Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions

An Erratum to this article was published on 01 March 2012

This article has been updated

Key Points

  • Microtubules are involved in various functions, which are mediated by complex interactions with a large range of microtubule-interacting proteins, such as motor proteins, microtubule stabilizers and destabilizers. The emerging role of post-translational modifications (PTMs) of tubulin sheds new light on the spatial and temporal control of microtubule functions.

  • Microtubules undergo a wide array of reversible PTMs, including detyrosination, acetylation, Δ2-modification, polyglutamylation and polyglycylation.

  • The PTMs predominate in more stable microtubule structures, that is, axons, cilia, flagella, centrioles and cytokinetic midbodies, but are in some cases also enriched on more dynamic microtubules, such as the mitotic spindle.

  • Tubulin PTMs are responsible for altering the dynamics of microtubules, their interactions with motors and the action of severing proteins.

  • Because of their many roles in regulating microtubule behaviour, microtubule PTMs are vital to a range of microtubule functions, including cell division, cell motility, cell signalling, neuronal development and brain function.

  • Most of the enzymes that carry out the modifications, as well as those that reverse them, have been identified recently, enabling functional studies. After an initial rise of interest in tubulin PTMs in the 1980s and early 1990s, the field has only recently regained a strong interest in the scientific community.

Abstract

Half a century of biochemical and biophysical experiments has provided attractive models that may explain the diverse functions of microtubules within cells and organisms. However, the notion of functionally distinct microtubule types has not been explored with similar intensity, mostly because mechanisms for generating divergent microtubule species were not yet known. Cells generate distinct microtubule subtypes through expression of different tubulin isotypes and through post-translational modifications, such as detyrosination and further cleavage to Δ2-tubulin, acetylation, polyglutamylation and polyglycylation. The recent discovery of enzymes responsible for many tubulin post-translational modifications has enabled functional studies demonstrating that these post-translational modifications may regulate microtubule functions through an amazing range of mechanisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tubulin PTMs and modifying enzymes.
Figure 2: Localization and proposed molecular functions of tubulin PTMs.
Figure 3: Subcellular distribution of tubulin PTMs.
Figure 4: Potential functions of PTMs found on different microtubule subtypes.

Change history

  • 01 March 2012

    On page 776 of the above article, there was a mistake in figure 1a: the carboxy-terminal tail of α-tubulin should contain two Glu residues (instead of one) just before the terminal Tyr residue (that is, EEY rather than EY). This has been corrected online. We apologize for any confusion caused to readers.

References

  1. Vallee, R. B. Reversible assembly purification of microtubules without assembly-promoting agents and further purification of tubulin, microtubule-associated proteins, and MAP fragments. Methods Enzymol. 134, 89–104 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237–242 (1984).

    CAS  PubMed  Google Scholar 

  3. Verhey, K. J. & Hammond, J. W. Traffic control: regulation of kinesin motors. Nature Rev. Mol. Cell Biol. 10, 765–777 (2009).

    Article  CAS  Google Scholar 

  4. Vallee, R. B., Williams, J. C., Varma, D. & Barnhart, L. E. Dynein: an ancient motor protein involved in multiple modes of transport. J. Neurobiol. 58, 189–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Sheetz, M. P., Steuer, E. R. & Schroer, T. A. The mechanism and regulation of fast axonal transport. Trends Neurosci. 12, 474–478 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Lindemann, C. B. & Lesich, K. A. Flagellar and ciliary beating: the proven and the possible. J. Cell Sci. 123, 519–528 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Surrey, T., Nedelec, F., Leibler, S. & Karsenti, E. Physical properties determining self-organization of motors and microtubules. Science 292, 1167–1171 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Howard, J. & Hyman, A. A. Microtubule polymerases and depolymerases. Curr. Opin. Cell Biol. 19, 31–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Roll-Mecak, A. & McNally, F. J. Microtubule-severing enzymes. Curr. Opin. Cell Biol. 22, 96–103 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Akhmanova, A. & Steinmetz, M. O. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nature Rev. Mol. Cell Biol. 9, 309–322 (2008).

    Article  CAS  Google Scholar 

  11. Wilson, P. G. & Borisy, G. G. Evolution of the multi-tubulin hypothesis. Bioessays 19, 451–454 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Janke, C. & Kneussel, M. Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci. 33, 362–372 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Westermann, S. & Weber, K. Post-translational modifications regulate microtubule function. Nature Rev. Mol. Cell Biol. 4, 938–947 (2003).

    Article  CAS  Google Scholar 

  14. Verhey, K. J. & Gaertig, J. The tubulin code. Cell Cycle 6, 2152–2160 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Wloga, D. & Gaertig, J. Post-translational modifications of microtubules. J. Cell Sci. 123, 3447–3455 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arce, C. A., Rodriguez, J. A., Barra, H. S. & Caputo, R. Incorporation of L-tyrosine, L-phenylalanine and L-3,4-dihydroxyphenylalanine as single units into rat brain tubulin. Eur. J. Biochem. 59, 145–149 (1975). Provides the first evidence for a tubulin PTM, tyrosination, and demonstrates that this modification involves the ATP-dependent, but RNA-independent, addition of an amino acid to tubulin.

    Article  CAS  PubMed  Google Scholar 

  17. Hallak, M. E., Rodriguez, J. A., Barra, H. S. & Caputto, R. Release of tyrosine from tyrosinated tubulin. Some common factors that affect this process and the assembly of tubulin. FEBS Lett. 73, 147–150 (1977).

    Article  CAS  PubMed  Google Scholar 

  18. Valenzuela, P. et al. Nucleotide and corresponding amino acid sequences encoded by α and β tubulin mRNAs. Nature 289, 650–655 (1981).

    Article  CAS  PubMed  Google Scholar 

  19. Gundersen, G. G., Kalnoski, M. H. & Bulinski, J. C. Distinct populations of microtubules: tyrosinated and nontyrosinated αtubulin are distributed differently in vivo. Cell 38, 779–789 (1984). Reports the preparation of first antibodies specific for tubulin PTMs and their use to demonstrate that some microtubules in a cell are enriched in tyrosinated tubulin, whereas other microtubules in the same cell are mostly composed of detyrosinated tubulin.

    Article  CAS  PubMed  Google Scholar 

  20. Eddé, B. et al. Posttranslational glutamylation of α-tubulin. Science 247, 83–85 (1990). Details the discovery of polyglutamylation, a novel PTM of tubulin.

    Article  PubMed  Google Scholar 

  21. Kalinina, E. et al. A novel subfamily of mouse cytosolic carboxypeptidases. FASEB J. 21, 836–850 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Rodriguez de la Vega, M. et al. Nna1-like proteins are active metallocarboxypeptidases of a new and diverse M14 subfamily. FASEB J. 21, 851–865 (2007).

    Article  CAS  Google Scholar 

  23. Rogowski, K. et al. A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 143, 564–578 (2010). Demonstrates, together with the discovery and biochemical analysis of tubulin deglutamylases, the first connection between tubulin polyglutamylation and neurodengeneration in mammals.

    Article  CAS  PubMed  Google Scholar 

  24. Raybin, D. & Flavin, M. Enzyme which specifically adds tyrosine to the α chain of tubulin. Biochemistry 16, 2189–2194 (1977).

    Article  CAS  PubMed  Google Scholar 

  25. Schröder, H. C., Wehland, J. & Weber, K. Purification of brain tubulin-tyrosine ligase by biochemical and immunological methods. J. Cell Biol. 100, 276–281 (1985). Describes purification of the first enzyme known to be involved in a tubulin PTM: TTL.

    Article  PubMed  Google Scholar 

  26. Ersfeld, K. et al. Characterization of the tubulin-tyrosine ligase. J. Cell Biol. 120, 725–732 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Kumar, N. & Flavin, M. Preferential action of a brain detyrosinolating carboxypeptidase on polymerized tubulin. J. Biol. Chem. 256, 7678–7686 (1981).

    Article  CAS  PubMed  Google Scholar 

  28. Gundersen, G. G., Khawaja, S. & Bulinski, J. C. Postpolymerization detyrosination of α-tubulin: a mechanism for subcellular differentiation of microtubules. J. Cell Biol. 105, 251–264 (1987). Shows that, in cultured cells, microtubules that are enriched in modified tubulin are more stable (long-lived) than microtubules that are comprised of unmodified tubulin.

    Article  CAS  PubMed  Google Scholar 

  29. Webster, D. R., Gundersen, G. G., Bulinski, J. C. & Borisy, G. G. Assembly and turnover of detyrosinated tubulin in vivo. J. Cell Biol. 105, 265–276 (1987).

    Article  CAS  PubMed  Google Scholar 

  30. Paturle-Lafanechere, L. et al. Characterization of a major brain tubulin variant which cannot be tyrosinated. Biochemistry 30, 10523–10528 (1991). Describes the discovery of the Δ2-tubulin PTM.

    Article  CAS  PubMed  Google Scholar 

  31. Rüdiger, M., Wehland, J. & Weber, K. The carboxy-terminal peptide of detyrosinated α tubulin provides a minimal system to study the substrate specificity of tubulin–tyrosine ligase. Eur. J. Biochem. 220, 309–320 (1994).

    Article  PubMed  Google Scholar 

  32. Erck, C. et al. A vital role of tubulin-tyrosine-ligase for neuronal organization. Proc. Natl Acad. Sci. USA 102, 7853–7858 (2005). Describes the first genetic knockout of a tubulin modifying enzyme, TTL, in mice. The absence of TTL, which carries out the re-tyrosination of tubulin, leads to massive accumulation of detyrosinated tubulin and Δ2-tubulin, and mice die perinatally of neuronal defects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. L'Hernault, S. W. & Rosenbaum, J. L. Chlamydomonas α-tubulin is posttranslationally modified by acetylation on the ɛ-amino group of a lysine. Biochemistry 24, 473–478 (1985). Shows that tubulin undergoes post-translational acetylation and identifies Lys40 as the acetylated residue.

    Article  CAS  PubMed  Google Scholar 

  34. Maruta, H., Greer, K. & Rosenbaum, J. L. The acetylation of α-tubulin and its relationship to the assembly and disassembly of microtubules. J. Cell Biol. 103, 571–579 (1986).

    Article  CAS  PubMed  Google Scholar 

  35. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Chu, C.-W. et al. A novel acetylation of β-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation. Mol. Biol. Cell 22, 448–456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matsuyama, A. et al. In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J. 21, 6820–6831 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature 417, 455–458 (2002). Demonstrates that a histone deacetylase, HDAC6, functions in cells to reverse acetylation of Lys40.

    Article  CAS  PubMed  Google Scholar 

  39. North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. & Verdin, E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 11, 437–444 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Ohkawa, N. et al. N-acetyltransferase ARD1-NAT1 regulates neuronal dendritic development. Genes Cells 13, 1171–1183 (2008).

    CAS  PubMed  Google Scholar 

  41. Solinger, J. A. et al. The Caenorhabditis elegans elongator complex regulates neuronal α-tubulin acetylation. PLoS Genet. 6, e1000820 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Creppe, C. et al. Elongator controls the migration and differentiation of cortical neurons through acetylation of α-tubulin. Cell 136, 551–564 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Conacci-Sorrell, M., Ngouenet, C. & Eisenman, R. N. Myc-nick: a cytoplasmic cleavage product of Myc that promotes α-tubulin acetylation and cell differentiation. Cell 142, 480–493 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shida, T., Cueva, J. G., Xu, Z., Goodman, M. B. & Nachury, M. V. The major α-tubulin K40 acetyltransferase αTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc. Natl Acad. Sci. USA 107, 21517–21522 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Akella, J. S. et al. MEC-17 is an α-tubulin acetyltransferase. Nature 467, 218–222 (2010). References 44 and 45 describe the discovery of the enzyme MEC-17, also called αTAT1, which carries out the acetylation of Lys40 on α-tubulin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Luduena, R. F. Are tubulin isotypes functionally significant. Mol. Biol. Cell 4, 445–457 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Denoulet, P., Eddé, B., Jeantet, C. & Gros, F. Evolution of tubulin heterogeneity during mouse brain development. Biochimie 64, 165–172 (1982).

    Article  CAS  PubMed  Google Scholar 

  48. Redeker, V. Mass spectrometry analysis of C-terminal posttranslational modifications of tubulins. Methods Cell Biol. 95, 77–103 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Alexander, J. E. et al. Characterization of posttranslational modifications in neuron-specific class III β-tubulin by mass spectrometry. Proc. Natl Acad. Sci. USA 88, 4685–4689 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rüdiger, M., Plessman, U., Kloppel, K. D., Wehland, J. & Weber, K. Class II tubulin, the major brain β tubulin isotype is polyglutamylated on glutamic acid residue 435. FEBS Lett. 308, 101–105 (1992).

    Article  PubMed  Google Scholar 

  51. Redeker, V. et al. Polyglycylation of tubulin: a posttranslational modification in axonemal microtubules. Science 266, 1688–1691 (1994). Describes the discovery of the polyglycylation PTM of tubulin.

    Article  CAS  PubMed  Google Scholar 

  52. Mukai, M. et al. Recombinant mammalian tubulin polyglutamylase TTLL7 performs both initiation and elongation of polyglutamylation on β-tubulin through a random sequential pathway. Biochemistry 48, 1084–1093 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Rogowski, K. et al. Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation. Cell 137, 1076–1087 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Wloga, D. et al. TTLL3 Is a tubulin glycine ligase that regulates the assembly of cilia. Dev. Cell 16, 867–876 (2009). References 53 and 54 demonstrate that enzymes of the TTLL family carry out the polyglycylation PTM of tubulin. They further demonstrate the essential role of this PTM for the dynamics and stability of axonemes.

    Article  CAS  PubMed  Google Scholar 

  55. Audebert, S. et al. Reversible polyglutamylation of α- and β-tubulin and microtubule dynamics in mouse brain neurons. Mol. Biol. Cell 4, 615–626 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Audebert, S. et al. Developmental regulation of polyglutamylated α- and β-tubulin in mouse brain neurons. J. Cell Sci. 107, 2313–2322 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Regnard, C. et al. Characterisation of PGs1, a subunit of a protein complex co-purifying with tubulin polyglutamylase. J. Cell Sci. 116, 4181–4190 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Janke, C. et al. Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science 308, 1758–1762 (2005). Identifies polyglutamylase enzymes and demonstrates that the polyglutamylases are members of the tubulin TTLL family.

    Article  CAS  PubMed  Google Scholar 

  59. Ikegami, K. et al. TTLL10 is a protein polyglycylase that can modify nucleosome assembly protein 1. FEBS Lett. 582, 1129–1134 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ikegami, K. et al. TTLL7 is a mammalian β-tubulin polyglutamylase required for growth of MAP2-positive neurites. J. Biol. Chem. 281, 30707–30716 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. van Dijk, J. et al. A targeted multienzyme mechanism for selective microtubule polyglutamylation. Mol. Cell 26, 437–448 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Ikegami, K. & Setou, M. TTLL10 can perform tubulin glycylation when co-expressed with TTLL8. FEBS Lett. 583, 1957–1963 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Kimura, Y. et al. Identification of tubulin deglutamylase among Caenorhabditis elegans and mammalian cytosolic carboxypeptidases (CCPs). J. Biol. Chem. 285, 22936–22941 (2010). Demonstrates that some members of the family of CCPs that were originally postulated to be detyrosinating enzymes actually catalyze deglutamylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Raybin, D. & Flavin, M. Modification of tubulin by tyrosylation in cells and extracts and its effect on assembly in vitro. J. Cell Biol. 73, 492–504 (1977).

    Article  CAS  PubMed  Google Scholar 

  65. Chapin, S. J. & Bulinski, J. C. Cellular microtubules heterogeneous in their content of microtubule-associated protein 4 (MAP4). Cell Motil. Cytoskeleton 27, 133–149 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Paturle, L., Wehland, J., Margolis, R. L. & Job, D. Complete separation of tyrosinated, detyrosinated, and nontyrosinatable brain tubulin subpopulations using affinity chromatography. Biochemistry 28, 2698–2704 (1989).

    Article  CAS  PubMed  Google Scholar 

  67. Webster, D. R., Gundersen, G. G., Bulinski, J. C. & Borisy, G. G. Differential turnover of tyrosinated and detyrosinated microtubules. Proc. Natl Acad. Sci. USA 84, 9040–9044 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Khawaja, S., Gundersen, G. G. & Bulinski, J. C. Enhanced stability of microtubules enriched in detyrosinated tubulin is not a direct function of detyrosination level. J. Cell Biol. 106, 141–149 (1988).

    Article  CAS  PubMed  Google Scholar 

  69. Peris, L. et al. Motor-dependent microtubule disassembly driven by tubulin tyrosination. J. Cell Biol. 185, 1159–1166 (2009). Demonstrates for the first time a mechanism that explains how detyrosination can stabilize microtubules, by showing that tyrosinated microtubules are better substrates of depolymerizing kinesins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Paturle-Lafanechere, L. et al. Accumulation of δ 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies. J. Cell Sci. 107, 1529–1543 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. Tran, A. D. et al. HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions. J. Cell Sci. 120, 1469–1479 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Zilberman, Y. et al. Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. J. Cell Sci. 122, 3531–3541 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Sudo, H. & Baas, P. W. Acetylation of microtubules influences their sensitivity to severing by katanin in neurons and fibroblasts. J. Neurosci. 30, 7215–7226 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sharma, N. et al. Katanin regulates dynamics of microtubules and biogenesis of motile cilia. J. Cell Biol. 178, 1065–1079 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lacroix, B. et al. Tubulin polyglutamylation stimulates spastin-mediated microtubule severing. J. Cell Biol. 189, 945–954 (2010). Uses, for the first time, an in vitro system to measure the impact that tubulin polyglutamylation has on microtubules. Sets the stage for future studies on differential recognition by other MAPs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Qiang, L., Yu, W., Andreadis, A., Luo, M. & Baas, P. W. Tau protects microtubules in the axon from severing by katanin. J. Neurosci. 26, 3120–3129 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bonnet, C. et al. Differential binding regulation of microtubule-associated proteins MAP1A, MAP1B, and MAP2 by tubulin polyglutamylation. J. Biol. Chem. 276, 12839–12848 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Boucher, D., Larcher, J. C., Gros, F. & Denoulet, P. Polyglutamylation of tubulin as a progressive regulator of in vitro interactions between the microtubule-associated protein Tau and tubulin. Biochemistry 33, 12471–12477 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Liao, G. & Gundersen, G. G. Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J. Biol. Chem. 273, 9797–9803 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Kreitzer, G., Liao, G. & Gundersen, G. G. Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Mol. Biol. Cell 10, 1105–1118 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dunn, S. et al. Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells. J. Cell Sci. 121, 1085–1095 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Konishi, Y. & Setou, M. Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nature Neurosci. 12, 559–567 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Dompierre, J. P. et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J. Neurosci. 27, 3571–3583 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Reed, N. A. et al. Microtubule acetylation promotes Kinesin-1 binding and transport. Curr. Biol. 16, 2166–2172 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Valenzuela-Fernandez, A., Cabrero, J. R., Serrador, J. M. & Sanchez-Madrid, F. HDAC6: a key regulator of cytoskeleton, cell migration and cell–cell interactions. Trends Cell Biol. 18, 291–297 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Hammond, J. W. et al. Posttranslational modifications of tubulin and the polarized transport of Kinesin-1 in neurons. Mol. Biol. Cell 21, 572–583 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cai, D., McEwen, D. P., Martens, J. R., Meyhofer, E. & Verhey, K. J. Single molecule imaging reveals differences in microtubule track selection between Kinesin motors. PLoS Biol. 7, e1000216 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Larcher, J. C., Boucher, D., Lazereg, S., Gros, F. & Denoulet, P. Interaction of kinesin motor domains with α- and β-tubulin subunits at a tau-independent binding site. Regulation by polyglutamylation. J. Biol. Chem. 271, 22117–22124 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Campbell, P. K. et al. Mutation of a novel gene results in abnormal development of spermatid flagella, loss of intermale aggression and reduced body fat in mice. Genetics 162, 307–320 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ikegami, K. et al. Loss of α-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc. Natl Acad. Sci. USA 104, 3213–3218 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Suryavanshi, S. et al. Tubulin glutamylation regulates ciliary motility by altering inner dynein arm activity. Curr. Biol. 20, 435–440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kubo, T., Yanagisawa, H.-A., Yagi, T., Hirono, M. & Kamiya, R. Tubulin polyglutamylation regulates axonemal motility by modulating activities of inner-arm dyneins. Curr. Biol. 20, 441–445 (2010). References 91 and 92 establish a molecular mechanism by which polyglutamylation regulates dynein and alters the function of cilia and flagella.

    Article  CAS  PubMed  Google Scholar 

  93. Kumar, N. & Flavin, M. Modulation of some parameters of assembly of microtubules in vitro by tyrosinolation of tubulin. Eur. J. Biochem. 128, 215–222 (1982).

    Article  CAS  PubMed  Google Scholar 

  94. Weisbrich, A. et al. Structure-function relationship of CAP-Gly domains. Nature Struct. Mol. Biol. 14, 959–967 (2007).

    Article  CAS  Google Scholar 

  95. Peris, L. et al. Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J. Cell Biol. 174, 839–849 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bieling, P. et al. CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites. J. Cell Biol. 183, 1223–1233 (2008). Together, references 94–96 work out the complete mechanism for the specific recognition of tyrosinated microtubules by CAP-Gly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bulinski, J. C. & Gundersen, G. G. Stabilization of post-translational modification of microtubules during cellular morphogenesis. Bioessays 13, 285–293 (1991).

    Article  CAS  PubMed  Google Scholar 

  98. Gundersen, G. G. & Bulinski, J. C. Distribution of tyrosinated and nontyrosinated α-tubulin during mitosis. J. Cell Biol. 102, 1118–1126 (1986).

    Article  CAS  PubMed  Google Scholar 

  99. Piperno, G., LeDizet, M. & Chang, X. J. Microtubules containing acetylated α-tubulin in mammalian cells in culture. J. Cell Biol. 104, 289–302 (1987).

    Article  CAS  PubMed  Google Scholar 

  100. Bobinnec, Y. et al. Glutamylation of centriole and cytoplasmic tubulin in proliferating non- neuronal cells. Cell Motil. Cytoskeleton 39, 223–232 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Zhai, Y., Kronebusch, P. J. & Borisy, G. G. Kinetochore microtubule dynamics and the metaphase–anaphase transition. J. Cell Biol. 131, 721–734 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Regnard, C., Desbruyeres, E., Denoulet, P. & Eddé, B. Tubulin polyglutamylase: isozymic variants and regulation during the cell cycle in HeLa cells. J. Cell Sci. 112, 4281–4289 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Maney, T., Hunter, A. W., Wagenbach, M. & Wordeman, L. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J. Cell Biol. 142, 787–801 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. McNally, K., Audhya, A., Oegema, K. & McNally, F. J. Katanin controls mitotic and meiotic spindle length. J. Cell Biol. 175, 881–891 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sonbuchner, T. M., Rath, U. & Sharp, D. J. KL1 is a novel microtubule severing enzyme that regulates mitotic spindle architecture. Cell Cycle 9, 2403–2411 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Connell, J. W., Lindon, C., Luzio, J. P. & Reid, E. Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic 10, 42–56 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Cambray-Deakin, M. A. & Burgoyne, R. D. Posttranslational modifications of α-tubulin: acetylated and detyrosinated forms in axons of rat cerebellum. J. Cell Biol. 104, 1569–1574 (1987).

    Article  CAS  PubMed  Google Scholar 

  108. Kim, H. Depletion of acetylated α-tubulin during microtubule purification from bovine brain gray and white matter regions. J. Neurosci. Res. 30, 172–182 (1991).

    Article  CAS  PubMed  Google Scholar 

  109. Black, M. M. & Keyser, P. Acetylation of α-tubulin in cultured neurons and the induction of α-tubulin acetylation in PC12 cells by treatment with nerve growth factor. J. Neurosci. 7, 1833–1842 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wolff, A. et al. Distribution of glutamylated α and β-tubulin in mouse tissues using a specific monoclonal antibody, GT335. Eur. J. Cell Biol. 59, 425–432 (1992).

    CAS  PubMed  Google Scholar 

  111. Jacobson, C., Schnapp, B. & Banker, G. A. A change in the selective translocation of the Kinesin-1 motor domain marks the initial specification of the axon. Neuron 49, 797–804 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Robson, S. J. & Burgoyne, R. D. Differential localisation of tyrosinated, detyrosinated, and acetylated α-tubulins in neurites and growth cones of dorsal root ganglion neurons. Cell Motil. Cytoskeleton 12, 273–282 (1989).

    Article  CAS  PubMed  Google Scholar 

  113. Marcos, S. et al. Tubulin tyrosination is required for the proper organization and pathfinding of the growth cone. PLoS ONE 4, e5405 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Falconer, M. M., Vielkind, U. & Brown, D. L. Establishment of a stable, acetylated microtubule bundle during neuronal commitment. Cell Motil. Cytoskeleton 12, 169–180 (1989).

    Article  CAS  PubMed  Google Scholar 

  115. Harting, K. & Knoll, B. SIRT2-mediated protein deacetylation: an emerging key regulator in brain physiology and pathology. Eur. J. Cell Biol. 89, 262–269 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Maas, C. et al. Synaptic activation modifies microtubules underlying transport of postsynaptic cargo. Proc. Natl Acad. Sci. USA 106, 8731–8736 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mullen, R. J., Eicher, E. M. & Sidman, R. L. Purkinje cell degeneration, a new neurological mutation in the mouse. Proc. Natl Acad. Sci. USA 73, 208–212 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Greer, C. A. & Shepherd, G. M. Mitral cell degeneration and sensory function in the neurological mutant mouse Purkinje cell degeneration (PCD). Brain Res. 235, 156–161 (1982).

    Article  CAS  PubMed  Google Scholar 

  119. Wallingford, J. B. & Mitchell, B. Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev. 25, 201–213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lancaster, M. A., Schroth, J. & Gleeson, J. G. Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. Nature Cell Biol. 13, 702–709 (2011).

    CAS  Google Scholar 

  121. Salathe, M. Regulation of mammalian ciliary beating. Annu. Rev. Physiol. 69, 401–422 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Johnson, K. A. The axonemal microtubules of the Chlamydomonas flagellum differ in tubulin isoform content. J. Cell Sci. 111, 313–320 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. L'Hernault, S. W. & Rosenbaum, J. L. Chlamydomonas α-tubulin is posttranslationally modified in the flagella during flagellar assembly. J. Cell Biol. 97, 258–263 (1983).

    Article  CAS  PubMed  Google Scholar 

  124. Piperno, G. & Fuller, M. T. Monoclonal antibodies specific for an acetylated form of α-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J. Cell Biol. 101, 2085–2094 (1985).

    Article  CAS  PubMed  Google Scholar 

  125. Gaertig, J. et al. Acetylation of lysine 40 in α-tubulin is not essential in Tetrahymena thermophila. J. Cell Biol. 129, 1301–1310 (1995).

    Article  CAS  PubMed  Google Scholar 

  126. Zhang, Y. et al. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol. Cell. Biol. 28, 1688–1701 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Raff, E. C., Hoyle, H. D., Popodi, E. M. & Turner, F. R. Axoneme β-tubulin sequence determines attachment of outer dynein arms. Curr. Biol. 18, 911–914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bré, M. H., de Nechaud, B., Wolff, A. & Fleury, A. Glutamylated tubulin probed in ciliates with the monoclonal antibody GT335. Cell Motil. Cytoskeleton 27, 337–349 (1994).

    Article  PubMed  Google Scholar 

  129. Bré, M. H. et al. Axonemal tubulin polyglycylation probed with two monoclonal antibodies: widespread evolutionary distribution, appearance during spermatozoan maturation and possible function in motility. J. Cell Sci. 109, 727–738 (1996).

    Article  PubMed  Google Scholar 

  130. Xia, L. et al. Polyglycylation of tubulin is essential and affects cell motility and division in Tetrahymena thermophila. J. Cell Biol. 149, 1097–1106 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Thazhath, R., Liu, C. & Gaertig, J. Polyglycylation domain of β-tubulin maintains axonemal architecture and affects cytokinesis in Tetrahymena. Nature Cell Biol. 4, 256–259 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Gagnon, C. et al. The polyglutamylated lateral chain of α-tubulin plays a key role in flagellar motility. J. Cell Sci. 109, 1545–1553 (1996).

    Article  CAS  PubMed  Google Scholar 

  133. Pathak, N., Obara, T., Mangos, S., Liu, Y. & Drummond, I. A. The zebrafish fleer gene encodes an essential regulator of cilia tubulin polyglutamylation. Mol. Biol. Cell 18, 4353–4364 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ikegami, K., Sato, S., Nakamura, K., Ostrowski, L. E. & Setou, M. Tubulin polyglutamylation is essential for airway ciliary function through the regulation of beating asymmetry. Proc. Natl Acad. Sci. USA 107, 10490–10495 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Vogel, P., Hansen, G., Fontenot, G. & Read, R. Tubulin tyrosine ligase-like 1 deficiency results in chronic rhinosinusitis and abnormal development of spermatid flagella in mice. Vet. Pathol. 47, 703–712 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Pathak, N., Austin, C. A. & Drummond, I. A. Tubulin tyrosine ligase-like genes ttll3 and ttll6 maintain zebrafish cilia structure and motility. J. Biol. Chem. 286, 11685–11695 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schneider, A., Plessmann, U. & Weber, K. Subpellicular and flagellar microtubules of Trypanosoma brucei are extensively glutamylated. J. Cell Sci. 110, 431–437 (1997).

    Article  CAS  PubMed  Google Scholar 

  138. Carvalho-Santos, Z. et al. Stepwise evolution of the centriole-assembly pathway. J. Cell Sci. 123, 1414–1426 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Bornens, M. & Azimzadeh, J. Origin and evolution of the centrosome. Adv. Exp. Med. Biol. 607, 119–129 (2007).

    Article  PubMed  Google Scholar 

  140. van Breugel, M. et al. Structures of SAS-6 suggest its organization in centrioles. Science 331, 1196–1199 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Kitagawa, D. et al. Structural basis of the 9-fold symmetry of centrioles. Cell 144, 364–375 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Geimer, S., Teltenkotter, A., Plessmann, U., Weber, K. & Lechtreck, K. F. Purification and characterization of basal apparatuses from a flagellate green alga. Cell Motil. Cytoskeleton 37, 72–85 (1997).

    Article  CAS  PubMed  Google Scholar 

  143. Bobinnec, Y. et al. Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell Biol. 143, 1575–1589 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Abal, M., Keryer, G. & Bornens, M. Centrioles resist forces applied on centrosomes during G2/M transition. Biol. Cell 97, 425–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Wloga, D. et al. Glutamylation on α-tubulin is not essential but affects the assembly and functions of a subset of microtubules in Tetrahymena thermophila. Eukaryot. Cell 7, 1362–1372 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Verdier-Pinard, P. et al. Tubulin proteomics: towards breaking the code. Anal. Biochem. 384, 197–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Fliegauf, M., Benzing, T. & Omran, H. When cilia go bad: cilia defects and ciliopathies. Nature Rev. Mol. Cell Biol. 8, 880–893 (2007).

    Article  CAS  Google Scholar 

  148. Goetz, S. C. & Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. Nature Rev. Genet. 11, 331–344 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Brandt, R. Cytoskeletal mechanisms of neuronal degeneration. Cell Tissue Res. 305, 255–265 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Saxena, S. & Caroni, P. Mechanisms of axon degeneration: from development to disease. Prog. Neurobiol. 83, 174–191 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Kuehn, E. W., Walz, G. & Benzing, T. von Hippel-Lindau: a tumor suppressor links microtubules to ciliogenesis and cancer development. Cancer Res. 67, 4537–4540 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Michaud, E. J. & Yoder, B. K. The primary cilium in cell signaling and cancer. Cancer Res. 66, 6463–6467 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Mialhe, A. et al. Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res. 61, 5024–5027 (2001).

    CAS  PubMed  Google Scholar 

  154. Soucek, K. et al. Normal and prostate cancer cells display distinct molecular profiles of α-tubulin posttranslational modifications. Prostate 66, 954–965 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Amos, L. A. Focusing-in on microtubules. Curr. Opin. Struct. Biol. 10, 236–241 (2000).

    Article  CAS  PubMed  Google Scholar 

  156. Cleveland, D. W., Kirschner, M. W. & Cowan, N. J. Isolation of separate mRNAs for α- and β-tubulin and characterization of the corresponding in vitro translation products. Cell 15, 1021–1031 (1978).

    Article  CAS  PubMed  Google Scholar 

  157. Cleveland, D. W. et al. Number and evolutionary conservation of α- and β-tubulin and cytoplasmic β- and γ-actin genes using specific cloned cDNA probes. Cell 20, 95–105 (1980).

    Article  CAS  PubMed  Google Scholar 

  158. Sanchez, F., Natzle, J. E., Cleveland, D. W., Kirschner, M. W. & McCarthy, B. J. A dispersed multigene family encoding tubulin in Drosophila melanogaster. Cell 22, 845–854 (1980).

    Article  CAS  PubMed  Google Scholar 

  159. Gaertig, J., Thatcher, T. H., McGrath, K. E., Callahan, R. C. & Gorovsky, M. A. Perspectives on tubulin isotype function and evolution based on the observation that Tetrahymena thermophila microtubules contain a single α- and β-tubulin. Cell Motil. Cytoskeleton 25, 243–253 (1993).

    Article  CAS  PubMed  Google Scholar 

  160. Nogales, E., Whittaker, M., Milligan, R. A. & Downing, K. H. High-resolution model of the microtubule. Cell 96, 79–88 (1999).

    Article  CAS  PubMed  Google Scholar 

  161. Nogales, E., Wolf, S. G. & Downing, K. H. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199–203 (1998).

    Article  CAS  PubMed  Google Scholar 

  162. Joshi, H. C. & Cleveland, D. W. Differential utilization of β-tubulin isotypes in differentiating neurites. J. Cell Biol. 109, 663–673 (1989).

    Article  CAS  PubMed  Google Scholar 

  163. Bond, J. F., Fridovich-Keil, J. L., Pillus, L., Mulligan, R. C. & Solomon, F. A chicken-yeast chimeric β-tubulin protein is incorporated into mouse microtubules in vivo. Cell 44, 461–468 (1986).

    Article  CAS  PubMed  Google Scholar 

  164. Lewis, S. A., Gu, W. & Cowan, N. J. Free intermingling of mammalian β-tubulin isotypes among functionally distinct microtubules. Cell 49, 539–548 (1987).

    Article  CAS  PubMed  Google Scholar 

  165. Jaglin, X. H. et al. Mutations in the β-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nature Genet. 41, 746–752 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. Tischfield, M. A. et al. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 140, 74–87 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hoyle, H. D., Turner, F. R. & Raff, E. C. Axoneme-dependent tubulin modifications in singlet microtubules of the Drosophila sperm tail. Cell Motil. Cytoskeleton 65, 295–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Honnappa, S. et al. Key interaction modes of dynamic +TIP networks. Mol. Cell 23, 663–671 (2006).

    Article  CAS  PubMed  Google Scholar 

  169. Janke, C., Rogowski, K. & van Dijk, J. Polyglutamylation: a fine-regulator of protein function? 'Protein modifications: beyond the usual suspects' review series. EMBO Rep. 9, 636–641 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Pease, D. C. The ultrastructure of flagellar fibrils. J. Cell Biol. 18, 313–326 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ledbetter, M. C. & Porter, K. R. Morphology of microtubules of plant cell. Science 144, 872–874 (1964).

    Article  CAS  PubMed  Google Scholar 

  172. Borisy, G. G. & Taylor, E. W. The mechanism of action of colchicine. Binding of colchincine-3H to cellular protein. J. Cell Biol. 34, 525–533 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Borisy, G. G. & Taylor, E. W. The mechanism of action of colchicine. Colchicine binding to sea urchin eggs and the mitotic apparatus. J. Cell Biol. 34, 535–548 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Mohri, H. Amino-acid composition of “tubulin” constituting microtubules of sperm flagella. Nature 217, 1053–1054 (1968).

    Article  CAS  PubMed  Google Scholar 

  175. Weisenberg, R. C. Microtubule formation in vitro in solutions containing low calcium concentrations. Science 177, 1104–1105 (1972).

    Article  CAS  PubMed  Google Scholar 

  176. Barra, H. S., Rodriguez, J. A., Arce, C. A. & Caputto, R. A soluble preparation from rat brain that incorporates into its own proteins (14C)arginine by a ribonuclease-sensitive system and (14C)tyrosine by a ribonuclease-insensitive system. J. Neurochem. 20, 97–108 (1973).

    Article  CAS  PubMed  Google Scholar 

  177. Murphy, D. B. & Borisy, G. G. Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro. Proc. Natl Acad. Sci. USA 72, 2696–2700 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Luduena, R. F., Shooter, E. M. & Wilson, L. Structure of the tubulin dimer. J. Biol. Chem. 252, 7006–7014 (1977).

    Article  CAS  PubMed  Google Scholar 

  179. Schiff, P. B., Fant, J. & Horwitz, S. B. Promotion of microtubule assembly in vitro by taxol. Nature 277, 665–667 (1979).

    Article  CAS  PubMed  Google Scholar 

  180. Vale, R. D., Reese, T. S. & Sheetz, M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Paschal, B. M. & Vallee, R. B. Retrograde transport by the microtubule-associated protein MAP 1C. Nature 330, 181–183 (1987).

    Article  CAS  PubMed  Google Scholar 

  182. Oakley, C. E. & Oakley, B. R. Identification of γ-tubulin, a new member of the tubulin superfamily encoded by MipA gene of Aspergillus nidulans. Nature 338, 662–664 (1989).

    Article  CAS  PubMed  Google Scholar 

  183. McNally, F. J. & Vale, R. D. Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell 75, 419–429 (1993).

    Article  CAS  PubMed  Google Scholar 

  184. Nogales, E., Wolf, S. G., Khan, I. A., Luduena, R. F. & Downing, K. H. Structure of tubulin at 6.5 Å and location of the taxol-binding site. Nature 375, 424–427 (1995).

    Article  CAS  PubMed  Google Scholar 

  185. Perez, F., Diamantopoulos, G. S., Stalder, R. & Kreis, T. E. CLIP-170 highlights growing microtubule ends in vivo. Cell 96, 517–527 (1999).

    Article  CAS  PubMed  Google Scholar 

  186. Tirnauer, J. S. & Bierer, B. E. EB1 proteins regulate microtubule dynamics, cell polarity, and chromosome stability. J. Cell Biol. 149, 761–766 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.J. is supported by the Institut Curie, the Centre National de la Recherche Scientifique (CNRS) and the Institut National de la Santé et de la Recherche Médicale (INSERM), as well as by award 3140 of the Association pour la Recherche sur le Cancer (ARC), the French National Research Agency (ANR) awards 05-JCJC-0035 and 08-JCJC-0007, the Fondation pour la Recherche Médicale (FRM) research grant DEQ20081213977, the Human Frontier Science Program (HFSP) grant RGP 23/2008 and the European Molecular Biology Organization (EMBO) Young Investigator Program. J.C.B. is supported by Columbia University, USA, and The US National Institute of General Medical Sciences (NIGMS) grant R01 GM088660. We are very grateful to M. Steinmetz for help with figure 2b and for helpful comments and discussions and to L. Amos for allowing us to use a figure from reference 155 for the production of figure 2a. We further thank A. Fleury-Aubusson, M. M. Magiera, D. Needleman and T. Surrey for helpful discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Discovery of enzymatic ligation of amino acids (PDF 77 kb)

Supplementary information S2 (box)

Reagents and experimental tools used in studying tubulin PTMs (PDF 180 kb)

Related links

Related links

FURTHER INFORMATION

Carsten Janke's homepage

Jeannette Chloë Bulinski's homepage

Glossary

Centrioles

Barrel-shaped microtubule structures that generally assemble from nine triplet microtubules. A pair of centrioles surrounded by an amorphous mass constitutes the centrosome. Centrioles also serve as the basal body in ciliogenesis.

Axonemes

Assemblies of microtubule doublets and singlets that form the core structures of cilia and flagella. The axoneme typically has a ring of nine outer microtubule doublets, which is assembled onto the basal body. Most motile cilia possess an extra central pair of microtubules.

Mitotic spindle

A dynamic structure composed of microtubules and associated proteins that assembles around condensed chromosomes and exerts the forces that lead to their separation into the daughter cells during cell division.

Midbody

A structure that connects the two daughter cells at the end of cell division, before cytokinetic abscission. It contains bundles of microtubules derived from the central region of the mitotic spindle, and other proteins that are important for cytokinesis.

Kinesins

Motor proteins that move along microtubules (generally towards the plus end) by hydrolysing ATP. They have vital roles in most microtubule functions and constitute a diverse family, which also includes proteins with non-motile functions, such as microtubule depolymerization.

Dyneins

Large motor protein complexes that move along microtubules towards the minus end by hydrolysing ATP to carry out intracellular transport and force generation. They are an integral part of the axoneme in motile cilia and flagella, generating their characteristic beat and also participating in intraflagellar transport.

Carboxypeptidase

A protease that cleaves peptide bonds at the carboxyl terminus of peptide chains. It can be specific for a single amino acid, as is the case for the cytosolic carboxypeptidases described in this Review.

Elongator protein complex

(ELP complex). A multisubunit histone acetyltransferase that acetylates histone H3 and is associated with nascent mRNAs in yeast. It has been implicated in α-tubulin acetylation.

MYC-nick

A cytoplasmic cleavage product of MYC that is generated by calpain-dependent proteolysis of full-length MYC at Lys298.

Axons

Filamentous projections that extrude from the cell body of neurons, transmit information away from the cell body via electrical impulses and are the site of axonal transport. There is normally one axon per neuron; other, smaller protrusions are dendrites.

Blot-overlay assays

A method to identify specific protein–protein interactions. Target proteins are resolved on polyacrylamide gels and transferred onto nitrocellulose membranes, which are overlaid with a solution containing potential interacting proteins. Interacting proteins bound to the membrane are then visualized by antibody staining.

CAP-Gly domain proteins

Regulators of microtubule dynamics that contain a 70-residue protein domain with several Gly residues and a hydrophobic cavity with a highly conserved GKNDG sequence that binds to the carboxy-terminal EEY or EEF sequence motifs of α-tubulin, end-binding proteins, and cytoplasmic linker protein 170 (CLIP170).

Dynactin

A multisubunit protein complex that supports bidirectional intracellular transport by binding to dynein and Kinesin-2 and linking them to vesicle cargoes. It interacts with dynein via the CAP-Gly protein p150glued.

Astral microtubules

Extend radially from the mitotic spindle towards the plasma membrane of the cell. They do not attach to chromosomes but play an essential part in orienting the mitotic spindle and the plane of cytokinesis.

Kinetochore fibres

Generate the mechanical force for chromosome segregation and are composed of mitotic spindle microtubules that connect the poles of the spindle to each kinetochore.

Growth cone

A dynamic structure at the tip of growing axons. In response to extracellular signals, it migrates and guides axons to their target areas, where they are remodelled into a synapse. The function of growth cones relies on highly dynamic actin and microtubule cytoskeletons.

Purkinje cell

GABAergic (γ-aminobutyric acid-ergic) neurons located in the Purkinje layer of the cerebellum. Purkinje cells are some of the largest neurons in the brain; they are characterized by a highly differentiated dendritic tree and constitute the only output of the entire motor coordination in the cerebellum.

Short hairpin RNA

(shRNA). Short RNA sequences that can be expressed in cells to silence gene expression. DNA sequences for shRNA templates are cloned into plasmids under the control of a U6 or an H1 promoter; the RNA forms a tight hairpin that is sufficient to silence the target gene.

Primary cilia

Immotile cilia that are present in most cells of vertebrate organisms, in which they function in cell–cell signalling during development and also in mechanical sensing by some cell types.

Intraflagellar transport

(IFT). The bidirectional transport of membrane-free particles within cilia and flagella. IFT particles move along the microtubules of the axoneme, driven by two motors: Kinesin-2 for anterograde transport; and cytoplasmic dynein 1b for retrograde transport.

Basal bodies

A type of centriole that is inserted into the membrane at the base of a cilium or flagellum, where it serves as a nucleation site for the growth of the axoneme. Essential for the formation of cilia and flagella and for their anchoring at the cell membrane.

Ciliopathies

Diseases that are caused by ciliary defects. Left-right asymmetry disorders, hydrocephalus and male sterility can result from the malfunction or absence of motile cilia. Diseases that are less obviously related to cilia, such as polycystic kidney disease, developmental disorders and cancer, result from the absence or malfunction of primary cilia and the consequent loss of their signalling functions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janke, C., Chloë Bulinski, J. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 12, 773–786 (2011). https://doi.org/10.1038/nrm3227

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3227

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing