The Vav exchange factor is an essential regulator in actin-dependent receptor translocation to the lymphocyte–antigen-presenting cell interface. Proc. Natl Acad. Sci. USA 97, 10150–10155 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Villalba, M. et al. Vav1/Rac-dependent actin cytoskeleton reorganisation is required for lipid-raft clustering in T cells. J. Cell. Biol. 155, 331–338 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee, K. et al. T-cell receptor signalling precedes immunological synapse formation. Science 295, 1539–1542 (2002).

    CAS  PubMed  Google Scholar 

  84. Kaminuma, O., Deckert, M., Elly, C., Liu, Y. & Altman, A. Vav–Rac1-mediated activation of the c-Jun N-terminal kinase/c-Jun/AP-1 pathway plays a major role in stimulation of the distal NFAT site in the interleukin-2 gene promoter. Mol. Cell. Biol. 21, 3126–3136 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu, J., Katzav, S. & Weiss, A. A functional T-cell receptor signaling pathway is required for p95vav activity. Mol. Cell. Biol. 15, 4337–4346 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Abe, K., Whitehead, I. P., O'Bryan, J. P. & Der, C. J. Involvement of NH2-terminal sequences in the negative regulatiuon of Vav signalling and transforming activity. J. Biol. Chem. 274, 30410–30418 (1999).

    CAS  PubMed  Google Scholar 

  87. Lin, X., O'Mahoney, A., Geleziunas, R. & Greene, W. C. Protein kinase Cθ participates in NF-κB/Rel activation induced by CD3/CD28 costimulation through selective activation of IκBβ (IKKβ). Mol. Cell. Biol. 20, 2933–2940 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Coudronniere, N., Villalba, M., Englund, N. & Alyman, A. NF-κB activation induced by CD28 costimulation is mediated by PKCθ. Proc. Natl Acad. Sci. USA 97, 3394–3399 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Teramoto, H., Salem, P., Robbins, K., Bustelo, X. & Gutkind, J. Tyrosine phosphorylation of the Vav proto-oncogene product links FcɛRI to the Rac1–JNK pathway. J. Biol. Chem. 272, 10751–10755 (1997).

    CAS  PubMed  Google Scholar 

  90. Song, J. S. et al. Tyrosine phosphorylation of Vav stimulates IL-6 production in mast cells by a Rac/JNK-dependent pathway. J. Immunol. 163, 802–810 (1999).

    CAS  PubMed  Google Scholar 

  91. Sun, Z. et al. PKC-θ is required for TCR-induced NF-κB activation in mature but not immature T lymphocytes. Nature 404, 402–407 (2000).

    CAS  PubMed  Google Scholar 

  92. Bakash, S. & Burakoff, S. J. The role of calcineurin in lymphocyte activation. Semin. Immunol. 12, 405–415 (2000).

    Google Scholar 

  93. Tolias, K. F., Cantley, L. C. & Carpenter, C. L. Rho family GTPases bind to phosphoinositide kinases. J. Biol. Chem. 270, 17656–17659 (1995).

    CAS  PubMed  Google Scholar 

  94. Nisitani, S., Kato, R. M., Rawlings, D. J., Witte, O. N. & Wahl, M. I. In situ detection of activated Bruton's tyrosine kinase in the Ig signalling complex by phosphopeptide-specific monoclonal antibodies. Proc. Natl Acad. Sci. USA 96, 2221–2226 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lewis, C. M., Broussard, C., Czar, M. J. & Schwartzberg, P. L. Tec kinases: modulators of lymphocyte signalling and development. Curr. Opin. Immunol. 13, 317–325 (2001).

    CAS  PubMed  Google Scholar 

  96. Shigematsu, H. et al. Role of the vav proto-oncogene product (Vav) in erythropoietin-mediated cell proliferation and phosphatidylinositol 3-kinase activity. J. Biol. Chem. 272, 14334–14340 (1997).

    CAS  PubMed  Google Scholar 

  97. Bertagnolo, V., Marchisio, M., Violina, S., Caramelli, E. & Capitani, S. Nuclear association of tyrosine-phosphorylated Vav to phospholipase Cγ1 and phosphoinositide 3-kinase during granulocytic differentiation of HL-60 cells. FEBS Lett. 441, 480–484 (1998).

    CAS  PubMed  Google Scholar 

  98. Zeng, L. et al. Vav3 mediates receptor protein tyrosine kinase signaling, regulates GTPase activity, modulates cell morphology and induces cell transformation. Mol. Cell. Biol. 20, 9212–9224 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Bokoch, G. M., Vlahos, C. J., Wang, Y., Knaus, U. G. & Traynor-Kaplan, A. E. Rac GTPase interacts specifically with phosphatidylinositol 3-kinase. Biochem. J. 315, 775–779 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sato, S. et al. IL-5 receptor-mediated tyrosine phosphorylation of SH2/SH3-containing proteins and activation of Bruton's tyrosine and Janus 2 kinases. J. Exp. Med. 180, 2101–2111 (1994).

    CAS  PubMed  Google Scholar 

  101. Guinamard, R., Fougereau, M. & Seckinger, P. The SH3 domain of Bruton's tyrosine kinase interacts with Vav, Sam68 and EWS. Scand. J. Immunol. 45, 587–595 (1997).

    CAS  PubMed  Google Scholar 

  102. Bunnell, S. C. et al. Identification of Itk/Tsk Src homology domain ligands. J. Biol. Chem. 271, 25646–25656 (1996).

    CAS  PubMed  Google Scholar 

  103. Machide, M., Mano, H. & Todokoro, K. Interleukin-3 and erythropoietin induce association of Vav with Tec kinase through Tec homology domain. Oncogene 11, 619–625 (1995).

    CAS  PubMed  Google Scholar 

  104. Takahashi-Tezuka, M. et al. Tec tyrosine kinase links the cytokine receptors to PI-3 kinase probably through JAK. Oncogene 14, 2273–2282 (1997).

    CAS  PubMed  Google Scholar 

  105. Yablonski, D., Kadlecek, T. & Weiss, A. Identification of a phospholipase Cγ1 (PLC-γ1) SH3 domain-binding site in SLP-76 required for T-cell receptor-mediated activation of PLC-γ1 and NFAT. Mol. Cell. Biol. 21, 4208–4218 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ramos Morales, F., Druker, B. J. & Fischer, S. Vav binds to several SH2/SH3-containing proteins in activated lymphocytes. Oncogene 9, 1917–1923 (1994).

    CAS  PubMed  Google Scholar 

  107. Kranewitter, W. J. & Gimona, M. N-terminally truncated Vav induces the formation of depolymerization-resistant actin filaments in NIH 3T3 cells. FEBS Lett. 455, 123–129 (1999).

    CAS  PubMed  Google Scholar 

  108. Katzav, S., Martin, Z. D. & Barbacid, M. Vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells. EMBO J. 8, 2283–2290 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Adams, J. M., Houston, H., Allen, J., Lints, T. & Harvey, R. The hematopoietically expressed vav proto-oncogene shares homology with the dbl GDP–GTP exchange factor, the bcr gene and a yeast gene (CDC24) involved in cytoskeletal organization. Oncogene 7, 611–618 (1992).

    CAS  PubMed  Google Scholar 

  110. Schuebel, K. E. et al. Isolation and characterization of murine Vav-2, a member of the Vav family of proto-oncogenes. Oncogene 13, 363–371 (1996).

    CAS  PubMed  Google Scholar 

  111. Trenkle, T., McClelland, M., Adlkofer, K. & Welsh, J. Major transcript variants of VAV3, a new member of the VAV family of guanine nucleotide exchange factors. Gene 245, 139–149 (2000).

    CAS  PubMed  Google Scholar 

  112. Fruman, D. A., Satterthwaite, A. B. & Witte, O. N. Xid-like phenotypes: a B-cell signalosome takes shape. Immunity 13, 1–3 (2000).

    CAS  PubMed  Google Scholar 

  113. Rawlings, D. J. et al. Mutation of unique region of Bruton's tyrosine kinase in immunodeficient XID mice. Science 261, 358–361 (1993).

    CAS  PubMed  Google Scholar 

  114. DeFranco, A. L. Vav and the B-cell signalosome. Nature Immunol. 2, 482–484 (2001).

    CAS  Google Scholar 

  115. Schaeffer, E. M. et al. Requirement for Tec kinases Rlk and Itk in T-cell receptor signaling and immunity. Science 284, 638–641 (1999).

    CAS  PubMed  Google Scholar 

  116. Ebinu, J. O. et al. RasGRP links T-cell receptor signalling to ras. Blood 95, 3199–3203 (2000).

    CAS  PubMed  Google Scholar 

  117. Fackler, O. T., Luo, W., Geyer, M., Alberts, A. S. & Peterlin, B. M. Activation of Vav by Nef induces cytoskeletal rearrangements and downstream effector functions. Mol. Cell. 3, 729–739 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Clayton for assistance with the figures, P. Leibson for critical review of the manuscript and R. T. Abraham, T. Kurosaki, W. Swat and V. J. L. Tybulewicz for the communication of results before publication.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez

HIV-1

Listeria monocytogenes

Nef

InterPro

CH domain

DH domain

ITAM

PH domain

SH2 domain

SH3 domain

WW motif

LocusLink

AP1

β2-microglobulin

BLNK

Btk

Cbl-b

CD3

CD4

CD19

CD28

CDC42

Cdc42

cyclin D2

DBL

FAS ligand

FcɛRI

FYN

Gads

GRB2

HCK

IFN-γ

IκBα

IKK

IL-2

IL-4

Itk

LAT

LCK

NFAT

NF-κB

PAK1

PI3K

PIP5K

PKCθ

PLC-γ1

PLC-γ2

RAC1

Rac1

RAC2

RHOA

RhoA

RHOB

RHOG

Rlk

SLP76

Slp76

SRC

SYK

Tec

vav

VAV1

Vav1

VAV2

Vav2

VAV3

Vav3

ZAP70

Glossary

SIGNALOSOME

A putative, stable signalling complex, which consists of BTK, BLNK, BCAP, VAV1, VAV2, PLC-γ2 and PI3K, that is proposed to regulate the level of intracellular calcium and subsequent downstream events.

PALMITOYLATION

The post-translational addition of C16 palmitates to cysteine residues by a thioester bond targets proteins to specific membrane microdomains.

ALLELIC EXCLUSION

This process by which the successful rearrangement and expression of an antigen-receptor subunit prevents rearrangement at the other allele.

TONIC SIGNALLING

A survival signal that arises as a consequence of antigen-receptor expression that is insufficient to give rise to cell activation.

THYMUS-DEPENDENT ANTIGENS

Antigenic stimuli that require the function of thymus-derived lymphocytes to generate a humoral immune response.

CLASS SWITCHING

The somatic recombination process by which immunoglobulin isotypes are switched from IgM to IgG or IgA.

THYMUS-INDEPENDENT ANTIGENS

Antigenic stimuli that promote humoral immune responses in the absence of thymus-derived lymphocytes.

SYSTEMIC ANAPHYLAXIS

Acute hypersensitivity shock that occurs after the exposure of sensitized animals to antigen.

IMMUNOLOGICAL SYNAPSE

A structure that is formed at the cell surface between a T cell and an antigen-presenting cell; also known as the supra-molecular activation cluster (SMAC). Important molecules involved in T-cell activation — including the T-cell receptor, numerous signal-transduction molecules and molecular adaptors — accumulate at this site. Mobilization of the actin cytoskeleton of the cell is required for immunological-synapse formation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, M., Billadeau, D. VAV proteins as signal integrators for multi-subunit immune-recognition receptors. Nat Rev Immunol 2, 476–486 (2002). https://doi.org/10.1038/nri840

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri840

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing