Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Disease mechanisms in inherited neuropathies

Key Points

  • Hereditary neuropathies are genetically heterogeneous and affect neurons and/or Schwann cells. Mutations in several different genes can lead to the same disease phenotype. Conversely, different mutations affecting the same gene can lead to different disease phenotypes.

  • Deletion or duplication of a 1.4 megabase intrachromosomal region on chromosome 17 containing the PMP22 gene causes hereditary neuropathy with liability to pressure palsies or demyelinating Charcot–Marie–Tooth disease (CMT1A), respectively, the most common forms of dominantly inherited demyelinating neuropathy. The deleterious effects of PMP22 gene dosage correlate with the relative amounts of PMP22 protein in compact myelin.

  • Most dominant PMP22 missense mutations that cause disease encode mutant proteins that are retained in the endoplasmic reticulum and/or intermediate compartment. These mutants act by gain of function, and some undergo abnormally prolonged interactions with calnexin, a glycoprotein-specific chaperone.

  • Of the MPZ (P0) mutations that cause CMT1B, many affect adhesion of myelin lamellae, leading to unstable myelin. Other mutations probably have other kinds of gain-of-function effects.

  • Most GJB1 (Cx32) mutations cause a loss of function, probably by disrupting gap junction-mediated diffusion across the myelin sheath.

  • Transcription factors regulating the expression of myelin genes, including early growth response 2 (EGR2) and SOX10, are mutated in demyelinating forms of hereditary neuropathies.

  • Demyelination disrupts axon–Schwann cell interactions and has numerous effects on axons (for example, reduction of calibre, reorganization of ion channels, alteration of neurofilament density and phosphorylation) leading to deficiencies in axonal transport. Altered axonal transport can lead to distally accentuated axonal loss, which is responsible for the clinical disability of patients with inherited demyelinating neuropathies.

  • Mutations affecting components of the axonal cytoskeleton, including neurofilaments and the molecular motor KIF1Bβ, are mutated in axonal forms of CMT. Together with the findings that KIF5A mutations cause inherited spastic paraplegia, and a mutation of dynactin causes motor neuron disease, these data indicate that axonal transport is an important contributor to axonal atrophy and length-dependent axonal loss in these related disorders.

Abstract

Inherited neuropathies are caused by dominant or recessive mutations in genes that are expressed by neurons and/or Schwann cells. In demyelinating neuropathies, the deleterious effects originate primarily in myelinating Schwann cells. In axonal neuropathies, neurons (axons) are initially affected. In demyelinating neuropathies, the axonal cytoskeleton is altered and axonal transport is disrupted. In some axonal neuropathies, genes that are directly involved in axonal transport are mutated. So, a common consequence of inherited neuropathies is disruption of the ability of neurons to transport cargo efficiently along the entire length of their axons. These findings correlate with the observations that axonal atrophy and/or loss are primarily responsible for the clinical disability in hereditary neuropathies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The pathological features of HNPP, CMT1A and DSS.
Figure 2: Schematic overview of pathological changes in Charcot–Marie–Tooth disease 1 (CMT1).
Figure 3: Schematic overview of the molecular organization of myelinated axons highlighting the proteins affected in Charcot–Marie–Tooth disease (CMT).
Figure 4: Locations of mutations in the Cx32, P0, PMP22, EGR2 and NEFL proteins.
Figure 5: Relationships between inherited neuropathies and other diseases.

Similar content being viewed by others

References

  1. Lupski, J. R. & Garcia, C. A. in The Metabolic & Molecular Basis of Inherited Disease (eds Scriver, C. R. et al.) 5759–5788 (McGraw-Hill, New York, 2001).

    Google Scholar 

  2. Berger, P., Young, P. & Suter, U. Molecular cell biology of Charcot–Marie–Tooth disease. Neurogenetics 4, 1–15 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Kleopa, K. A. & Scherer, S. S. Inherited Neuropathies. Neurol. Clin. 20, 679–709 (2002).

    Article  PubMed  Google Scholar 

  4. Harding, A. E. & Thomas, P. K. The clinical features of hereditary motor and sensory neuropathy types I and II. Brain 103, 259–280 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. Dyck, P. J., Chance, P., Lebo, R. & Carney, J. A. in Peripheral Neuropathy (eds Dyck, P. J. et al.) 1094–1136 (W. B. Saunders, Philadelphia, 1993).

    Google Scholar 

  6. Aguayo, A. J., Attiwell, M., Trecarten, J., Perkins, C. S. & Bray, C. M. Abnormal myelination in transplanted Trembler mouse Schwann cells. Nature 265, 73–75 (1977).

    Article  CAS  PubMed  Google Scholar 

  7. Chance, P. F. et al. DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell 72, 143–151 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Windebank, T. in Peripheral Neuropathy (eds Dyck, P. J. et al.) 1137–1148 (W. B. Saunders, Philadelphia, 1993).

    Google Scholar 

  9. Adlkofer, K. et al. Heterozygous peripheral myelin protein 22-deficient mice are affected by a progressive demyelinating peripheral neuropathy. J. Neurosci. 17, 4662–4671 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Birouk, N. et al. Charcot–Marie–Tooth disease type 1A with 17p11.2 duplication. Clinical and electrophysiological phenotype study and factors influencing disease severity in 119 cases. Brain 120, 813–823 (1997).

    Article  PubMed  Google Scholar 

  11. Thomas, P. K. et al. The phenotypic manifestations of chromosome 17p11.2 duplication. Brain 120, 465–478 (1997).

    Article  PubMed  Google Scholar 

  12. Krajewski, K. M. et al. Neurological dysfunction and axonal degeneration in Charcot–Marie–Tooth disease. Brain 123, 1516–1527 (2000).

    Article  PubMed  Google Scholar 

  13. Fabrizi, G. M. et al. Clinical and pathological correlations in Charcot–Marie–Tooth neuropathy type 1A with the 17p11.2p12 duplication: a cross-sectional morphometric and immunohistochemical study in twenty cases. Muscle Nerve 21, 869–877 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Adlkofer, K. et al. Hypermyelination and demyelinating peripheral neuropathy in Pmp22-deficient mice. Nature Genet. 11, 274–280 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Vallat, J. M. et al. Ultrastructural PMP22 expression in inherited demyelinating neuropathies. Ann. Neurol. 39, 813–817 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Tobler, A. R. et al. Transport of Trembler-J mutant peripheral myelin protein 22 is blocked in the intermediate compartment and affects the transport of the wild-type protein by direct interaction. J. Neurosci. 19, 2027–2036 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. D'Urso, D., Ehrhardt, P. & Müller, H. W. Peripheral myelin protein 22 and protein zero: a novel association in peripheral nervous system myelin. J. Neurosci. 19, 3396–3403 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tobler, A. R., Liu, N., Mueller, L. & Shooter, E. M. Differential aggregation of the Trembler and Trembler J mutants of peripheral myelin protein 22. Proc. Natl Acad Sci. USA 99, 483–488 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Martini, R., Zielasek, J., Toyka, K. V., Giese, K. P. & Schachner, M. Protein zero (P0)-deficient mice show myelin degeneration in peripheral nerves characteristic of inherited human neuropathies. Nature Genet. 11, 281–285 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Sereda, M. et al. A transgenic rat model of Charcot–Marie–Tooth disease. Neuron 16, 1049–1060 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Chies, R. et al. Alterations in the Arf6-regulated plasma membrane endosomal recycling pathway in cells overexpressing the tetraspan protein Gas3/PMP22. J. Cell Sci. 116, 987–99 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Simons, M. et al. Overexpression of the myelin proteolipid protein leads to accumulation of cholesterol and proteolipid protein in endosomes/lysosomes: implications for Pelizaeus–Merzbacher disease. J. Cell Biol. 157, 327–336 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hasse, B., Bosse, F. & Müller, H. W. Proteins of peripheral myelin are associated with glycosphingolipid/cholesterol-enriched membranes. J. Neurosci. Res. 69, 227–232 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Erne, B., Sansano, S., Frank, M. & Schaeren-Wiemers, N. Rafts in adult peripheral nerve myelin contain major structural myelin proteins and myelin and lymphocyte protein (MAL) and CD59 as specific markers. J. Neurochem. 82, 550–562 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Zoidl, G., Blass-Kampmann, S., D'Urso, D., Schmalenback, C. & Müller, H. W. Retroviral-mediated gene transfer of the peripheral myelin protein PMP22 in Schwann cells: modulation of cell growth. EMBO J. 14, 1122–1128 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanemann, C. O. & Müller, H. W. Pathogenesis of Charcot–Marie–Tooth IA (CMTIA) neuropathy. Trends Neurosci. 21, 282–286 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Fabbretti, E., Edomi, P., Brancolini, C. & Schneider, C. Apoptotic phenotype induced by overexpression of wild-type gas3/PMP22: its relation to the demyelinating peripheral neuropathy CMT1A. Genes Dev. 9, 1846–1856 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Brancolini, C. et al. Rho-dependent regulation of cell spreading by the tetraspan membrane protein Gas3/PMP22. Mol. Biol. Cell 10, 2441–2459 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sancho, S., Young, P. & Suter, U. Regulation of Schwann cell proliferation and apoptosis in PMP22-deficient mice and mouse models of Charcot–Marie–Tooth disease type 1A. Brain 124, 2177–2187 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Wilson, H. L., Wilson, S. A., Surprenant, A. & North, R. A. Epithelial membrane proteins induce membrane blebbing and interact with the P2X7 receptor C terminus. J. Biol. Chem. 277, 34017–23 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Stevens, B. & Fields, R. D. Response of Schwann cells to action potentials in development. Science 287, 2267–2271 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Giese, K. P., Martini, R., Lemke, G., Soriano, P. & Schachner, M. Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell 71, 565–576 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Montag, D. et al. Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin. Neuron 13, 229–246 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Niemann, S., Sereda, M. W., Suter, U., Griffiths, I. R. & Nave, K. A. Uncoupling of myelin assembly and Schwann cell differentiation by transgenic overexpression of peripheral myelin protein 22. J. Neurosci. 20, 4120–4128 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Taylor, V. & Suter, U. Epithelial membrane protein-2 and epithelial membrane protein-3: two novel members of the peripheral myelin protein 22 gene family. Gene 175, 115–120 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Wadehra, M., Iyer, R., Goodglick, L. & Braun, J. The tetraspan protein epithelial membrane protein-2 interacts with β1 integrins and regulates adhesion. J. Biol. Chem. 277, 41094–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Nave, K. -A. & Boespflug-Tanguy, O. Developmental defects of myelin formation: from X-linked mutations to human dysmyelinating diseases. Neuroscientist 2, 33–43 (1996).

    Article  CAS  Google Scholar 

  38. Gudz, T. I., Schneider, T. E., Haas, T. A. & Macklin, W. B. Myelin proteolipid protein forms a complex with integrins and may participate in integrin receptor signaling in oligodendrocytes. J. Neurosci. 22, 7398–7407 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feltri, M. L. et al. Conditional disruption of β1 integrin in Schwann cells impedes interactions with axons. J. Cell Biol. 156, 199–209 (2002). Conditional deletion of β1 integrin in Schwann cells causes a severe neuropathy with missorted axons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Misko, A., Ferguson, T. & Notterpek, L. Matrix metalloproteinase mediated degradation of basement membrane proteins in Trembler J neuropathy nerves. J. Neurochem. 83, 885–894 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Adlkofer, K., Naef, R. & Suter, U. Analysis of compound heterozygous mice reveals that the Trembler mutation can behave as a gain-of-function allele. J. Neurosci. Res. 49, 671–680 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Naef, R., Adlkofer, K., Lescher, B. & Suter, U. Aberrant protein trafficking in Trembler suggests a disease mechanism for hereditary human peripheral neuropathies. Mol. Cell. Neurosci. 9, 13–25 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Naef, R. & Suter, U. Impaired intracellular trafficking is a common disease mechanism of PMP22 point mutations in peripheral neuropathies. Neurobiol. Dis. 6, 1–14 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. D'Urso, D., Schmalenbach, C., Zoidl, G., Prior, R. & Müller, H. W. Studies on the effects of altered PMP22 expression during myelination in vitro. J. Neurosci. Res. 48, 31–42 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Colby, J. et al. PMP22 carrying the Trembler or Trembler-J mutation is intracellularly retained in myelinating Schwann cells. Neurobiol. Dis. 7, 561–573 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Dickson, K. M. et al. Association of calnexin with mutant peripheral myelin protein-22 ex vivo: A basis for 'gain-of-function' ER diseases. Proc. Natl Acad. Sci. USA 99, 9852–9857 (2002). PMP22 mutants have a prolonged association with the endoplasmic reticulum chaperone protein calnexin, possibly depleting the pool of calnexin and causing neuropathy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Isaacs, A. M. et al. Identification of a new Pmp22 mouse mutant and trafficking analysis of a Pmp22 allelic series suggesting that protein aggregates may be protective in Pmp22-associated peripheral neuropathy. Mol. Cell. Neurosci. 21, 114–125 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Pareek, S. et al. Neurons promote the translocation of peripheral myelin protein 22 into myelin. J. Neurosci. 17, 7754–7762 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Southwood, C. M., Garbern, J., Jiang, W. & Gow, A. The unfolded protein response modulates disease severity in Pelizaeus–Merzbacher disease. Neuron 36, 585–596 (2002). Mutants in PLP induce an 'unfolded protein response' in oligodendrocytes; in contrast to most situations, this seems to be adaptive. This finding might be relevant to disease mechanisms in neuropathies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Denzel, A. et al. Early postnatal death and motor disorders in mice congenitally deficient in calnexin expression. Mol. Cell. Biol. 22, 7398–404 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Notterpek, L., Shooter, E. M. & Snipes, G. J. Upregulation of the endosomal-lysosomal pathway in the Trembler-J neuropathy. J. Neurosci. 17, 4190–4200 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Notterpek, L., Ryan, M. C., Tobler, A. R. & Shooter, E. M. PMP22 accumulation in aggresomes: implications for CMT1A pathology. Neurobiol. Dis. 6, 450–460 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Ryan, M. C., Shooter, E. M. & Notterpek, L. Aggresome formation in neuropathy models based on peripheral myelin protein 22 mutations. Neurobiol. Dis. 10, 109–118 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Gamp, A. C. et al. LIMP-2/LGP85 deficiency causes ureteric pelvic junction obstruction, deafness and peripheral neuropathy in mice. Hum. Mol. Genet. 12, 631–46 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Lemke, G. & Axel, R. Isolation and sequence of a cDNA encoding the major structural protein of peripheral myelin. Cell 40, 501–508 (1985).

    Article  CAS  PubMed  Google Scholar 

  56. Shapiro, L., Doyle, J. P., Hensley, P., Colman, D. R. & Hendrickson, W. A. Crystal stucture of the extracellular domain from P0, the major structural protein of peripheral nerve myelin. Neuron 17, 435–449 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Martini, R., Mohajeri, M. H., Kasper, S., Giese, K. P. & Schachner, M. Mice doubly deficient in the genes for P0 and myelin basic protein show that both proteins contribute to the formation of the major dense line in peripheral nerve myelin. J. Neurosci. 15, 4488–4495 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. D'Urso, D. et al. Protein zero of peripheral nerve myelin: biosynthesis, membrane insertion, and evidence for homotypic interaction. Neuron 4, 449–460 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Filbin, M. T., Walsh, F. S., Trapp, B. D., Pizzey, J. A. & Tennekoon, G. I. Role of P0 protein as a homophilic adhesion molecule. Nature 344, 871–872 (1990).

    Article  CAS  PubMed  Google Scholar 

  60. Xu, W. B. et al. Mutations in the cytoplasmic domain of P0 reveal a role for PKC-mediated phosphorylation in adhesion and myelination. J. Cell Biol. 155, 439–445 (2001). A CMT1B mutation that abolishes the protein kinase C phosphorylation of P0 causes loss of P0-mediated adhesion, providing an important clue towards signal transduction mediated by P0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wrabetz, L. et al. P0 glycoprotein overexpression causes congenital hypomyelination of peripheral nerves. J. Cell Biol. 148, 1021–1033 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yin, X. et al. Schwann cell myelination requires timely and precise targeting of P0 protein. J. Cell Biol. 148, 1009–1020 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Previtali, S. C. et al. Epitope-tagged P0 glycoprotein causes Charcot—Marie–Tooth-like neuropathy in transgenic mice. J. Cell Biol. 151, 1035–1045 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Willecke, K. et al. Structural and functional diversity of connexin genes in the mouse and human genome. Biol. Chem. 383, 725–737 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. White, T. W. & Paul, D. L. Genetic diseases and gene knockouts reveal diverse connexin functions. Annu. Rev. Physiol. 61, 283–310 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Bergoffen, J. et al. Connexin mutations in X-linked Charcot–Marie–Tooth disease. Science 262, 2039–2042 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Anzini, P. et al. Structural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein connexin32. J. Neurosci. 17, 4545–4561 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Scherer, S. S. et al. Connexin32-null mice develop a demyelinating peripheral neuropathy. Glia 24, 8–20 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Balice-Gordon, R. J., Bone, L. J. & Scherer, S. S. Functional gap junctions in the Schwann cell myelin sheath. J. Cell Biol. 142, 1095–1104 (1998). Dye transfer studies demonstrate that incisures contain 'reflexive' gap junctions that provide a radial pathway for diffusion of small molecules across the myelin sheath. The correct functioning of this system might be crucial for maintaining myelin sheaths.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Altevogt, B. M., Kleopa, K. A., Postma, F. R., Scherer, S. S. & Paul, D. L. Cx29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems. J. Neurosci. 22, 6458–6470 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li, X. et al. Connexin29 expression, immunocytochemistry and freeze-fracture replica immunogold labelling (FRIL) in sciatic nerve. Eur. J. Neurosci. 16, 795–806 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lewis, R. A., Sumner, A. J. & Shy, M. E. Electrophysiological features of inherited demyelinating neuropathies: a reappraisal in the era of molecular diagnosis. Muscle Nerve 23, 1472–1487 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Hahn, A., Ainsworth, P. J., Bolton, C. F., Bilbao, J. M. & Vallat, J. -M. Pathological findings in the X-linked form of Charcot–Marie–Tooth disease: a morphometric and ultrastructural analysis. Acta Neuropathol. 101, 129–139 (2001).

    CAS  PubMed  Google Scholar 

  74. Odermatt, B. et al. Connexin 47 (Cx47)-deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS. J. Neurosci. 23, 4549–4559 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Menichella, D. M., Goodenough, D. A., Sirkowski, E., Scherer, S. S. & Paul, D. L. Connexins are critical for normal myelination in the central nervous system. J. Neurosci. 23, 5963–5973 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kleopa, K. A., Yum, S. W. & Scherer, S. S. Cellular mechanisms of connexin32 mutations associated with CNS manifestations. J. Neurosci. Res. 68, 522–534 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Yum, S. W., Kleopa, K. A., Shumas, S. & Scherer, S. S. Diverse trafficking abnormalities for connexin32 mutants causing CMTX. Neurobiol. Dis. 11, 43–52 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Bruzzone, R., T. W. White, S. S. Scherer, Fischbeck, K. H. & Paul, D. L. Null mutations of connexin32 in patients with X-linked Charcot–Marie–Tooth disease. Neuron 13, 1253–1260 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Rouan, F. et al. Trans-dominant inhibition of connexin-43 by mutant connexin-26: implications for dominant connexin disorders affecting epidermal differentiation. J. Cell Sci. 114, 2105–2113 (2001).

    CAS  PubMed  Google Scholar 

  80. VanSlyke, J. K., Deschênes, S. M. & Musil, L. S. Intracellular transport, assembly, and degradation of wild-type and disease-linked mutant gap junction proteins. Mol. Biol. Cell 11, 1933–1946 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Abrams, C. K., Oh, S., Ri, Y. & Bargiello, T. A. Mutations in connexin 32: the molecular and biophysical bases for the X-linked form of Charcot–Marie–Tooth disease. Brain Res. Rev. 32, 203–214 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Castro, C., Gomez-Hernandez, J. M., Silander, K. & Barrio, L. C. Altered formation of hemichannels and gap junction channels caused by C-terminal connexin-32 mutations. J. Neurosci. 19, 3752–3760 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tang, X., Fenton, M. J. & Amar, S. Identification and functional characterization of a novel binding site on TNF-α promoter. Proc. Natl Acad. Sci. USA 100, 4096–4101 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Moriwaki, Y. et al. Mycobacterium bovis bacillus Calmette-Guerin and its cell wall complex induce a novel lysosomal membrane protein, SIMPLE, that bridges the missing link between lipopolysaccharide and p53-inducible gene, LITAF (PIG7) and estrogen-inducible gene, EET-1. J. Biol. Chem. 276, 23065–23076 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Liu, H., Nakagawa, T., Kanematsu, T., Uchida, T. & Tsuji, S. Isolation of 10 differentially expressed cDNAs in differentiated Neuro2a cells induced through controlled expression of the GD3 synthase gene. J. Neurochem. 72, 1781–1790 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Cuesta, A. et al. The gene encoding ganglioside-induced differentiation-associated protein 1 is mutated in axonal Charcot–Marie–Tooth type 4A disease. Nature Genet. 30, 22–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Baxter, R. V. et al. Ganglioside-induced differentiation-associated protein-1 is mutant in Charcot–Marie–Tooth disease type 4A/8q21. Nature Genet. 30, 21–22 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Berger, P., Bonneick, S., Willi, S., Wymann, M. & Suter, U. Loss of phosphatase activity in myotubularin-related protein 2 is associated with Charcot–Marie–Tooth disease type 4B1. Hum. Mol. Genet. 11, 1569–1579 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Bolino, A. et al. Molecular characterization and expression analysis of Mtmr2, a mouse homologue of MTMR2, the myotubularin-related-2 gene mutated in CMT4B. Gene 283, 17–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Laporte, J., Blondeau, F., Buj-Bello, A. & Mandel, J. L. The myotubularin family: from genetic disease to phosphoinositide metabolism. Trends Genet. 17, 221–228 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Wishart, M. J. & Dixon, J. E. PTEN and myotubularin phosphatases: from 3-phosphoinositide dephosphorylation to disease. Phosphatase and tensin homolog deleted on chromosome ten. Trends Cell Biol. 12, 579–585 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Schaletzky, J. et al. Phosphatidylinositol-5-phosphate activation and conserved substrate specificity of the myotubularin phosphatidylinositol 3-phosphatases. Curr. Biol. 13, 504–509 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Kim, S. A., Vacratsis, P. O., Firestein, R., Cleary, M. L. & Dixon, J. E. Regulation of myotubularin-related (MTMR) 2 phosphatidylinositol phosphatase by MTMR5, a catalytically inactive phosphatase. Proc. Natl Acad. Sci. USA 100, 4492–4497 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nandukar, H. H. et al. Identification of myotubularin as the lipid phosphatase catalytic subunit associated with the 3-phosphatase adapter protein, 3-PAP. Proc. Natl Acad. Sci. USA 100, 8660–8665 (2003).

    Article  CAS  Google Scholar 

  95. Kalaydjieva, L. et al. N-myc downstream-regulated gene 1 is mutated in hereditary motor and sensory neuropathy-Lom. Am. J. Hum. Genet. 67, 47–58 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gillespie, C. S. et al. Peripheral demyelination and neuropathic pain behavior in periaxin-deficient mice. Neuron 26, 523–531 (2000). Prx−/− mice develop a demyelinating neuropathy with enhanced sensitivity to pain; these findings mirror those in PRX -null patients.

    Article  CAS  PubMed  Google Scholar 

  97. Gillespie, C. S., Sherman, D. L., Blair, G. E. & Brophy, P. J. Periaxin, a novel protein of myelinating Schwann cells with a possible role in axonal ensheathment. Neuron 12, 497–508 (1994).

    Article  CAS  PubMed  Google Scholar 

  98. Scherer, S. S., Xu, Y. -T., Bannerman, P., Sherman, D. L. & Brophy, P. J. Periaxin expression in myelinating Schwann cells: modulation by axon-glial interactions and polarized localization during development. Development 121, 4265–4273 (1995).

    CAS  PubMed  Google Scholar 

  99. Sherman, D. L., Fabrizi, C., Gillespie, C. S. & Brophy, P. J. Specific disruption of a Schwann cell dystrophin-related protein complex in a demyelinating neuropathy. Neuron 30, 677–687 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Rambukkana, A., Zanazzi, G., Tapinos, N. & Salzer, J. L. Contact-dependent demyelination by Mycobacterium leprae in the absence of immune cells. Science 296, 927–931 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Topilko, P. et al. Krox-20 controls myelination in the peripheral nervous system. Nature 371, 796–799 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Warner, L. E. et al. Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. Nature Genet. 18, 382–384 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Nagarajan, R. et al. EGR2 mutations in inherited neuropathies dominant-negatively inhibit myelin gene expression. Neuron 30, 355–368 (2001). EGR2 mutants that cause demyelinating neuropathies reduce the expression of myelin-related genes by wild-type EGR2 in a dominant manner.

    Article  CAS  PubMed  Google Scholar 

  104. Zorick, T. S., Syroid, D. E., Brown, A., Gridley, T. & Lemke, G. Krox-20 controls SCIP expression, cell cycle exit and susceptibility to apoptosis in developing myelinating Schwann cells. Development 126, 1397–1406 (1999).

    CAS  PubMed  Google Scholar 

  105. Musso, M., Balestra, P., Taroni, F., Bellone, E. & Mandich, P. Different consequences of EGR2 mutants on the transactivation of human cx32 promoter. Neurobiol. Dis. 12, 89–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Warner, L. E., Svaren, J., Milbrandt, J. & Lupski, J. R. Functional consequences of mutations in the early growth response 2 gene (EGR2) correlate with severity of human myelinopathies. Hum. Mol. Genet. 8, 1245–1251 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Peirano, R. I., Goerich, D. E., Riethmacher, D. & Wegner, M. Protein zero gene expression is regulated by the glial transcription factor Sox10. Mol. Cell. Biol. 20, 3198–3209 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bondurand, N. et al. Human connexin 32, a gap junction protein altered in the X-linked form of Charcot–Marie–Tooth disease, is directly regulated by the transcription factor SOX10. Hum. Mol. Genet. 10, 2783–2795 (2001). A CMTX-associated mutation in the Cx32 promoter abolishes its normal activation by SOX10. This links the two proteins in a common functional pathway that is disrupted in some neuropathies.

    Article  CAS  PubMed  Google Scholar 

  109. Paratore, C., Eichenberger, C., Suter, U. & Sommer, L. Sox10 haploinsufficiency affects maintenance of progenitor cells in a mouse model of Hirschsprung disease. Hum. Mol. Genet. 11, 3075–3085 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Kim, J., Lo, L., Dormand, E. & Anderson, D. J. SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38, 17–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Stolt, C. C. et al. Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev. 16, 165–170 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Britsch, S. et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15, 66–78 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhao, C. et al. Charcot–Marie–Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bβ. Cell 105, 587–597 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Mok, H. et al. Association of the kinesin superfamily motor protein KIF1Bα with postsynaptic density-95 (PSD-95), synapse-associated protein-97, and synaptic scaffolding molecule PSD-95/discs large/zona occludens-1 proteins. J. Neurosci. 22, 5253–5258 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Griffin, J. W. & Watson, D. F. Axonal transport in neurologic disease. Ann. Neurol. 23, 3–13 (1988).

    Article  CAS  PubMed  Google Scholar 

  117. Zhu, Q., Couillard-Despres, S. & Julien, J. P. Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp. Neurol. 148, 299–316 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Lee, M. K., Marzalek, J. R. & Cleveland, D. W. A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron 13, 975–988 (1994).

    Article  CAS  PubMed  Google Scholar 

  119. Ohara, O., Gahara, Y., Miyake, T., Teraoka, H. & Kitamura, T. Neurofilament deficiency in quail caused by nonsense mutation in neurofilament-L gene. J. Cell Biol. 121, 387–395 (1993).

    Article  CAS  PubMed  Google Scholar 

  120. Brownlees, J. et al. Charcot–Marie–Tooth disease neurofilament mutations disrupt neurofilament assembly and axonal transport. Hum. Mol. Genet. 11, 2837–2844 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Perez-Olle, R., Leung, C. L. & Liem, R. K. H. Effects of Charcot–Marie–Tooth-linked mutations of the neurofilament light subunit on intermediate filament formation. J. Cell Sci. 115, 4937–4946 (2002). Together, references 120 and 121 show that mutant NEFL proteins do not properly form intermediate filaments, have dominant effects on the assembly of wild-type neurofilaments and disrupt the axonal transport of neurofilaments.

    Article  CAS  PubMed  Google Scholar 

  122. Al-Chalabi, A. & Miller, C. C. Neurofilaments and neurological disease. Bioessays 25, 346–355 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Crosby, A. H. & Proukakis, C. Is the transportation highway the right road for hereditary spastic paraplegia? Am. J. Hum. Genet. 71, 1009–1016 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Reid, E. et al. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am. J. Hum. Genet. 71, 1189–1194 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xia, C. H. et al. Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A. J. Cell Biol. 161, 55–66 (2003). Mice lacking neuronal KIF5A have greatly diminished transport of neurofilaments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. LaMonte, B. H. et al. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset porgressive degeneration. Neuron 34, 715–727 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Puls, I. et al. Mutant dynactin in motor neuron disease. Nature Genet. 33, 455–456 (2003). A mutation in the p150 dynactin subunit causes motor neuron disease; the corresponding mutant protein has decreased binding to microtubules.

    Article  CAS  PubMed  Google Scholar 

  128. Bomont, P. et al. The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nature Genet. 26, 370–374 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Ding, J. Q. et al. Microtubule-associated protein 1B: a neuronal binding partner for gigaxonin. J. Cell Biol. 158, 427–433 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Auer-Grumbach, M. et al. Autosomal dominant inherited neuropathies with prominent sensory loss and mutilations: a review. Arch. Neurol. 60, 329–334 (2003).

    Article  PubMed  Google Scholar 

  131. Echard, A. et al. Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279, 580–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Cantalupo, G., Alifano, P., Roberti, V., Bruni, C. B. & Bucci, C. Rab-interacting lysosomal protein (RILP): the Rab7 effector required for transport to lysosomes. EMBO J. 20, 683–693 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jordens, I. et al. The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein–dynactin motors. Curr. Biol. 11, 1680–1685 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Verhoeven, K. et al. Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot–Marie–Tooth disease type 2B neuropathy. Am. J. Hum. Genet. 72 (2003).

  135. Choudhury, A. et al. Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann–Pick C cells. J. Clin. Invest. 109, 1541–1550 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ostlund, C. & Worman, H. J. Nuclear envelope proteins and neuromuscular diseases. Muscle Nerve 27, 393–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 429, 293–298 (2003).

    Article  CAS  Google Scholar 

  138. Sullivan, T. et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147, 913–920 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Antonellis, A. et al. Glycyl tRNA synthetase mutations in Charcot–Marie–Tooth disease type 2D and distal spinal muscular atrophy type V. Am. J. Hum. Genet. 72, 1293–1299 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Freist, W., Logan, D. T. & Gauss, D. H. Glycyl-tRNA synthetase. Biol. Chem. Hoppe Seyler 377, 343–56 (1996).

    CAS  PubMed  Google Scholar 

  141. Martini, R. The effect of myelinating Schwann cells on axons. Muscle Nerve 24, 456–466 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Peles, E. & Salzer, J. L. Molecular domains of myelinated fibers. Curr. Opin. Neurobiol. 10, 558–565 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Lappe-Siefke, C. et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nature Genet. 33, 366–374 (2003). Axonal pathologies are the only defect in mice lacking the myelin-related protein CNP, which is not expressed by neurons. This indicates that secondary axonal damage can occur without morphologically detectable effects in myelinating glia.

    Article  CAS  PubMed  Google Scholar 

  144. Mäurer, M. et al. Role of immune cells in animal models for inherited neuropathies: facts and visions. J. Anat. 200, 405–414 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Sancho, S., Magyar, J. P., Aguzzi, A. & Suter, U. Distal axonopathy in peripheral nerves of PMP22 mutant mice. Brain 122, 1563–1577 (1999). The number of large, myelinated axons is reduced in a length-dependent pattern in Pmp22 mutant mice, demonstrating axonopathy in a genetically authentic animal model of a demyelinating neuropathy.

    Article  PubMed  Google Scholar 

  146. Perea, J. et al. Induced myelination and demyelination in a conditional mouse model of Charcot–Marie–Tooth disease type 1A. Hum. Mol. Genet. 10, 1007–1018 (2001). Demyelination in adult mice can be induced by overexpressing Pmp22 in myelinating Schwann cells. Conversely, normalizing Pmp22 expression in diseased Schwann cells increases the degree of remyelination, indicating that some of the defects are reversible.

    Article  CAS  PubMed  Google Scholar 

  147. Samsam, M. et al. The WldS mutation delays robust loss of motor and sensory axons in a genetic model for myelin-related axonopathy. J. Neurosci. 23, 2833–2839 (2003). The neuronal expression of a chimeric protein that delays Wallerian degeneration delays axonal loss in Mpz−/− mice. This provides proof-of-principle that axonal loss can be ameliorated in an animal model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues whose work we could not cite owing to space restrictions. In particular, please consult the Mutation Database for Inherited Peripheral Neuropathies for the original references referring to the different mutations found in hereditary neuropathies. The work in our laboratories is supported by the Swiss National Science Foundation, the National Center of Competence in Research 'Neural Plasticity and Repair' (to U.S.), the Charcot–Marie–Tooth Association, the National Multiple Sclerosis Society and the National Institutes of Health (to S.S.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ueli Suter.

Related links

Related links

DATABASES

LocusLink

EGR2

GARS

GDAP1

GJB1

KIF1B

KIF5A

Limp2/Lgp85

LMNA

MPZ

MTMR2

MTMR13

NCAM

NDRG1

NEFL

p75NTR

PMP22

PRX

RAB7

SOX10

SPTLC1

OMIM

AR-CMT2

CHN

CMT1A

CMT1B

CMT1C

CMT1X

CMT2A

CMT2B

CMT2D

CMT2E

CMT4A

CMT4B1

CMT4B2

CMT4D

CMT4F

dSMAV

DSS

giant axonal neuropathy

HNPP

HSN1

Waardenburg–Shah/Waardenburg type IV syndrome

FURTHER INFORMATION

Charcot–Marie–Tooth Association

Mutation Database for Inherited Peripheral Neuropathies

Muscular Dystrophy Association

The Connexin-deafness homepage

Washington University Neuromuscular homepage

Glossary

ONION BULB

A concentric arrangement of supernumerary Schwann cells around an incompletely remyelinated axon, which is thought to represent repeated cycles of demyelination and remyelination.

HYPOMYELINATED AXON

A remyelinated axon with a myelin sheath that is inappropriately thin for the axonal calibre.

RAFTS

Domains of the plasma membrane enriched in sphingolipids and cholesterol. They incorporate lipid-conjugated proteins and therefore serve to assemble proteins involved in signal transduction.

TETRASPAN

Proteins with four membrane-spanning domains.

INTEGRINS

A large family of transmembrane proteins that act mainly as receptors for extracellular matrix molecules.

DOMINANT-NEGATIVE

A mutant molecule that can form a heteromeric complex with the normal molecule, reducing the activity of the entire complex.

EPITOPE-TAG

The immunological determinant of an antigen that has been fused to a protein of interest for its subsequent localization with specific antibodies.

CALNEXIN

A calcium-binding protein of the endoplasmic reticulum that processes and monitors endoplasmic reticulum proteins, retaining those that are unassembled or incorrectly folded.

CMT2-LIKE PHENOTYPE

A late-onset neuropathy with pronounced axonal loss.

GAP JUNCTION

A junction between two cells consisting of pores that allow passage of molecules (up to 1 kDa).

PLECKSTRIN HOMOLOGY DOMAIN

A sequence of about 100 amino acids that is present in many signalling molecules. Pleckstrin is a protein of unknown function that was originally identified in platelets. It is a principal substrate of protein kinase C.

COILED-COIL DOMAIN

A protein domain that forms a bundle of two or three α-helices. Whereas short coiled-coil domains are involved in protein interactions, long coiled-coil domains, which form long rods, occur in structural or motor proteins.

PDZ-BINDING MOTIF

A peptide-binding domain that is important for the organization of membrane proteins, particularly at cell–cell junctions, including synapses. PDZ-domain-containing proteins bind to the PDZ-binding motifs that are located at the carboxyl termini of proteins or can form dimers with other PDZ domains. PDZ domains are named after the proteins in which these sequence motifs were originally identified (PSD95, Discs large, zona occludens 1).

GLAUCOMA

A group of eye diseases characterized by an increase in intraocular pressure which causes pathological changes in the optic disk and typical defects in visual fields.

HAPLOINSUFFICIENCY

Loss of one copy (one allele) of a gene is sufficient to give rise to disease. Haploinsufficiency implies that no dominant-negative effect of the mutated gene product has to be invoked.

AMYOTROPHIC LATERAL SCLEROSIS

A progressive neurological disease that is associated with the degeneration of central and spinal motor neurons. This neuron loss causes muscles to weaken and atrophy.

DYNEIN–DYNACTIN

Dynein is a motor protein complex involved in minus end-directed microtubule transport. Dynactin is a biochemically separable complex that links dynein to target organelles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suter, U., Scherer, S. Disease mechanisms in inherited neuropathies. Nat Rev Neurosci 4, 714–726 (2003). https://doi.org/10.1038/nrn1196

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1196

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing