Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Mechanisms and functions of GABA co-release

Abstract

The 'one neuron, one neurotransmitter' doctrine states that synaptic communication between two neurons occurs through the release of a single chemical transmitter. However, recent findings suggest that neurons that communicate using more than one classical neurotransmitter are prevalent throughout the adult mammalian CNS. In particular, several populations of neurons previously thought to release only glutamate, acetylcholine, dopamine or histamine also release the major inhibitory neurotransmitter GABA. Here, we review these findings and discuss the implications of GABA co-release for synaptic transmission and plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distinct cellular and molecular mechanisms of co-transmission.
Figure 2: Functions of GABA co-release.

Similar content being viewed by others

References

  1. Burnstock, G. Cotransmission. Curr. Opin. Pharmacol. 4, 47–52 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Nusbaum, M. P., Blitz, D. M., Swensen, A. M., Wood, D. & Marder, E. The roles of co-transmission in neural network modulation. Trends Neurosci. 24, 146–154 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Hnasko, T. S. & Edwards, R. H. Neurotransmitter corelease: mechanism and physiological role. Annu. Rev. Physiol. 74, 225–243 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vaaga, C. E., Borisovska, M. & Westbrook, G. L. Dual-transmitter neurons: functional implications of co-release and co-transmission. Curr. Opin. Neurobiol. 29, 25–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Wojcik, S. M. et al. A shared vesicular carrier allows synaptic corelease of GABA and glycine. Neuron 50, 575–587 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Mathews, G. C. & Diamond, J. S. Neuronal glutamate uptake contributes to GABA synthesis and inhibitory synaptic strength. J. Neurosci. 23, 2040–2048 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, L., Tu, P., Bonet, L., Aubrey, K. R. & Supplisson, S. Cytosolic transmitter concentration regulates vesicle cycling at hippocampal GABAergic terminals. Neuron 80, 143–158 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Apostolides, P. F. & Trussell, L. O. Rapid, activity-independent turnover of vesicular transmitter content at a mixed glycine/GABA synapse. J. Neurosci. 33, 4768–4781 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Awatramani, G. B., Turecek, R. & Trussell, L. O. Staggered development of GABAergic and glycinergic transmission in the MNTB. J. Neurophysiol. 93, 819–828 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Dugue, G. P., Dumoulin, A., Triller, A. & Dieudonne, S. Target-dependent use of co-released inhibitory transmitters at central synapses. J. Neurosci. 25, 6490–6498 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shabel, S. J., Proulx, C. D., Piriz, J. & Malinow, R. Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment. Science 345, 1494–1498 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Root, D. H. et al. Single rodent mesohabenular axons release glutamate and GABA. Nat. Neurosci. 17, 1543–1551 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Proulx, C. D., Hikosaka, O. & Malinow, R. Reward processing by the lateral habenula in normal and depressive behaviors. Nat. Neurosci. 17, 1146–1152 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Granger, A. J., Mulder, N., Saunders, A. & Sabatini, B. L. Cotransmission of acetylcholine and GABA. Neuropharmacology 100, 40–46 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Lee, S., Kim, K. & Zhou, Z. J. Role of ACh–GABA cotransmission in detecting image motion and motion direction. Neuron 68, 1159–1172 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wei, W., Hamby, A. M., Zhou, K. & Feller, M. B. Development of asymmetric inhibition underlying direction selectivity in the retina. Nature 469, 402–406 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Morrie, R. D. & Feller, M. B. An asymmetric increase in inhibitory synapse number underlies the development of a direction selective circuit in the retina. J. Neurosci. 35, 9281–9286 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saunders, A., Granger, A. J. & Sabatini, B. L. Corelease of acetylcholine and GABA from cholinergic forebrain neurons. eLife 4, e06412 (2015).

    Article  PubMed Central  Google Scholar 

  19. Saunders, A. et al. A direct GABAergic output from the basal ganglia to frontal cortex. Nature 521, 85–89 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bjorklund, A. & Dunnett, S. B. Dopamine neuron systems in the brain: an update. Trends Neurosci. 30, 194–202 (2007).

    Article  PubMed  Google Scholar 

  21. Li, X., Qi, J., Yamaguchi, T., Wang, H. L. & Morales, M. Heterogeneous composition of dopamine neurons of the rat A10 region: molecular evidence for diverse signaling properties. Brain Struct. Funct. 218, 1159–1176 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Xenias, H. S., Ibanez-Sandoval, O., Koos, T. & Tepper, J. M. Are striatal tyrosine hydroxylase interneurons dopaminergic? J. Neurosci. 35, 6584–6599 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lammel, S. et al. Diversity of transgenic mouse models for selective targeting of midbrain dopamine neurons. Neuron 85, 429–438 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pupe, S. & Wallen-Mackenzie, A. Cre-driven optogenetics in the heterogeneous genetic panorama of the VTA. Trends Neurosci. 38, 375–386 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Maher, B. J. & Westbrook, G. L. Co-transmission of dopamine and GABA in periglomerular cells. J. Neurophysiol. 99, 1559–1564 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Borisovska, M., Bensen, A. L., Chong, G. & Westbrook, G. L. Distinct modes of dopamine and GABA release in a dual transmitter neuron. J. Neurosci. 33, 1790–1796 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hirasawa, H., Betensky, R. A. & Raviola, E. Corelease of dopamine and GABA by a retinal dopaminergic neuron. J. Neurosci. 32, 13281–13291 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, S., Plachez, C., Shao, Z., Puche, A. & Shipley, M. T. Olfactory bulb short axon cell release of GABA and dopamine produces a temporally biphasic inhibition-excitation response in external tufted cells. J. Neurosci. 33, 2916–2926 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tritsch, N. X., Ding, J. B. & Sabatini, B. L. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490, 262–266 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tritsch, N. X., Oh, W. J., Gu, C. & Sabatini, B. L. Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis. eLife 3, e01936 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kress, G. J. et al. Fast phasic release properties of dopamine studied with a channel biosensor. J. Neurosci. 34, 11792–11802 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hedou, G. et al. Immunohistochemical studies of the localization of neurons containing the enzyme that synthesizes dopamine, GABA, or γ-hydroxybutyrate in the rat substantia nigra and striatum. J. Comp. Neurol. 426, 549–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Poulin, J. F. et al. Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. Cell Rep. 9, 930–943 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yelin, R. & Schuldiner, S. The pharmacological profile of the vesicular monoamine transporter resembles that of multidrug transporters. FEBS Lett. 377, 201–207 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Stensrud, M. J., Puchades, M. & Gundersen, V. GABA is localized in dopaminergic synaptic vesicles in the rodent striatum. Brain Struct. Funct. 219, 1901–1912 (2013).

    Article  PubMed  Google Scholar 

  36. Karayannis, T. et al. Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission. Nature 511, 236–240 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Scimemi, A. Structure, function, and plasticity of GABA transporters. Front. Cell. Neurosci. 8, 161 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. Straub, C., Tritsch, N. X., Hagan, N. A., Gu, C. & Sabatini, B. L. Multiphasic modulation of cholinergic interneurons by nigrostriatal afferents. J. Neurosci. 34, 8557–8569 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Guo, Q. et al. Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum. PLoS ONE 10, e0123381 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kim, J. I. et al. Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons. Science 350, 102–106 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gainetdinov, R. R. & Caron, M. G. Monoamine transporters: from genes to behavior. Annu. Rev. Pharmacol. Toxicol. 43, 261–284 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Barreiro-Iglesias, A., Villar-Cervino, V., Anadon, R. & Rodicio, M. C. Dopamine and γ-aminobutyric acid are colocalized in restricted groups of neurons in the sea lamprey brain: insights into the early evolution of neurotransmitter colocalization in vertebrates. J. Anat. 215, 601–610 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Svensson, E., Proekt, A., Jing, J. & Weiss, K. R. PKC-mediated GABAergic enhancement of dopaminergic responses: implication for short-term potentiation at a dual-transmitter synapse. J. Neurophysiol. 112, 22–29 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Velazquez-Ulloa, N. A., Spitzer, N. C. & Dulcis, D. Contexts for dopamine specification by calcium spike activity in the CNS. J. Neurosci. 31, 78–88 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dulcis, D., Jamshidi, P., Leutgeb, S. & Spitzer, N. C. Neurotransmitter switching in the adult brain regulates behavior. Science 340, 449–453 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Haas, H. L., Sergeeva, O. A. & Selbach, O. Histamine in the nervous system. Physiol. Rev. 88, 1183–1241 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Yu, X. et al. Wakefulness is governed by GABA and histamine cotransmission. Neuron 87, 164–178 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hatton, G. I. & Yang, Q. Z. Ionotropic histamine receptors and H2 receptors modulate supraoptic oxytocin neuronal excitability and dye coupling. J. Neurosci. 21, 2974–2982 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Williams, R. H. et al. Optogenetic-mediated release of histamine reveals distal and autoregulatory mechanisms for controlling arousal. J. Neurosci. 34, 6023–6029 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kukko-Lukjanov, T. K. & Panula, P. Subcellular distribution of histamine, GABA and galanin in tuberomamillary neurons in vitro. J. Chem. Neuroanat. 25, 279–292 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Owens, D. F. & Kriegstein, A. R. Is there more to GABA than synaptic inhibition? Nat. Rev. Neurosci. 3, 715–727 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Le Magueresse, C. & Monyer, H. GABAergic interneurons shape the functional maturation of the cortex. Neuron 77, 388–405 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Kesner, P., Gobert, D. & Ruthazer, E. S. Formula for unsilencing plasticity: spike with GABA. Neuron 87, 915–917 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Chalifoux, J. R. & Carter, A. G. GABAB receptor modulation of synaptic function. Curr. Opin. Neurobiol. 21, 339–344 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Higley, M. J. Localized GABAergic inhibition of dendritic Ca2+ signalling. Nat. Rev. Neurosci. 15, 567–572 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Isaacson, J. S. & Scanziani, M. How inhibition shapes cortical activity. Neuron 72, 231–243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lu, T., Rubio, M. E. & Trussell, L. O. Glycinergic transmission shaped by the corelease of GABA in a mammalian auditory synapse. Neuron 57, 524–535 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Magnusson, A. K., Park, T. J., Pecka, M., Grothe, B. & Koch, U. Retrograde GABA signaling adjusts sound localization by balancing excitation and inhibition in the brainstem. Neuron 59, 125–137 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Fu, Y. et al. A cortical circuit for gain control by behavioral state. Cell 156, 1139–1152 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moss, J. & Bolam, J. P. in Dopamine Handbook (ed. Iversen, L. L.) 49–60 (Oxford University Press, 2010).

    Google Scholar 

  61. Zheng, Y. et al. Identification of two novel Drosophila melanogaster histamine-gated chloride channel subunits expressed in the eye. J. Biol. Chem. 277, 2000–2005 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Gengs, C. et al. The target of Drosophila photoreceptor synaptic transmission is a histamine-gated chloride channel encoded by ort (hclA). J. Biol. Chem. 277, 42113–42120 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Ringstad, N., Abe, N. & Horvitz, H. R. Ligand-gated chloride channels are receptors for biogenic amines in C. elegans. Science 325, 96–100 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jahr, C. E. & Stevens, C. F. Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J. Neurosci. 10, 3178–3182 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. Magee, J. C. & Johnston, D. Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268, 301–304 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Carter, A. G. & Sabatini, B. L. State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44, 483–493 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Sabatini, B. L. & Svoboda, K. Analysis of calcium channels in single spines using optical fluctuation analysis. Nature 408, 589–593 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Skeberdis, V. A. et al. Protein kinase A regulates calcium permeability of NMDA receptors. Nat. Neurosci. 9, 501–510 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Lur, G. & Higley, M. J. Glutamate receptor modulation is restricted to synaptic microdomains. Cell Rep. 12, 326–334 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Strata, P. & Harvey, R. Dale's principle. Brain Res. Bull. 50, 349–350 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, S. et al. Dopaminergic and glutamatergic microdomains in a subset of rodent mesoaccumbens axons. Nat. Neurosci. 18, 386–392 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge members of the Sabatini laboratory for insightful discussions on this and other topics and for fostering a learned and collegial research environment, which greatly helped to shape this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo L. Sabatini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tritsch, N., Granger, A. & Sabatini, B. Mechanisms and functions of GABA co-release. Nat Rev Neurosci 17, 139–145 (2016). https://doi.org/10.1038/nrn.2015.21

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2015.21

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing