Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nucleocytoplasmic shuttling of signal transducers

Key Points

  • Many signal transducers are transcription factors that undergo nuclear translocation in response to extracellular stimuli. This is a key step of many signal-transduction pathways and imparts inducibility to transcriptional regulation in response to extracellular signals.

  • Some signal transducers, such as the nuclear factor of activated T cells (NF-AT), contain the classic nuclear localization signal (NLS) motif, which allows its recognition and binding by the importin-α–importin-β transport receptor complex. The importins transport their cargoes across the nuclear envelope by interacting with nucleoporins, which are constituents of the nuclear pore complex (NPC).

  • Signal transducers such as β-catenin, SMAD2, SMAD3 and SMAD4 and extracellular signal-regulated kinase (ERK)1 and ERK2 use an importin-independent mechanism for nuclear import. This is due to their ability to interact directly with the NPC without the need for importins as bridging factors.

  • The direct interaction with the NPC might also facilitate nuclear export of β-catenin and SMAD2. Such intrinsic nuclear import and export activity of β-catenin and SMAD2 results in continuous nucleocytoplasmic shuttling of these signal transducers in the basal state.

  • Cytoplasmic and nuclear retention factors can restrict the shuttling of many signal transducers by immobilizing them to intracellular structures, or by blocking their interaction with the nucleoporins or transport receptors.

  • The affinity between signal transducers and their retention factors is subject to regulation by signals. In this way, the extracellular stimuli not only activate the signal transducers by post-translational modification, but also promote their accumulation in the appropriate cellular compartment to propagate the signal.

Abstract

The nuclear translocation of signal-transduction proteins is an essential step in the control of gene expression by numerous extracellular signals. Recent studies have shown that some signal transducers are imported into the nucleus by nuclear-localization-signal- and importin-independent processes. Such a mechanism could allow bidirectional movement across the nuclear envelope. Extracellular signals modify the affinity between signal transducers and anchoring factors, thereby regulating the nucleocytoplasmic shuttling of signalling molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nuclear translocation of β-catenin, SMAD2, SMAD3, ERK1 and ERK2.
Figure 2: Classic NLS- and NES-mediated nuclear transport across the NPC.
Figure 3: The control of subcellular localization of β-catenin by WNT signalling.
Figure 4: TGFβ-controlled subcellular localization of SMAD2, SMAD3 and SMAD4.
Figure 5: Control of subcellular localization of p53 by DNA-damage signals.

Similar content being viewed by others

References

  1. Hunter, T. Signaling — 2000 and beyond. Cell 100, 113–127 (2000).

    CAS  PubMed  Google Scholar 

  2. Adam, S. A., Sterne-Marr, R. & Gerace, L. Nuclear protein import using digitonin-permeabilized cells. Methods Enzymol. 219, 97–110 (1992).

    CAS  PubMed  Google Scholar 

  3. Henkel, T. et al. Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-κB subunit. Cell 68, 1121–1133 (1992).

    CAS  PubMed  Google Scholar 

  4. Zhu, J. et al. Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell 93, 851–861 (1998).

    CAS  PubMed  Google Scholar 

  5. Beg, A. A. et al. IκB interacts with the nuclear localization sequences of the subunits of NF-κB: a mechanism for cytoplasmic retention. Genes Dev. 6, 1899–1913 (1992); erratum in 6, 2664–2665 (1992).

    CAS  PubMed  Google Scholar 

  6. Fagotto, F., Gluck, U. & Gumbiner, B. M. Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of β-catenin. Curr. Biol. 8, 181–190 (1998). The first observation of importin-independent nuclear import of a signal transducer. Evidence of direct binding of β-catenin to a nucleoporin is also presented.

    CAS  PubMed  Google Scholar 

  7. Whitehurst, A. W. et al. ERK2 enters the nucleus by a carrier-independent mechanism. Proc. Natl Acad. Sci. USA 99, 7496–7501 (2002). A report of importin-β-independent nuclear import of ERK2 and a direct interaction between ERK2 and NUP153.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Matsubayashi, Y., Fukuda, M. & Nishida, E. Evidence for existence of a nuclear pore complex-mediated, cytosol-independent pathway of nuclear translocation of ERK MAP kinase in permeabilized cells. J. Biol. Chem. 276, 41755–41760 (2001). This work shows an ERK2 interaction with the nucleoporin NUP214/CAN, which mediates the importin-β-independent nuclear import of ERK2.

    CAS  PubMed  Google Scholar 

  9. Yokoya, F., Imamoto, N., Tachibana, T. & Yoneda, Y. β-catenin can be transported into the nucleus in a Ran-unassisted manner. Mol. Biol. Cell 10, 1119–1131 (1999). This study ruled out a role of the Ran·GTP/Ran·GDP gradient in the nuclear import of β-catenin.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu, L., Chen, Y. G. & Massagué, J. The nuclear import function of Smad2 is masked by SARA and unmasked by TGFβ-dependent phosphorylation. Nature Cell Biol. 2, 559–562 (2000). The first report of importin-β-independent nuclear import of SMAD2.

    CAS  PubMed  Google Scholar 

  11. Weis, K. Regulating access to the genome. Nucleocytoplasmic transport throughout the cell cycle. Cell 112, 441–451 (2003).

    CAS  PubMed  Google Scholar 

  12. Jans, D. A., Xiao, C. Y. & Lam, M. H. Nuclear targeting signal recognition: a key control point in nuclear transport? Bioessays 22, 532–544 (2000).

    CAS  PubMed  Google Scholar 

  13. Fahrenkrog, B. & Aebi, U. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nature Rev. Mol. Cell. Biol. 4, 757–766 (2003).

    CAS  Google Scholar 

  14. Suntharalingam, M. & Wente, S. R. Peering through the pore: nuclear pore complex structure, assembly, and function. Dev. Cell 4, 775–789 (2003).

    CAS  PubMed  Google Scholar 

  15. Gorlich, D., Pante, N., Kutay, U., Aebi, U. & Bischoff, F. R. Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J. 15, 5584–5594 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Izaurralde, E., Kutay, U., von Kobbe, C., Mattaj, I. W. & Gorlich, D. The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J. 16, 6535–6547 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hemmings, B. A. et al. α- and β-forms of the 65-kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry 29, 3166–3173 (1990).

    CAS  PubMed  Google Scholar 

  18. Andrade, M. A. & Bork, P. HEAT repeats in the Huntington's disease protein. Nature Genet. 11, 115–116 (1995).

    CAS  PubMed  Google Scholar 

  19. Walter, G., Ferre, F., Espiritu, O. & Carbone-Wiley, A. Molecular cloning and sequence of cDNA encoding polyoma medium tumor antigen-associated 61-kDa protein. Proc. Natl Acad. Sci. USA 86, 8669–8672 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Vetter, I. R., Arndt, A., Kutay, U., Gorlich, D. & Wittinghofer, A. Structural view of the Ran–importin β interaction at 2.3 Å resolution. Cell 97, 635–646 (1999).

    CAS  PubMed  Google Scholar 

  21. Cingolani, G., Petosa, C., Weis, K. & Muller, C. W. Structure of importin-β bound to the IBB domain of importin-α. Nature 399, 221–229 (1999).

    CAS  PubMed  Google Scholar 

  22. Bayliss, R., Littlewood, T. & Stewart, M. Structural basis for the interaction between FxFG nucleoporin repeats and importin-β in nuclear trafficking. Cell 102, 99–108 (2000).

    CAS  PubMed  Google Scholar 

  23. Bednenko, J., Cingolani, G. & Gerace, L. Importin β contains a COOH-terminal nucleoporin binding region important for nuclear transport. J. Cell Biol. 162, 391–401 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Suh, E. K. & Gumbiner, B. M. Translocation of β-catenin into the nucleus independent of interactions with FG-rich nucleoporins. Exp. Cell Res. 290, 447–456 (2003).

    CAS  PubMed  Google Scholar 

  25. Xu, L., Alarcon, C., Çöl, S. & Massagué, J. Distinct domain utilization by Smad3 and Smad4 for nucleoporin interaction and nuclear import. J. Biol. Chem. 278, 42569–42577 (2003).

    CAS  PubMed  Google Scholar 

  26. Xu, L., Kang, Y., Çöl, S. & Massagué, J. Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFβ signaling complexes in the cytoplasm and nucleus. Mol. Cell 10, 271–282 (2002). The first report of a direct interaction between SMAD2 and nucleoporins that is crucial for both the nuclear import and export of SMAD2.

    CAS  PubMed  Google Scholar 

  27. Gorlich, D., Prehn, S., Laskey, R. A. & Hartmann, E. Isolation of a protein that is essential for the first step of nuclear protein import. Cell 79, 767–778 (1994).

    CAS  PubMed  Google Scholar 

  28. Adam, E. J. & Adam, S. A. Identification of cytosolic factors required for nuclear location sequence-mediated binding to the nuclear envelope. J. Cell Biol. 125, 547–555 (1994).

    CAS  PubMed  Google Scholar 

  29. Pollard, V. W. et al. A novel receptor-mediated nuclear protein import pathway. Cell 86, 985–994 (1996).

    CAS  PubMed  Google Scholar 

  30. Peifer, M., Berg, S. & Reynolds, A. B. A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 76, 789–791 (1994).

    CAS  PubMed  Google Scholar 

  31. Funayama, N., Fagotto, F., McCrea, P. & Gumbiner, B. M. Embryonic axis induction by the armadillo repeat domain of β-catenin: evidence for intracellular signaling. J. Cell Biol. 128, 959–968 (1995).

    CAS  PubMed  Google Scholar 

  32. Fribourg, S., Braun, I. C., Izaurralde, E. & Conti, E. Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor. Mol. Cell 8, 645–656 (2001).

    CAS  PubMed  Google Scholar 

  33. Bayliss, R. et al. Structural basis for the interaction between NTF2 and nucleoporin FxFG repeats. EMBO J. 21, 2843–2853 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu, G. et al. Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science 287, 92–97 (2000).

    CAS  PubMed  Google Scholar 

  35. Xiao, Z., Liu, X., Henis, Y. I. & Lodish, H. F. A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation. Proc. Natl Acad. Sci. USA 97, 7853–7858 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Xiao, Z., Latek, R. & Lodish, H. F. An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity. Oncogene 22, 1057–1069 (2003).

    CAS  PubMed  Google Scholar 

  37. Pierreux, C. E., Nicolas, F. J. & Hill, C. S. Transforming growth factor β-independent shuttling of Smad4 between the cytoplasm and nucleus. Mol. Cell. Biol. 20, 9041–9054 (2000). The report describes, along with reference 55, the CRM1-mediated nuclear export of SMAD4.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kurisaki, A., Kose, S., Yoneda, Y., Heldin, C. H. & Moustakas, A. Transforming growth factor-β induces nuclear import of Smad3 in an importin-β1 and Ran-dependent manner. Mol. Biol. Cell 12, 1079–1091 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jones, J. B. & Kern, S. E. Functional mapping of the MH1 DNA-binding domain of DPC4/SMAD4. Nucleic Acids Res. 28, 2363–2368 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dai, J. L., Turnacioglu, K. K., Schutte, M., Sugar, A. Y. & Kern, S. E. Dpc4 transcriptional activation and dysfunction in cancer cells. Cancer Res. 58, 4592–4597 (1998).

    CAS  PubMed  Google Scholar 

  41. Meyer, T., Begitt, A., Lodige, I., van Rossum, M. & Vinkemeier, U. Constitutive and IFN-γ-induced nuclear import of STAT1 proceed through independent pathways. EMBO J. 21, 344–354 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Meyer, T., Gavenis, K. & Vinkemeier, U. Cell type-specific and tyrosine phosphorylation-independent nuclear presence of STAT1 and STAT3. Exp. Cell Res. 272, 45–55 (2002).

    CAS  PubMed  Google Scholar 

  43. Baker, J. & Harland, R. M. A novel mesoderm inducer, Madr2, functions in the activin signal transduction pathway. Genes Dev. 10, 1880–1889 (1996).

    CAS  PubMed  Google Scholar 

  44. Jacobs, D., Glossip, D., Xing, H., Muslin, A. J. & Kornfeld, K. Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev. 13, 163–175 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nakielny, S. & Dreyfuss, G. Import and export of the nuclear protein import receptor transportin by a mechanism independent of GTP hydrolysis. Curr. Biol. 8, 89–95 (1998).

    CAS  PubMed  Google Scholar 

  46. Wiechens, N. & Fagotto, F. CRM1- and Ran-independent nuclear export of β-catenin. Curr. Biol. 11, 18–27 (2001). A thorough documentation of intrinsic nuclear export activity of β-catenin that is distinct from the CRM1 pathway.

    CAS  PubMed  Google Scholar 

  47. Inman, G. J., Nicolas, F. J. & Hill, C. S. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-β receptor activity. Mol. Cell 10, 283–294 (2002). The demonstration of nucleocytoplasmic shuttling of SMAD2, SMAD3 and SMAD4 that allows continuous sensing of the TGFβ-receptor activity by SMADs.

    CAS  PubMed  Google Scholar 

  48. Eleftheriou, A., Yoshida, M. & Henderson, B. R. Nuclear export of human β-catenin can occur independent of CRM1 and the adenomatous polyposis coli tumor suppressor. J. Biol. Chem. 276, 25883–25888 (2001). A report of APC- and CRM1-independent nuclear export of β-catenin.

    CAS  PubMed  Google Scholar 

  49. Fornerod, M., Ohno, M., Yoshida, M. & Mattaj, I. W. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90, 1051–1060 (1997).

    CAS  PubMed  Google Scholar 

  50. Wen, W., Meinkoth, J. L., Tsien, R. Y. & Taylor, S. S. Identification of a signal for rapid export of proteins from the nucleus. Cell 82, 463–473 (1995).

    CAS  PubMed  Google Scholar 

  51. Bogerd, H. P., Fridell, R. A., Benson, R. E., Hua, J. & Cullen, B. R. Protein sequence requirements for function of the human T-cell leukemia virus type 1 Rex nuclear export signal delineated by a novel in vivo randomization-selection assay. Mol. Cell. Biol. 16, 4207–4214 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kudo, N. et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res. 242, 540–547 (1998).

    CAS  PubMed  Google Scholar 

  53. Zhu, J. & McKeon, F. NF-AT activation requires suppression of Crm1-dependent export by calcineurin. Nature 398, 256–260 (1999). This work shows the CRM1-dependent nuclear export of NF-AT, and the constant nucleocytoplasmic shuttling of this transcription factor.

    CAS  PubMed  Google Scholar 

  54. Fukuda, M., Gotoh, I., Gotoh, Y. & Nishida, E. Cytoplasmic localization of mitogen-activated protein kinase kinase directed by its NH2-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal. J. Biol. Chem. 271, 20024–20028 (1996).

    CAS  PubMed  Google Scholar 

  55. Watanabe, M., Masuyama, N., Fukuda, M. & Nishida, E. Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear export signal. EMBO Rep. 1, 176–182 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Stommel, J. M. et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18, 1660–1672 (1999). The first report of CRM-1-dependent nuclear export of p53 mediated by an NES that is present in p53.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Henderson, B. R. Nuclear-cytoplasmic shuttling of APC regulates β-catenin subcellular localization and turnover. Nature Cell Biol. 2, 653–660 (2000). Evidence for CRM1-mediated nuclear export of APC, and a continuous shuttling of APC that influences the intracellular location of β-catenin.

    CAS  PubMed  Google Scholar 

  59. Rosin-Arbesfeld, R., Townsley, F. & Bienz, M. The APC tumour suppressor has a nuclear export function. Nature 406, 1009–1012 (2000). This work shows CRM1-mediated nuclear export of APC, which is disabled by cancer-related mutations in APC.

    CAS  PubMed  Google Scholar 

  60. Neufeld, K. L., Zhang, F., Cullen, B. R. & White, R. L. APC-mediated downregulation of β-catenin activity involves nuclear sequestration and nuclear export. EMBO Rep. 1, 519–523 (2000). This study reports the role of APC in controlling the subcellular localization of β-catenin.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cong, F. & Varmus, H. E. Nucleo-cytoplasmic shuttling of axin regulates nuclear localization of β-catenin. Proc. Natl Acad. Sci. USA (in the press). A report of nucleocytoplasmic shuttling of axin, and its influence on the subcellular localization of β-catenin.

  62. Rosin-Arbesfeld, R., Cliffe, A., Brabletz, T. & Bienz, M. Nuclear export of the APC tumour suppressor controls β-catenin function in transcription. EMBO J. 22, 1101–1113 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Henderson, B. R. & Fagotto, F. The ins and outs of APC and β-catenin nuclear transport. EMBO Rep. 3, 834–839 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Giles, R. H., van Es, J. H. & Clevers, H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta 1653, 1–24 (2003).

    CAS  PubMed  Google Scholar 

  65. Adachi, M., Fukuda, M. & Nishida, E. Nuclear export of MAP kinase (ERK) involves a MAP kinase kinase (MEK)-dependent active transport mechanism. J. Cell Biol. 148, 849–856 (2000). A description of a 'piggyback' mode of nuclear export of ERK, through its interaction with MEK, which has a typical NES.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ribbeck, K. & Gorlich, D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 20, 1320–1330. (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51, 6304–6311 (1991).

    CAS  PubMed  Google Scholar 

  68. Schneider, S., Steinbeisser, H., Warga, R. M. & Hausen, P. β-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech. Dev. 57, 191–198 (1996).

    CAS  PubMed  Google Scholar 

  69. Macias-Silva, M. et al. MADR2 is a substrate of the TGFβ receptor and phosphorylation is required for nuclear accumulation and signaling. Cell 87, 1215–1224 (1996).

    CAS  PubMed  Google Scholar 

  70. Chen, R. H., Sarnecki, C. & Blenis, J. Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol. Cell. Biol. 12, 915–927 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Rubinfeld, H., Hanoch, T. & Seger, R. Identification of a cytoplasmic-retention sequence in ERK2. J. Biol. Chem. 274, 30349–30352 (1999).

    CAS  PubMed  Google Scholar 

  72. Willert, K. & Nusse, R. β-catenin: a key mediator of Wnt signaling. Curr. Opin. Genet. Dev. 8, 95–102 (1998).

    CAS  PubMed  Google Scholar 

  73. Yap, A. S., Brieher, W. M. & Gumbiner, B. M. Molecular and functional analysis of cadherin-based adherens junctions. Annu. Rev. Cell Dev. Biol. 13, 119–146 (1997).

    CAS  PubMed  Google Scholar 

  74. Cadigan, K. M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).

    CAS  PubMed  Google Scholar 

  75. Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L. & Wrana, J. L. SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor. Cell 95, 779–791 (1998).

    CAS  PubMed  Google Scholar 

  76. Di Guglielmo, G. M., Le Roy, C., Goodfellow, A. F. & Wrana, J. L. Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nature Cell Biol. 5, 410–421 (2003).

    CAS  PubMed  Google Scholar 

  77. Pearson, G. et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153–183 (2001).

    CAS  PubMed  Google Scholar 

  78. Fukuda, M., Gotoh, Y. & Nishida, E. Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J. 16, 1901–1908 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Xu, B., Stippec, S., Robinson, F. L. & Cobb, M. H. Hydrophobic as well as charged residues in both MEK1 and ERK2 are important for their proper docking. J. Biol. Chem. 276, 26509–26515 (2001).

    CAS  Google Scholar 

  80. Blanco-Aparicio, C., Torres, J. & Pulido, R. A novel regulatory mechanism of MAP kinases activation and nuclear translocation mediated by PKA and the PTP-SL tyrosine phosphatase. J. Cell Biol. 147, 1129–1136 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Formstecher, E. et al. PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Dev. Cell 1, 239–250 (2001).

    CAS  PubMed  Google Scholar 

  82. Sharpless, N. E. & DePinho, R. A. p53: good cop/bad cop. Cell 110, 9–12 (2002).

    CAS  PubMed  Google Scholar 

  83. Brooks, C. L. & Gu, W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr. Opin. Cell Biol. 15, 164–171 (2003).

    CAS  PubMed  Google Scholar 

  84. Liang, S. H. & Clarke, M. F. Regulation of p53 localization. Eur. J. Biochem. 268, 2779–2783 (2001).

    CAS  PubMed  Google Scholar 

  85. Liang, S. H. & Clarke, M. F. A bipartite nuclear localization signal is required for p53 nuclear import regulated by a carboxyl-terminal domain. J. Biol. Chem. 274, 32699–32703 (1999).

    CAS  PubMed  Google Scholar 

  86. Moll, U. M., Riou, G. & Levine, A. J. Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc. Natl Acad. Sci. USA 89, 7262–7266 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Nikolaev, A. Y., Li, M., Puskas, N., Qin, J. & Gu, W. Parc: a cytoplasmic anchor for p53. Cell 112, 29–40 (2003). The identification of PARC, a new cytoplasmic retention factor of p53 that restricts p53 access to its target genes.

    CAS  PubMed  Google Scholar 

  88. Momand, J., Zambetti, G. P., Olson, D. C., George, D. & Levine, A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69, 1237–1245 (1992).

    CAS  PubMed  Google Scholar 

  89. Roth, J., Dobbelstein, M., Freedman, D. A., Shenk, T. & Levine, A. J. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 17, 554–564. (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Geyer, R. K., Yu, Z. K. & Maki, C. G. The MDM2 RING-finger domain is required to promote p53 nuclear export. Nature Cell Biol. 2, 569–573 (2000).

    CAS  PubMed  Google Scholar 

  91. Boyd, S. D., Tsai, K. Y. & Jacks, T. An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nature Cell Biol. 2, 563–568 (2000). References 90 and 91 show that Mdm2-mediated ubiquitylation of p53 exposes an intrinsic NES in p53 that is required for the nuclear export of p53.

    CAS  PubMed  Google Scholar 

  92. Gu, J., Nie, L., Wiederschain, D. & Yuan, Z. M. Identification of p53 sequence elements that are required for MDM2-mediated nuclear export. Mol. Cell. Biol. 21, 8533–8546 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lohrum, M. A., Woods, D. B., Ludwig, R. L., Balint, E. & Vousden, K. H. C-terminal ubiquitination of p53 contributes to nuclear export. Mol. Cell. Biol. 21, 8521–8532 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Li, M. et al. Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302, 1972–1975 (2003). This work shows the distinctive functional consequence of mono- versus polyubiquitylation of p53 by Mdm2 in determining the fate and subcellular localization of p53.

    CAS  PubMed  Google Scholar 

  95. Shi, Y. & Massagué, J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113, 685–700 (2003).

    CAS  PubMed  Google Scholar 

  96. Peifer, M. & Polakis, P. Wnt signaling in oncogenesis and embryogenesis — a look outside the nucleus. Science 287, 1606–1609 (2000).

    CAS  PubMed  Google Scholar 

  97. Huber, O. et al. Nuclear localization of β-catenin by interaction with transcription factor LEF-1. Mech. Dev. 59, 3–10 (1996).

    CAS  PubMed  Google Scholar 

  98. Graham, T. A., Weaver, C., Mao, F., Kimelman, D. & Xu, W. Crystal structure of a β-catenin/Tcf complex. Cell 103, 885–896 (2000).

    CAS  PubMed  Google Scholar 

  99. Spink, K. E., Polakis, P. & Weis, W. I. Structural basis of the axin–adenomatous polyposis coli interaction. EMBO J. 19, 2270–2279 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen, X., Rubock, M. J. & Whitman, M. A transcriptional partner of MAD proteins in TGF-β signalling. Nature 383, 691–696 (1996).

    CAS  PubMed  Google Scholar 

  101. Kang, Y., Chen, C. R. & Massagué, J. A self-enabling TGFβ response coupled to stress signaling. Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol. Cell 11, 915–926 (2003).

    CAS  PubMed  Google Scholar 

  102. Wu, J. W. et al. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-β signaling. Mol. Cell 8, 1277–1289 (2001).

    CAS  PubMed  Google Scholar 

  103. Lagna, G., Hata, A., Hemmati-Brivanlou, A. & Massagué, J. Partnership between DPC4 and SMAD proteins in TGFβ signalling pathways. Nature 383, 832–836 (1996).

    CAS  PubMed  Google Scholar 

  104. Liu, F., Pouponnot, C. & Massagué, J. Dual role of the Smad4/DPC4 tumor suppressor in TGFβ-inducible transcriptional responses. Genes Dev. 11, 3157–3167 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang, Y., Feng, X. H. & Derynck, R. Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-β-induced transcription. Nature 394, 909–913 (1998).

    CAS  PubMed  Google Scholar 

  106. Wodarz, A. & Nusse, R. Mechanisms of Wnt signaling in development. Annu. Rev. Cell Dev. Biol. 14, 59–88 (1998).

    CAS  PubMed  Google Scholar 

  107. Gao, Z. H., Seeling, J. M., Hill, V., Yochum, A. & Virshup, D. M. Casein kinase I phosphorylates and destabilizes the β-catenin degradation complex. Proc. Natl Acad. Sci. USA 99, 1182–1187 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Lee, E., Salic, A. & Kirschner, M. W. Physiological regulation of β-catenin stability by Tcf3 and CK1ε. J. Cell Biol. 154, 983–993 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Staal, F. J., Noort, Mv, M., Strous, G. J. & Clevers, H. C. Wnt signals are transmitted through N-terminally dephosphorylated β-catenin. EMBO Rep. 3, 63–68 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Adachi, M., Fukuda, M. & Nishida, E. Two co-existing mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer. EMBO J. 18, 5347–5358 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, Y. & Prives, C. Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature 376, 88–91 (1995).

    CAS  PubMed  Google Scholar 

  112. Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).

    CAS  PubMed  Google Scholar 

  113. Zhang, Y. & Xiong, Y. A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science 292, 1910–1915 (2001). Identification of a new NES in the amino terminus of p53, which is masked by phosphorylation events induced by DNA damage.

    CAS  PubMed  Google Scholar 

  114. Shieh, S. Y., Taya, Y. & Prives, C. DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. EMBO J. 18, 1815–1823 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Hupp, T. R., Meek, D. W., Midgley, C. A. & Lane, D. P. Regulation of the specific DNA binding function of p53. Cell 71, 875–886 (1992).

    CAS  PubMed  Google Scholar 

  116. Sakaguchi, K. et al. Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry 36, 10117–10124 (1997).

    CAS  PubMed  Google Scholar 

  117. Adam, S. A., Marr, R. S. & Gerace, L. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J. Cell Biol. 111, 807–816 (1990).

    CAS  PubMed  Google Scholar 

  118. Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chait, B. T. & Matunis, M. J. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol. 158, 915–927 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Lyman, S. K. & Gerace, L. Nuclear pore complexes: dynamics in unexpected places. J. Cell Biol. 154, 17–20 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Hinshaw, J. E. & Milligan, R. A. Nuclear pore complexes exceeding eightfold rotational symmetry. J. Struct. Biol. 141, 259–268 (2003).

    CAS  PubMed  Google Scholar 

  121. Akey, C. W. & Radermacher, M. Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy. J. Cell Biol. 122, 1–19 (1993).

    CAS  PubMed  Google Scholar 

  122. Yang, Q., Rout, M. P. & Akey, C. W. Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. Mol. Cell 1, 223–234 (1998).

    CAS  PubMed  Google Scholar 

  123. Bischoff, F. R., Klebe, C., Kretschmer, J., Wittinghofer, A. & Ponstingl, H. RanGAP1 induces GTPase activity of nuclear Ras-related Ran. Proc. Natl Acad. Sci. USA 91, 2587–2591 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Bischoff, F. R., Krebber, H., Smirnova, E., Dong, W. & Ponstingl, H. Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1. EMBO J. 14, 705–715 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Bischoff, F. R. & Ponstingl, H. Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354, 80–82 (1991).

    CAS  PubMed  Google Scholar 

  126. Ben-Efraim, I. & Gerace, L. Gradient of increasing affinity of importin β for nucleoporins along the pathway of nuclear import. J. Cell Biol. 152, 411–417 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Tamai, K. et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 407, 530–535 (2000).

    CAS  PubMed  Google Scholar 

  128. Pinson, K. I., Brennan, J., Monkley, S., Avery, B. J. & Skarnes, W. C. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407, 535–538 (2000).

    CAS  PubMed  Google Scholar 

  129. Wehrli, M. et al. arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407, 527–530 (2000).

    CAS  PubMed  Google Scholar 

  130. Massagué, J. TGFβ signal transduction. Annu. Rev. Biochem. 67, 753–791 (1998).

    PubMed  Google Scholar 

  131. Wrana, J. L., Attisano, L., Wieser, R., Ventura, F. & Massagué, J. Mechanism of activation of the TGF-β receptor. Nature 370, 341–347 (1994).

    CAS  PubMed  Google Scholar 

  132. Sekelsky, J. J., Newfeld, S. J., Raftery, L. A., Chartoff, E. H. & Gelbart, W. M. Genetic characterization and cloning of Mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139, 1347–1358 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Wrana, J. L. Regulation of Smad activity. Cell 100, 189–192 (2000).

    CAS  PubMed  Google Scholar 

  134. Zawel, L. et al. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol. Cell 1, 611–617 (1998).

    CAS  PubMed  Google Scholar 

  135. Boulton, T. G. et al. An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science 249, 64–67 (1990).

    CAS  PubMed  Google Scholar 

  136. Boulton, T. G. et al. ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65, 663–675 (1991).

    CAS  PubMed  Google Scholar 

  137. Kosako, H., Gotoh, Y., Matsuda, S., Ishikawa, M. & Nishida, E. Xenopus MAP kinase activator is a serine/threonine/tyrosine kinase activated by threonine phosphorylation. EMBO J. 11, 2903–2908 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Crews, C. M., Alessandrini, A. & Erikson, R. L. The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258, 478–480 (1992).

    CAS  PubMed  Google Scholar 

  139. Dent, P. et al. Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science 257, 1404–1407 (1992).

    CAS  PubMed  Google Scholar 

  140. Kyriakis, J. M. et al. Raf-1 activates MAP kinase-kinase. Nature 358, 417–421 (1992).

    CAS  PubMed  Google Scholar 

  141. Johnson, G. L. & Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911–1912 (2002).

    CAS  PubMed  Google Scholar 

  142. Zhang, Y., Feng, X. -H., Wu, R. -Y. & Derynck, R. Receptor-associated Mad homologues synergize as effectors of the TGFβ response. Nature 383, 168–172 (1996).

    CAS  PubMed  Google Scholar 

  143. Thomson, S., Mahadevan, L. C. & Clayton, A. L. MAP kinase-mediated signalling to nucleosomes and immediate-early gene induction. Semin. Cell Dev. Biol. 10, 205–214 (1999).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

axin

importin-α

importin-β

NF-AT

Swiss-Prot

APC

ATF3

β-catenin

CRM1

ERK1

ERK2

FoxH1

GSK3β

Hdac1

Mdm2

MEK1

Nup1

NUP153

NUP214

p53

PARC

SARA

Sir2a

SMAD2

SMAD3

SMAD4

Glossary

SMADS

A family of homologous proteins that mediate transforming growth factor β (TGFβ) signal transduction. Some of the SMADs are transcription factors that are activated and translocate into the nucleus in response to TGFβ.

NUCLEAR LOCALIZATION SIGNAL

(NLS). A protein motif that consists of a cluster of basic residues that is recognized and bound by importin-α and targets heterologous proteins for import into the nucleus.

IMPORTINS

A family of proteins that transport macromolecules into the nucleus.

PHENYLALANINE-GLYCINE (FG) REPEAT

A region that is found in many nucleoporins that contains several copies of the dipeptide sequence phenylalanine-glycine.

NUCLEOPORIN

A protein subunit of the nuclear pore complex.

CATENIN

A structurally unrelated component of cell adhesion junctions that link cadherin cell-adhesion receptors to the cytoskeleton. There are two forms of catenin, α and β.

MH1 DOMAIN

(Mad homology domain 1). The conserved amino-terminal part of SMAD proteins, which is named after the prototypic SMAD protein from Drosophila, Mad.

CRM1

(chromosome region maintenance 1). A nuclear export receptor for proteins that have the nuclear export signal.

NUCLEAR EXPORT SIGNAL

(NES). A short leucine/isoleucine-rich sequence motif that can direct the nuclear export of heterologous proteins. It is recognized and bound by the nuclear export factor CRM1.

ADENOMATOUS POLYPOSIS COLI

(APC). A tumour suppressor protein that is frequently mutated in familial adenomatous polyposis (FAP) and sporadic colorectal cancers. It is part of the cytoplasmic protein complex that sequesters and phosphorylates β-catenin in the absence of WNT signalling.

ADHERENCE JUNCTION COMPLEX

A protein complex that mediates cell–cell adhesion. This complex contains cadherins that span the cell membrane and interact with cadherins on adjacent cells and catenins in the cytoplasm.

SCF-TYPE UBIQUITIN LIGASE

One of the principal classes of ubiquitin ligases. It is a complex that consists of Skp1, Cullin and F-box proteins.

CADHERIN

A cell-surface glycoprotein that mediates Ca2+-dependent cell adhesion. Classical cadherins and cadherin-related proteins form an 80-member superfamily in humans.

EARLY ENDOSOME

An intracellular vesicular structure that is a precursor of the mature endosome and that has an important role in endocytosis.

RING DOMAIN

A unique zinc-finger-type protein motif that is characteristic of a class of E3 ubiquitin ligase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Massagué, J. Nucleocytoplasmic shuttling of signal transducers. Nat Rev Mol Cell Biol 5, 209–219 (2004). https://doi.org/10.1038/nrm1331

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1331

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing