Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein rescue from aggregates by powerful molecular chaperone machines

Key Points

  • When cells are exposed to stresses, proteins may misfold and aggregate. Molecular chaperones function in a myriad of cellular activities, including protein folding, remodelling and, in the case of yeast heat shock protein 104 (Hsp104) and bacterial ClpB, in the disaggregation of aggregated proteins.

  • The oligomeric architecture of Hsp104 and ClpB is similar to other members of the HSP100 family of proteins.

  • DnaK and Hsp70 collaborate during disaggregation with ClpB and Hsp104, respectively, through specific and direct interactions with the M-domain

  • The M-domain of Hsp104 and ClpB modulates the ATP-dependent disaggregation activity. During the disaggregation reaction, Hsp70 and the bacterial homologue DnaK interact with the M-domain of Hsp104 and ClpB, respectively, unleashing the disaggregase activity.

  • Determining how energy-dependent disaggregases reactivate aggregated proteins has important implications for the understanding and amelioration of aggregation-based diseases, such as Alzheimer's disease, Parkinson's disease and prion diseases.

Abstract

Protein quality control within the cell requires the interplay of many molecular chaperones and proteases. When this quality control system is disrupted, polypeptides follow pathways leading to misfolding, inactivity and aggregation. Among the repertoire of molecular chaperones are remarkable proteins that forcibly untangle protein aggregates, called disaggregases. Structural and biochemical studies have led to new insights into how these proteins collaborate with co-chaperones and utilize ATP to power protein disaggregation. Understanding how energy-dependent protein disaggregating machines function is universally important and clinically relevant, as protein aggregation is linked to medical conditions such as Alzheimer's disease, Parkinson's disease, amyloidosis and prion diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The protein quality control network.
Figure 2: Protomer and hexamer structures of HSP100 proteins.
Figure 3: Model for the mechanism of protein unfolding and degradation by Clp proteases.
Figure 4: The Hsp70 chaperone system.
Figure 5: Mechanism of disaggregation by Hsp104 and the Hsp70 system.
Figure 6: Model for prion propagation by Hsp104.
Figure 7: HSP110 structure alone and in complex with HSC70.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    CAS  PubMed  Google Scholar 

  2. Lindquist, S. L. & Kelly, J. W. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Cold Spring Harb. Perspect. Biol. 3, a004507 (2011).

    PubMed  PubMed Central  Google Scholar 

  3. Mayer, M. P. Gymnastics of molecular chaperones. Mol. Cell 39, 321–331 (2010).

    CAS  PubMed  Google Scholar 

  4. Priya, S., Sharma, S. K. & Goloubinoff, P. Molecular chaperones as enzymes that catalytically unfold misfolded polypeptides. FEBS Lett. 587, 1981–1987 (2013).

    CAS  PubMed  Google Scholar 

  5. Preissler, S. & Deuerling, E. Ribosome-associated chaperones as key players in proteostasis. Trends Biochem. Sci. 37, 274–283 (2012).

    CAS  PubMed  Google Scholar 

  6. Willmund, F. et al. The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152, 196–209 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Finley, D. Recognition and processing of ubiquitin–protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sauer, R. T. & Baker, T. A. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. 80, 587–612 (2011).

    CAS  PubMed  Google Scholar 

  9. Goloubinoff, P. & De Los Rios, P. The mechanism of Hsp70 chaperones: (entropic) pulling the models together. Trends Biochem. Sci. 32, 372–380 (2007).

    CAS  PubMed  Google Scholar 

  10. Bukau, B. & Horwich, A. L. The Hsp70 and Hsp60 chaperone machines. Cell 92, 351–366 (1998).

    CAS  PubMed  Google Scholar 

  11. Doyle, S. M. & Wickner, S. Hsp104 and ClpB: protein disaggregating machines. Trends Biochem. Sci. 34, 40–48 (2009).

    CAS  PubMed  Google Scholar 

  12. Glover, J. R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73–82 (1998). Establishes the collaboration between Hsp104 and Hsp70 in protein disaggregation in vitro and shows the requirement for species-specific chaperone partners.

    CAS  PubMed  Google Scholar 

  13. Goloubinoff, P., Mogk, A., Zvi, A. P., Tomoyasu, T. & Bukau, B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl Acad. Sci. USA 96, 13732–13737 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Haslberger, T., Bukau, B. & Mogk, A. Towards a unifying mechanism for ClpB/Hsp104-mediated protein disaggregation and prion propagation. Biochem. Cell Biol. 88, 63–75 (2010).

    CAS  PubMed  Google Scholar 

  15. Hodson, S., Marshall, J. J. & Burston, S. G. Mapping the road to recovery: the ClpB/Hsp104 molecular chaperone. J. Struct. Biol. 179, 161–171 (2012).

    CAS  PubMed  Google Scholar 

  16. Mattoo, R. U., Sharma, S. K., Priya, S., Finka, A. & Goloubinoff, P. Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates. J. Biol. Chem. 288, 21399–21411 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Motohashi, K., Watanabe, Y., Yohda, M. & Yoshida, M. Heat-inactivated proteins are rescued by the DnaK·J-GrpE set and ClpB chaperones. Proc. Natl Acad. Sci. USA 96, 7184–7189 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rampelt, H. et al. Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J. 31, 4221–4235 (2012). Reports the collaboration between metazoan HSP70 and HSP110 in protein disaggregation both in vivo and in vitro.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shorter, J. The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS ONE 6, e26319 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Winkler, J., Tyedmers, J., Bukau, B. & Mogk, A. Chaperone networks in protein disaggregation and prion propagation. J. Struct. Biol. 179, 152–160 (2012).

    CAS  PubMed  Google Scholar 

  21. Zolkiewski, M. ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. J. Biol. Chem. 274, 28083–28086 (1999).

    CAS  PubMed  Google Scholar 

  22. Parsell, D. A., Kowal, A. S., Singer, M. A. & Lindquist, S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372, 475–478 (1994). Demonstrates that Hsp104 is involved in the disaggregation of protein aggregates in yeast cells.

    CAS  PubMed  Google Scholar 

  23. Sanchez, Y. & Lindquist, S. L. HSP104 required for induced thermotolerance. Science 248, 1112–1115 (1990).

    CAS  PubMed  Google Scholar 

  24. Sanchez, Y., Taulien, J., Borkovich, K. A. & Lindquist, S. Hsp104 is required for tolerance to many forms of stress. EMBO J. 11, 2357–2364 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Squires, C. L., Pedersen, S., Ross, B. M. & Squires, C. ClpB is the Escherichia coli heat shock protein F84.1. J. Bacteriol. 173, 4254–4262 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mogk, A. et al. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 18, 6934–6949 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tessarz, P., Mogk, A. & Bukau, B. Substrate threading through the central pore of the Hsp104 chaperone as a common mechanism for protein disaggregation and prion propagation. Mol. Microbiol. 68, 87–97 (2008).

    CAS  PubMed  Google Scholar 

  28. Weibezahn, J. et al. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119, 653–665 (2004). Reports that ClpB utilizes the same mechanism for protein unfolding and translocation as other HSP100 proteins.

    CAS  PubMed  Google Scholar 

  29. Chernoff, Y. O. Stress and prions: lessons from the yeast model. FEBS Lett. 581, 3695–3701 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G. & Liebman, S. W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268, 880–884 (1995).

    CAS  PubMed  Google Scholar 

  31. Shorter, J. & Lindquist, S. Prions as adaptive conduits of memory and inheritance. Nature Rev. Genet. 6, 435–450 (2005).

    CAS  PubMed  Google Scholar 

  32. Wickner, R. B. et al. Amyloids and yeast prion biology. Biochemistry 52, 1514–1527 (2013).

    CAS  PubMed  Google Scholar 

  33. Reidy, M., Miot, M. & Masison, D. C. Prokaryotic chaperones support yeast prions and thermotolerance and define disaggregation machinery interactions. Genetics 192, 185–193 (2012). Establishes that ClpB, like Hsp104, is able to propagate prions in yeast when its species-specific Hsp70 partner, DnaK, is also present.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gurley, W. B. HSP101: a key component for the acquisition of thermotolerance in plants. Plant Cell 12, 457–460 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Queitsch, C., Hong, S. W., Vierling, E. & Lindquist, S. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12, 479–492 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Voos, W. Mitochondrial protein homeostasis: the cooperative roles of chaperones and proteases. Res. Microbiol. 160, 718–725 (2009).

    CAS  PubMed  Google Scholar 

  37. Lewandowska, A., Gierszewska, M., Marszalek, J. & Liberek, K. Hsp78 chaperone functions in restoration of mitochondrial network following heat stress. Biochim. Biophys. Acta 1763, 141–151 (2006).

    CAS  PubMed  Google Scholar 

  38. Erzberger, J. P. & Berger, J. M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Ann. Rev. Biophys. Biomol. Struct. 35, 93–114 (2006).

    CAS  Google Scholar 

  39. Hanson, P. I. & Whiteheart, S. W. AAA+ proteins: have engine, will work. Nature Rev. Mol. Cell Biol. 6, 519–529 (2005).

    CAS  Google Scholar 

  40. Ogura, T., Whiteheart, S. W. & Wilkinson, A. J. Conserved arginine residues implicated in ATP hydrolysis, nucleotide-sensing, and inter-subunit interactions in AAA and AAA+ ATPases. J. Struct. Biol. 146, 106–112 (2004).

    CAS  PubMed  Google Scholar 

  41. Wendler, P., Ciniawsky, S., Kock, M. & Kube, S. Structure and function of the AAA+ nucleotide binding pocket. Biochim. Biophys. Acta 1823, 2–14 (2012).

    CAS  PubMed  Google Scholar 

  42. Baker, T. A. & Sauer, R. T. ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochim. Biophys. Acta 1823, 15–28 (2012).

    CAS  PubMed  Google Scholar 

  43. Zolkiewski, M. A camel passes through the eye of a needle: protein unfolding activity of Clp ATPases. Mol. Microbiol. 61, 1094–1100 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, S., Sowa, M. E., Choi, J. M. & Tsai, F. T. The ClpB/Hsp104 molecular chaperone — a protein disaggregating machine. J. Struct. Biol. 146, 99–105 (2004).

    CAS  PubMed  Google Scholar 

  45. Wang, F. et al. Structure and mechanism of the hexameric MecA–ClpC molecular machine. Nature 471, 331–335 (2011).

    CAS  PubMed  Google Scholar 

  46. Xia, D., Esser, L., Singh, S. K., Guo, F. & Maurizi, M. R. Crystallographic investigation of peptide binding sites in the N-domain of the ClpA chaperone. J. Struct. Biol. 146, 166–179 (2004).

    CAS  PubMed  Google Scholar 

  47. Kim, Y. I. et al. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nature Struct. Biol. 8, 230–233 (2001).

    CAS  PubMed  Google Scholar 

  48. Alexopoulos, J. A., Guarne, A. & Ortega, J. ClpP: a structurally dynamic protease regulated by AAA+ proteins. J. Struct. Biol. 179, 202–210 (2012).

    CAS  PubMed  Google Scholar 

  49. Lee, S. et al. The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell 115, 229–240 (2003). Determines the crystal structure of T. thermophilus ClpB and uses cryo-EM reconstruction to model the ClpB hexamer.

    CAS  PubMed  Google Scholar 

  50. Lee, S., Choi, J. M. & Tsai, F. T. Visualizing the ATPase cycle in a protein disaggregating machine: structural basis for substrate binding by ClpB. Mol. Cell 25, 261–271 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, T. et al. Flexible connection of the N-terminal domain in ClpB modulates substrate binding and the aggregate reactivation efficiency. Proteins 80, 2758–2768 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, S., Sielaff, B., Lee, J. & Tsai, F. T. CryoEM structure of Hsp104 and its mechanistic implication for protein disaggregation. Proc. Natl Acad. Sci. USA 107, 8135–8140 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wendler, P. et al. Atypical AAA+ subunit packing creates an expanded cavity for disaggregation by the protein-remodeling factor Hsp104. Cell 131, 1366–1377 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wendler, P. et al. Motor mechanism for protein threading through Hsp104. Mol. Cell 34, 81–92 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Barends, T. R., Werbeck, N. D. & Reinstein, J. Disaggregases in 4 dimensions. Curr. Opin. Struct. Biol. 20, 46–53 (2010).

    CAS  PubMed  Google Scholar 

  56. DeSantis, M. E. & Shorter, J. The elusive middle domain of Hsp104 and ClpB: location and function. Biochim. Biophys. Acta 1823, 29–39 (2012).

    CAS  PubMed  Google Scholar 

  57. Liu, J. et al. Structural dynamics of the MecA–ClpC complex: a type II AAA+ protein unfolding machine. J. Biol. Chem. 288, 17597–17608 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kirstein, J. et al. Adaptor protein controlled oligomerization activates the AAA+ protein ClpC. EMBO J. 25, 1481–1491 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Schlothauer, T., Mogk, A., Dougan, D. A., Bukau, B. & Turgay, K. MecA, an adaptor protein necessary for ClpC chaperone activity. Proc. Natl Acad. Sci. USA 100, 2306–2311 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Diemand, A. V. & Lupas, A. N. Modeling AAA+ ring complexes from monomeric structures. J. Struct. Biol. 156, 230–243 (2006).

    CAS  PubMed  Google Scholar 

  61. Biter, A. B., Lee, S., Sung, N. & Tsai, F. T. Structural basis for intersubunit signaling in a protein disaggregating machine. Proc. Natl Acad. Sci. USA 109, 12515–12520 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yamasaki, T., Nakazaki, Y., Yoshida, M. & Watanabe, Y. H. Roles of conserved arginines in ATP-binding domains of AAA+ chaperone ClpB from Thermus thermophilus. FEBS J. 278, 2395–2403 (2011).

    CAS  PubMed  Google Scholar 

  63. Lee, M. E., Baker, T. A. & Sauer, R. T. Control of substrate gating and translocation into ClpP by channel residues and ClpX binding. J. Mol. Biol. 399, 707–718 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Effantin, G., Maurizi, M. R. & Steven, A. C. Binding of the ClpA unfoldase opens the axial gate of ClpP peptidase. J. Biol. Chem. 285, 14834–14840 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hoskins, J. R., Pak, M., Maurizi, M. R. & Wickner, S. The role of the ClpA chaperone in proteolysis by ClpAP. Proc. Natl Acad. Sci. USA 95, 12135–12140 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hoskins, J. R., Singh, S. K., Maurizi, M. R. & Wickner, S. Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP. Proc. Natl Acad. Sci. USA 97, 8892–8897 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim, Y. I., Burton, R. E., Burton, B. M., Sauer, R. T. & Baker, T. A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 5, 639–648 (2000).

    CAS  PubMed  Google Scholar 

  68. Singh, S. K., Grimaud, R., Hoskins, J. R., Wickner, S. & Maurizi, M. R. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP. Proc. Natl Acad. Sci. USA 97, 8898–8903 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Weber-Ban, E. U., Reid, B. G., Miranker, A. D. & Horwich, A. L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401, 90–93 (1999).

    CAS  PubMed  Google Scholar 

  70. Hinnerwisch, J., Fenton, W. A., Furtak, K. J., Farr, G. W. & Horwich, A. L. Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell 121, 1029–1041 (2005).

    CAS  PubMed  Google Scholar 

  71. Martin, A., Baker, T. A. & Sauer, R. T. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nature Struct. Mol. Biol. 15, 1147–1151 (2008).

    CAS  Google Scholar 

  72. Siddiqui, S. M., Sauer, R. T. & Baker, T. A. Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates. Genes Dev. 18, 369–374 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Dougan, D. A., Reid, B. G., Horwich, A. L. & Bukau, B. ClpS, a substrate modulator of the ClpAP machine. Mol. Cell 9, 673–683 (2002).

    CAS  PubMed  Google Scholar 

  74. Doyle, S. M., Hoskins, J. R. & Wickner, S. Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system. Proc. Natl Acad. Sci. USA 104, 11138–11144 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Doyle, S. M. et al. Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity. Nature Struct. Mol. Biol. 14, 114–122 (2007).

    CAS  Google Scholar 

  76. Meimaridou, E., Gooljar, S. B. & Chapple, J. P. From hatching to dispatching: the multiple cellular roles of the Hsp70 molecular chaperone machinery. J. Mol. Endocrinol. 42, 1–9 (2009).

    CAS  PubMed  Google Scholar 

  77. Mayer, M. P. & Bukau, B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62, 670–684 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Genevaux, P., Georgopoulos, C. & Kelley, W. L. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol. Microbiol. 66, 840–857 (2007).

    CAS  PubMed  Google Scholar 

  79. Bertelsen, E. B., Chang, L., Gestwicki, J. E. & Zuiderweg, E. R. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc. Natl Acad. Sci. USA 106, 8471–8476 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kityk, R., Kopp, J., Sinning, I. & Mayer, M. P. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol. Cell 48, 863–874 (2012).

    CAS  PubMed  Google Scholar 

  81. Han, W. & Christen, P. Mutations in the interdomain linker region of DnaK abolish the chaperone action of the DnaK/DnaJ/GrpE system. FEBS Lett. 497, 55–58 (2001).

    CAS  PubMed  Google Scholar 

  82. Zhuravleva, A., Clerico, E. M. & Gierasch, L. M. An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones. Cell 151, 1296–1307 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Schlecht, R., Erbse, A. H., Bukau, B. & Mayer, M. P. Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Nature Struct. Mol. Biol. 18, 345–351 (2011).

    CAS  Google Scholar 

  84. Schweizer, R. S., Aponte, R. A., Zimmermann, S., Weber, A. & Reinstein, J. Fine tuning of a biological machine: DnaK gains improved chaperone activity by altered allosteric communication and substrate binding. Chembiochem 12, 1559–1573 (2011).

    CAS  PubMed  Google Scholar 

  85. Kampinga, H. H. & Craig, E. A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature Rev. Mol. Cell Biol. 11, 579–592 (2010).

    CAS  Google Scholar 

  86. Siegenthaler, R. K. & Christen, P. Tuning of DnaK chaperone action by nonnative protein sensor DnaJ and thermosensor GrpE. J. Biol. Chem. 281, 34448–34456 (2006).

    CAS  PubMed  Google Scholar 

  87. Harrison, C. GrpE, a nucleotide exchange factor for DnaK. Cell Stress Chaperones 8, 218–224 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Laufen, T. et al. Mechanism of regulation of Hsp70 chaperones by DnaJ cochaperones. Proc. Natl Acad. Sci. USA 96, 5452–5457 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Acebron, S. P., Fernandez-Saiz, V., Taneva, S. G., Moro, F. & Muga, A. DnaJ recruits DnaK to protein aggregates. J. Biol. Chem. 283, 1381–1390 (2008).

    CAS  PubMed  Google Scholar 

  90. Hoskins, J. R., Doyle, S. M. & Wickner, S. Coupling ATP utilization to protein remodeling by ClpB, a hexameric AAA+ protein. Proc. Natl Acad. Sci. USA 106, 22233–22238 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Rosenzweig, R., Moradi, S., Zarrine-Afsar, A., Glover, J. R. & Kay, L. E. Unraveling the mechanism of protein disaggregation through a ClpB–DnaK interaction. Science 339, 1080–1083 (2013). Places the site of the T. thermophilus ClpB M-domain interaction withDnaK at the GrpE-binding site in the NBD of DnaK.

    CAS  PubMed  Google Scholar 

  92. Seyffer, F. et al. Hsp70 proteins bind Hsp100 regulatory M domains to activate AAA+ disaggregase at aggregate surfaces. Nature Struct. Mol. Biol. 19, 1347–1355 (2012). Provides evidence for a new role for Hsp70 during disaggregation: activating ClpB via direct interaction with the ClpB M-domain at the aggregate surface.

    CAS  Google Scholar 

  93. DeSantis, M. E. et al. Operational plasticity enables hsp104 to disaggregate diverse amyloid and nonamyloid clients. Cell 151, 778–793 (2012). Demonstrates that the mechanism by which Hsp104 and ClpB hexamers coordinate ATP hydrolysis is flexible and can vary depending on the substrate and the presence of the Hsp70 or DnaK system.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Haslberger, T. et al. M domains couple the ClpB threading motor with the DnaK chaperone activity. Mol. Cell 25, 247–260 (2007).

    CAS  PubMed  Google Scholar 

  95. Krzewska, J., Langer, T. & Liberek, K. Mitochondrial Hsp78, a member of the Clp/Hsp100 family in Saccharomyces cerevisiae, cooperates with Hsp70 in protein refolding. FEBS Lett. 489, 92–96 (2001).

    CAS  PubMed  Google Scholar 

  96. Miot, M. et al. Species-specific collaboration of heat shock proteins (Hsp) 70 and 100 in thermotolerance and protein disaggregation. Proc. Natl Acad. Sci. USA 108, 6915–6920 (2011). Shows that the M-domain of Hsp104 or ClpB determines the specificity observed for protein disaggregation both in vivo and in vitro.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Tipton, K. A., Verges, K. J. & Weissman, J. S. In vivo monitoring of the prion replication cycle reveals a critical role for Sis1 in delivering substrates to Hsp104. Mol. Cell 32, 584–591 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sielaff, B. & Tsai, F. T. The M-domain controls Hsp104 protein remodeling activity in an Hsp70/Hsp40-dependent manner. J. Mol. Biol. 402, 30–37 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Schlee, S., Beinker, P., Akhrymuk, A. & Reinstein, J. A chaperone network for the resolubilization of protein aggregates: direct interaction of ClpB and DnaK. J. Mol. Biol. 336, 275–285 (2004).

    CAS  PubMed  Google Scholar 

  100. Harrison, C. J., Hayer-Hartl, M., Di Liberto, M., Hartl, F. & Kuriyan, J. Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276, 431–435 (1997).

    CAS  PubMed  Google Scholar 

  101. Lee, J. et al. Heat shock protein (Hsp) 70 is an activator of the Hsp104 motor. Proc. Natl Acad. Sci. USA 110, 8513–8518 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Oguchi, Y. et al. A tightly regulated molecular toggle controls AAA+ disaggregase. Nature Struct. Mol. Biol. 19, 1338–1346 (2012).

    CAS  Google Scholar 

  103. Watanabe, Y. H., Takano, M. & Yoshida, M. ATP binding to nucleotide binding domain (NBD)1 of the ClpB chaperone induces motion of the long coiled-coil, stabilizes the hexamer, and activates NBD2. J. Biol. Chem. 280, 24562–24567 (2005).

    CAS  PubMed  Google Scholar 

  104. Werbeck, N. D., Schlee, S. & Reinstein, J. Coupling and dynamics of subunits in the hexameric AAA+ chaperone ClpB. J. Mol. Biol. 378, 178–190 (2008).

    CAS  PubMed  Google Scholar 

  105. del Castillo, U. et al. A quantitative analysis of the effect of nucleotides and the M domain on the association equilibrium of ClpB. Biochemistry 50, 1991–2003 (2011).

    CAS  PubMed  Google Scholar 

  106. Franzmann, T. M., Czekalla, A. & Walter, S. G. Regulatory circuits of the AAA+ disaggregase Hsp104. J. Biol. Chem. 286, 17992–18001 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. del Castillo, U., Fernandez-Higuero, J. A., Perez-Acebron, S., Moro, F. & Muga, A. Nucleotide utilization requirements that render ClpB active as a chaperone. FEBS Lett. 584, 929–934 (2010).

    CAS  PubMed  Google Scholar 

  108. Shorter, J. & Lindquist, S. Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions. EMBO J. 27, 2712–2724 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zolkiewski, M., Zhang, T. & Nagy, M. Aggregate reactivation mediated by the Hsp100 chaperones. Arch. Biochem. Biophys. 520, 1–6 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Glover, J. R. & Lum, R. Remodeling of protein aggregates by Hsp104. Protein Pept. Lett. 16, 587–597 (2009).

    CAS  PubMed  Google Scholar 

  111. Zietkiewicz, S., Krzewska, J. & Liberek, K. Successive and synergistic action of the Hsp70 and Hsp100 chaperones in protein disaggregation. J. Biol. Chem. 279, 44376–44383 (2004).

    CAS  PubMed  Google Scholar 

  112. Zietkiewicz, S., Lewandowska, A., Stocki, P. & Liberek, K. Hsp70 chaperone machine remodels protein aggregates at the initial step of Hsp70–Hsp100-dependent disaggregation. J. Biol. Chem. 281, 7022–7029 (2006).

    CAS  PubMed  Google Scholar 

  113. Winkler, J., Tyedmers, J., Bukau, B. & Mogk, A. Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation. J. Cell Biol. 198, 387–404 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Acebron, S. P., Martin, I., del Castillo, U., Moro, F. & Muga, A. DnaK-mediated association of ClpB to protein aggregates. A bichaperone network at the aggregate surface. FEBS Lett. 583, 2991–2996 (2009).

    CAS  PubMed  Google Scholar 

  115. Doyle, S. M., Hoskins, J. R. & Wickner, S. DnaK chaperone-dependent disaggregation by caseinolytic peptidase B (ClpB) mutants reveals functional overlap in the N-terminal domain and nucleotide-binding domain-1 pore tyrosine. J. Biol. Chem. 287, 28470–28479 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lum, R., Niggemann, M. & Glover, J. R. Peptide and protein binding in the axial channel of Hsp104. Insights into the mechanism of protein unfolding. J. Biol. Chem. 283, 30139–30150 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Schlieker, C. et al. Substrate recognition by the AAA+ chaperone ClpB. Nature Struct. Mol. Biol. 11, 607–615 (2004).

    CAS  Google Scholar 

  118. Nagy, M. et al. Synergistic cooperation between two ClpB isoforms in aggregate reactivation. J. Mol. Biol. 396, 697–707 (2010).

    CAS  PubMed  Google Scholar 

  119. Lum, R., Tkach, J. M., Vierling, E. & Glover, J. R. Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J. Biol. Chem. 279, 29139–29146 (2004).

    CAS  PubMed  Google Scholar 

  120. Haslberger, T. et al. Protein disaggregation by the AAA+ chaperone ClpB involves partial threading of looped polypeptide segments. Nature Struct. Mol. Biol. 15, 641–650 (2008).

    CAS  Google Scholar 

  121. Tuite, M. F. & Serio, T. R. The prion hypothesis: from biological anomaly to basic regulatory mechanism. Nature Rev. Mol. Cell Biol. 11, 823–833 (2010).

    CAS  Google Scholar 

  122. Patino, M. M., Liu, J. J., Glover, J. R. & Lindquist, S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273, 622–626 (1996).

    CAS  PubMed  Google Scholar 

  123. Tuite, M. F. & Lindquist, S. L. Maintenance and inheritance of yeast prions. Trends Genet. 12, 467–471 (1996).

    CAS  PubMed  Google Scholar 

  124. Liebman, S. W. & Chernoff, Y. O. Prions in yeast. Genetics 191, 1041–1072 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Eisenberg, D. & Jucker, M. The amyloid state of proteins in human diseases. Cell 148, 1188–1203 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Collins, S. R., Douglass, A., Vale, R. D. & Weissman, J. S. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol. 2, e321 (2004).

    PubMed  PubMed Central  Google Scholar 

  127. Pierce, M. M., Baxa, U., Steven, A. C., Bax, A. & Wickner, R. B. Is the prion domain of soluble Ure2p unstructured? Biochemistry 44, 321–328 (2005).

    CAS  PubMed  Google Scholar 

  128. Tuite, M. F., Marchante, R. & Kushnirov, V. Fungal prions: structure, function and propagation. Top. Curr. Chem. 305, 257–298 (2011).

    CAS  PubMed  Google Scholar 

  129. Cox, B., Ness, F. & Tuite, M. Analysis of the generation and segregation of propagons: entities that propagate the [PSI+] prion in yeast. Genetics 165, 23–33 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Satpute-Krishnan, P., Langseth, S. X. & Serio, T. R. Hsp104-dependent remodeling of prion complexes mediates protein-only inheritance. PLoS Biol. 5, e24 (2007).

    PubMed  PubMed Central  Google Scholar 

  131. Romanova, N. V. & Chernoff, Y. O. Hsp104 and prion propagation. Protein Pept. Lett. 16, 598–605 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Masison, D. C., Kirkland, P. A. & Sharma, D. Influence of Hsp70s and their regulators on yeast prion propagation. Prion 3, 65–73 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Sharma, D. & Masison, D. C. Hsp70 structure, function, regulation and influence on yeast prions. Protein Pept. Lett. 16, 571–581 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Chernoff, Y. O., Newnam, G. P., Kumar, J., Allen, K. & Zink, A. D. Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone ssb in formation, stability, and toxicity of the [PSI] prion. Mol. Cell. Biol. 19, 8103–8112 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Serio, T. R. & Lindquist, S. L. Protein-only inheritance in yeast: something to get [PSI+]-ched about. Trends Cell Biol. 10, 98–105 (2000).

    CAS  PubMed  Google Scholar 

  136. Helsen, C. W. & Glover, J. R. Insight into molecular basis of curing of [PSI+] prion by overexpression of 104-kDa heat shock protein (Hsp104). J. Biol. Chem. 287, 542–556 (2012).

    CAS  PubMed  Google Scholar 

  137. Moran, C., Kinsella, G. K., Zhang, Z. R., Perrett, S. & Jones, G. W. Mutational analysis of Sse1 (Hsp110) suggests an integral role for this chaperone in yeast prion propagation in vivo. G3 (Bethesda) 3, 1409–1418 (2013).

    Google Scholar 

  138. Helsen, C. W. & Glover, J. R. A new perspective on Hsp104-mediated propagation and curing of the yeast prion [PSI+]. Prion 6, 234–239 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Shorter, J. & Lindquist, S. Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 304, 1793–1797 (2004).

    CAS  PubMed  Google Scholar 

  140. Inoue, Y., Taguchi, H., Kishimoto, A. & Yoshida, M. Hsp104 binds to yeast Sup35 prion fiber but needs other factor(s) to sever it. J. Biol. Chem. 279, 52319–52323 (2004).

    CAS  PubMed  Google Scholar 

  141. Shorter, J. & Lindquist, S. Destruction or potentiation of different prions catalyzed by similar Hsp104 remodeling activities. Mol. Cell 23, 425–438 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Savistchenko, J., Krzewska, J., Fay, N. & Melki, R. Molecular chaperones and the assembly of the prion Ure2p in vitro. J. Biol. Chem. 283, 15732–15739 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Krzewska, J. & Melki, R. Molecular chaperones and the assembly of the prion Sup35p, an in vitro study. EMBO J. 25, 822–833 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Lumb, J. H., Connell, J. W., Allison, R. & Reid, E. The AAA ATPase spastin links microtubule severing to membrane modelling. Biochim. Biophys. Acta 1823, 192–197 (2012).

    CAS  PubMed  Google Scholar 

  145. Sharp, D. J. & Ross, J. L. Microtubule-severing enzymes at the cutting edge. J. Cell Sci. 125, 2561–2569 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Roll-Mecak, A. & McNally, F. J. Microtubule-severing enzymes. Curr. Opin. Cell Biol. 22, 96–103 (2010).

    CAS  PubMed  Google Scholar 

  147. Bieschke, J., Cohen, E., Murray, A., Dillin, A. & Kelly, J. W. A kinetic assessment of the C. elegans amyloid disaggregation activity enables uncoupling of disassembly and proteolysis. Protein Sci. 18, 2231–2241 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Cohen, E., Bieschke, J., Perciavalle, R. M., Kelly, J. W. & Dillin, A. Opposing activities protect against age-onset proteotoxicity. Science 313, 1604–1610 (2006).

    CAS  PubMed  Google Scholar 

  149. Murray, A. N., Solomon, J. P., Wang, Y. J., Balch, W. E. & Kelly, J. W. Discovery and characterization of a mammalian amyloid disaggregation activity. Protein Sci. 19, 836–846 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Duennwald, M. L., Echeverria, A. & Shorter, J. Small heat shock proteins potentiate amyloid dissolution by protein disaggregases from yeast and humans. PLoS Biol. 10, e1001346 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Dragovic, Z., Broadley, S. A., Shomura, Y., Bracher, A. & Hartl, F. U. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J. 25, 2519–2528 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Polier, S., Dragovic, Z., Hartl, F. U. & Bracher, A. Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 133, 1068–1079 (2008).

    CAS  PubMed  Google Scholar 

  153. Raviol, H., Bukau, B. & Mayer, M. P. Human and yeast Hsp110 chaperones exhibit functional differences. FEBS Lett. 580, 168–174 (2006).

    CAS  PubMed  Google Scholar 

  154. Raviol, H., Sadlish, H., Rodriguez, F., Mayer, M. P. & Bukau, B. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J. 25, 2510–2518 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Shaner, L., Sousa, R. & Morano, K. A. Characterization of Hsp70 binding and nucleotide exchange by the yeast Hsp110 chaperone Sse1. Biochemistry 45, 15075–15084 (2006).

    CAS  PubMed  Google Scholar 

  156. Schuermann, J. P. et al. Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol. Cell 31, 232–243 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. De Los Rios, P., Ben-Zvi, A., Slutsky, O., Azem, A. & Goloubinoff, P. Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. Proc. Natl Acad. Sci. USA 103, 6166–6171 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Hoskins and M. Markovski for critical reading of the manuscript and helpful discussions. The research in the authors' laboratory was supported by the Intramural Research Program of the US National institutes of Health (NIH), the National Cancer Institute and the Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shannon M. Doyle or Sue Wickner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

UCSF Chimaera

PyMOL

PowerPoint slides

Glossary

Heat shock proteins

A group of proteins, including many chaperones, the expression of which increases when cells are exposed to high temperatures or other stress conditions.

Aggregates

Soluble or insoluble ensembles of misfolded proteins that interact through exposed hydrophobic regions.

Amyloid

Extremely stable, ordered protein aggregate that self-assembles into fibres with a cross-β structure and leads to many diseases in humans, including Alzheimer's disease and Huntington's disease.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doyle, S., Genest, O. & Wickner, S. Protein rescue from aggregates by powerful molecular chaperone machines. Nat Rev Mol Cell Biol 14, 617–629 (2013). https://doi.org/10.1038/nrm3660

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3660

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing