Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Parallel processing in the mammalian retina

Key Points

  • The mammalian retina — the first component of the visual system — not only transduces light signals into neuronal representations, but also acts as a filter that transfers specific aspects of images to the brain. Movement, colour, fine detail and contrast are processed by different classes of ganglion cell. The underlying circuits are analysed in this article.

  • The first synapse of the retina, the cone pedicle, is the most complex synapse in the CNS. Light signals are transferred here by 500 contacts to a minimum of 10 postsynaptic horizontal and bipolar cells. Horizontal cells regulate the synaptic transmission at the cone pedicle by negative feedback, and bipolar cells transfer the light signals into the inner retina.

  • There are ten different types of bipolar cell, and in the primate retina midget bipolar cells provide a private line from the cones to the midget ganglion cells. They represent the red–green-selective colour channel of the primate retina. Most other bipolar cells transfer a brightness signal to the inner retina.

  • The rod signal is transferred by a special bipolar cell, and is fed into the ON and OFF cone pathway through the AII amacrine cell. This is the most sensitive rod pathway. Recently, other routes of the rod signal through the retina have been discovered.

  • There are at least 10–15 different morphological types of ganglion cell in any mammalian retina. Their dendritic trees tile the retina without leaving gaps. The brisk-transient (Y)-cells, direction-selective ganglion cells, colour-coded ganglion cells and recently discovered melanopsin-containing ganglion cells are described in detail in the article.

  • Within the inner plexiform layer both the bipolar cell axon terminals and the ganglion cell dendrites stratify at different heights. There they meet specific classes of amacrine cell and different levels of the inner plexiform layer, which represent different neuronal circuits for image analysis.

  • Many tasks in visual processing that have previously been attributed to higher stages of the visual system, such as the visual cortex, take place as early as the mammalian retina.

Abstract

Our eyes send different 'images' of the outside world to the brain — an image of contours (line drawing), a colour image (watercolour painting) or an image of moving objects (movie). This is commonly referred to as parallel processing, and starts as early as the first synapse of the retina, the cone pedicle. Here, the molecular composition of the transmitter receptors of the postsynaptic neurons defines which images are transferred to the inner retina. Within the second synaptic layer — the inner plexiform layer — circuits that involve complex inhibitory and excitatory interactions represent filters that select 'what the eye tells the brain'.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the mammalian retina.
Figure 2: Bipolar cell types of the primate retina.
Figure 3: The rod pathways of the mammalian retina.
Figure 4: Ganglion cells of the mouse retina.
Figure 5: Tiling of the cat retina with ganglion cell dendritic fields.
Figure 6: Scheme of circuits proposed to generate directionally-selective responses in retinal ganglion cells.
Figure 7: Stratification of the inner plexiform layer (IPL).

Similar content being viewed by others

References

  1. Casagrande, V. A. & Xu, X. in The Visual Neurosciences (eds Chalupa, L. & Werner, J. S.) 494–506 (MIT, Cambridge, 2004).

    Google Scholar 

  2. Berson, D. M. Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci. 26, 314–320 (2003). The author reviews the recent experiments on melanopsin-containing ganglion cells, and describes their retinal distribution, their light responses, their central projections and their role in entraining the circadian clock and regulating pupil size.

    Article  CAS  PubMed  Google Scholar 

  3. Hendry, S. H. & Reid, C. The koniocellular pathway in primate vision. Annu. Rev. Neurosci. 23, 127–153 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Martin, P. R., White, A. J. R., Goodchild, A. K., Wilder, H. D. & Sefton, A. J. Evidence that blue-on cells are part of the third geniculocortical pathway in primates. Eur. J. Neurosci. 9, 1536–1541 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Sterling, P. in The Synaptic Organization of the Brain Vol. 4 (ed. Shepherd, G. M.) 205–253 (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  6. Boycott, B. B. & Wässle, H. Parallel processing in the mammalian retina: the Proctor Lecture. Invest. Ophthalmol. Vis. Sci. 40, 1313–1327 (1999).

    CAS  PubMed  Google Scholar 

  7. Masland, R. H. The fundamental plan of the retina. Nature Neurosci. 4, 877–886 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. He, S., Dong, W., Deng, Q., Wenig, S. & Sun, W. Seeing more clearly: recent advances in understanding retinal circuitry. Science 302, 408–411 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Masland, R. H. & Raviola, E. Confronting complexity: strategies for understanding the microcircuitry of the retina. Annu. Rev. Neurosci. 23, 249–284 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Marc, R. E. & Jones, B. W. Molecular phenotyping of retinal ganglion cells. J. Neurosci. 22, 413–427 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nathans, J. The evolution and physiology of human color vision: insights from molecular genetic studies of visual pigments. Neuron 24, 299–312 (1999). The author describes the genes that encode the L-, M- and S-cone pigments and explains the evolution of colour vision in primates.

    Article  CAS  PubMed  Google Scholar 

  12. Jacobs, G. H. in Handbook of Psychology. Vol. 3 Biological Psychology (eds Gallagher, M. & Nelson, R. J.) 47–70 (Wiley, New York, 2002).

    Google Scholar 

  13. MacNeil, M. A. & Masland, R. H. Extreme diversity among amacrine cells: implications for function. Neuron 20, 971–982 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Masland, R. H. Neuronal diversity in the retina. Curr. Opin. Neurobiol. 11, 431–436 (2001). The two reviews on the functional architecture of the retina by Masland (references 7 and 14) must be read by anybody interested in retinal function and vision.

    Article  CAS  PubMed  Google Scholar 

  15. Haverkamp, S., Grünert, U. & Wässle, H. The cone pedicle, a complex synapse in the retina. Neuron 27, 85–95 (2000). In a series of three papers (references 15, 21 and 22), Haverkamp et al . describe the molecular details and structure of the cone pedicle of the primate retina.

    Article  CAS  PubMed  Google Scholar 

  16. Feigenspan, A. et al. Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina. J. Neurosci. 24, 3325–3334 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hornstein, E. P., Verweij, J. & Schnapf, J. L. Electrical coupling between red and green cones in primate retina. Nature Neurosci. 7, 745–750 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Li, W. & DeVries, H. Separate blue and green cone networks in the mammalian retina. Nature Neurosci. 7, 751–756 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. O'Brien, J. J., Chen, X., MacLeish, P. R. & Massey, S. S. Connexin 36 forms gap junctions between telodendria of primate cones. Invest. Ophthalmol. Vis. Sci. 45, Assoc. Res. Vis. Ophthalmol. Meeting E Abstr. 1146 (2004).

    Google Scholar 

  20. Lamb, T. D. & Simon, E. J. The relation between intercellular coupling and electrical noise in turtle photoreceptors. J. Physiol. (Lond.) 263, 257–286 (1976).

    Article  CAS  Google Scholar 

  21. Haverkamp, S., Grünert, U. & Wässle, H. The synaptic architecture of AMPA receptors at the cone pedicle of the primate retina. J. Neurosci. 21, 2488–2500 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Haverkamp, S., Grünert, U. & Wässle, H. Localization of kainate receptors at the cone pedicles of the primate retina. J. Comp. Neurol. 436, 471–486 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Nomura, A. et al. Developmentally regulated postsynaptic localization of a metabotropic glutamate receptor in rat rod bipolar cells. Cell 77, 361–369 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Vardi, N., Duvoisin, R., Wu, G. & Sterling, P. Localization of mGluR6 to dendrites of ON bipolar cells in primate retina. J. Comp. Neurol. 423, 402–412 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Hering, E. Zur Lehre vom Lichtsinne IV. Über die sogenannte Intensität der Lichtempfindung und über die Empfindung des Schwarzen. Sitzungsberichte Kaiserlichen Akademie Wissenschaften Wien. Mathematisch-naturwissenschaftlicheClasse Abth. III. Bd. 69, 85–104 (1874).

    Google Scholar 

  26. Ghosh, K. K., Bujan, S., Haverkamp, S., Feigenspan, A. & Wässle, H. Types of bipolar cells in the mouse retina. J. Comp. Neurol. 469, 70–82 (2004).

    Article  PubMed  Google Scholar 

  27. MacNeil, M. A., Heussy, J. K., Dacheux, R. F., Raviola, E. & Masland, R. H. The population of bipolar cells in the rabbit retina. J. Comp. Neurol. 472, 73–86 (2004). The authors have studied the amacrine and bipolar cells of the rabbit retina and have identified most of the cell types present in that retina.

    Article  PubMed  Google Scholar 

  28. Freed, M. A. Parallel cone bipolar pathways to a ganglion cell use different rates and amplitudes of quantal excitation. J. Neurosci. 20, 3956–3963 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. DeVries, S. H. Bipolar cells use kainate and AMPA receptors to filter visual information into separate channels. Neuron 28, 847–856 (2000). The author has studied signal transfer from cones to bipolar cells by double recordings from cone pedicles and bipolar cells, and has revealed important details of this first synapse of the retina.

    Article  CAS  PubMed  Google Scholar 

  30. Awatramani, G. B. & Slaughter, M. M. Origin of transient and sustained responses in ganglion cells of the retina. J. Neurosci. 20, 7087–7095 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu, S. M., Gao, F. & Maple, B. R. Functional architecture of synapses in the inner retina: segregation of visual signals by stratification of bipolar cell axon terminals. J. Neurosci. 20, 4462–4470 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pan, Z. -H. & Hu, H. -J. Voltage-dependent Na+ currents in mammalian retinal cone bipolar cells. J. Neurophysiol. 84, 2564–2571 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Kouyama, N. & Marshak, D. W. Bipolar cells specific for blue cones in the macaque retina. J. Neurosci. 12, 1233–1252 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Calkins, D. J. Seeing with S cones. Prog. Retin. Eye Res. 20, 255–287 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Wässle, H. & Boycott, B. B. Functional architecture of the mammalian retina. Physiol. Rev. 71, 447–480 (1991).

    Article  PubMed  Google Scholar 

  36. Mollon, J. D. & Jordan, G. Eine evolutionäre Interpretation des menschlichen Farbensehens. Die Farbe 35/36, 139–170 (1988).

    Google Scholar 

  37. Wässle, H. A patchwork of cones. Nature 397, 473–475 (1999).

    Article  PubMed  Google Scholar 

  38. Jacobs, G. H., Fenwick, J. C., Calderone, J. B. & Deeb, S. S. Human cone pigment expressed in transgenic mice yields altered vision. J. Neurosci. 19, 3258–3265 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smallwood, P. M. et al. Genetically engineered mice with an additional class of cone photoreceptors: implications for the evolution of color vision. Proc. Natl Acad. Sci. USA 100, 11706–11711 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ingling, C. R. Jr & Martinez-Uriegas, E. The relationship between spectral sensitivity and spatial sensitivity for the primate r-g X-channel. Vision Res. 23, 1495–1500 (1983).

    Article  PubMed  Google Scholar 

  41. Rodieck, R. W. in From Pigments to Perception (eds Valberg, A. & Lee, B.) 83–93 (Plenum, New York, 1991).

    Book  Google Scholar 

  42. Calkins, D. J. & Sterling, P. Evidence that circuits for spatial and color vision segregate at the first retinal synapse. Neuron 24, 313–321 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Haverkamp, S., Möckel, W. & Ammermüller, J. Different types of synapses with different spectral types of cones underlie color opponency in a bipolar cell of the turtle retina. Vis. Neurosci. 16, 801–809 (1999).

    CAS  PubMed  Google Scholar 

  44. Berntson, A. & Taylor, W. R. Response chracteristics and receptive field widths of on-bipolar cells in the mouse retina. J. Physiol. (Lond.) 524, 879–889 (2000).

    Article  CAS  Google Scholar 

  45. Euler, T. & Masland, R. H. Light-evoked responses of bipolar cells in a mammalian retina. J. Neurophysiol. 83, 1817–1829 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Famiglietti, E. V. & Kolb, H. A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina. Brain Res. 84, 293–300 (1975).

    Article  PubMed  Google Scholar 

  47. Raviola, E. & Dacheux, R. F. Excitatory dyad synapse in rabbit retina. Proc. Natl Acad. Sci. USA 84, 7324–7328 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. DeVries, S. H. & Baylor, D. A. An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina. Proc. Natl Acad. Sci. USA 92, 10658–10662 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Soucy, E., Wang, Y., Nirenberg, S., Nathans, J. & Meister, M. A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina. Neuron 21, 481–493 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Hack, I., Peichl, L. & Brandstätter, J. H. An alternative pathway for rod signals in the rodent retina: rod photoreceptors, cone bipolar cells, and the localization of glutamate receptors. Proc. Natl Acad. Sci. USA 96, 14130–14135 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tsukamoto, Y., Morigiwa, K., Ueda, M. & Sterling, P. Microcircuits for night vision in mouse retina. J. Neurosci. 21, 8616–8623 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Deans, M. R., Volgyi, B., Goodenough, D. A., Bloomfield, S. A. & Paul, D. L. Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36, 703–712 (2002). The authors have studied the rod pathway in both wild-type and connexin-36-knockout mice. They showed that different RGC classes are specifically affected by the loss of gap junctions expressing connexin-36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kamermans, M. et al. Hemichannel-mediated inhibition in the outer retina. Science 292, 1178–1180 (2001). In recent years, Kamermans et al . have elaborated a model of horizontal cell feedback at the cone pedicle that is not based on the release of a transmitter but instead involves changes in electric potentials: shifts in the activation of Ca2+ channels modulate glutamate release from cone pedicles.

    Article  CAS  PubMed  Google Scholar 

  54. Hirasawa, H. & Kaneko, A. pH changes in the invaginating synaptic cleft mediate feedback from horizontal cells to cone photoreceptors by modulating Ca2+ channels. J. Gen. Physiol. 122, 657–671 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hombach, S. et al. Functional expression of connexin 57 in horizontal cells of the mouse retina. Eur. J. Neurosci. 19, 2633–2640 (2004).

    Article  PubMed  Google Scholar 

  56. Dacey, D. M., Lee, B. B., Stafford, D. K., Pokorny, J. & Smith, V. C. Horizontal cells of the primate retina: cone specificity without spectral opponency. Science 271, 656–659 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Rockhill, R. L., Daly, F. J., MacNeil, M. A., Brown, S. P. & Masland, R. H. The diversity of ganglion cells in a mammalian retina. J. Neurosci. 22, 3831–3843 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dacey, D. M., Peterson, B. B., Robinson, F. R. & Gamlin, P. D. Fireworks in the primate retina: neurotechnique in vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron 37, 15–27 (2003). The authors describe an exciting new technique for labelling neurons. Biotinylated rhodamine dextran is injected into the LGN, retrogradely transported and visualized by photodynamic staining.

    Article  CAS  PubMed  Google Scholar 

  59. Peichl, L. Alpha ganglion cells in mammalian retinae: common properties, species differences, and some comments on other ganglion cells. Vis. Neurosci. 7, 155–169 (1991).

    Article  CAS  PubMed  Google Scholar 

  60. Wässle, H., Boycott, B. B. & Illing, R. -B. Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations. Proc. R. Soc. Lond. B 212, 177–195 (1981).

    Article  PubMed  Google Scholar 

  61. Perry, V. H., Oehler, R. & Cowey, A. Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience 12, 1101–1123 (1984).

    Article  CAS  PubMed  Google Scholar 

  62. Kolb, H. & Marshak, D. The midget pathways of the primate retina. Doc. Ophthalmol. 106, 67–81 (2003).

    Article  PubMed  Google Scholar 

  63. Dacey, D. M. The mosaic of midget ganglion-cells in the human retina. J. Neurosci. 13, 5334–5355 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vaney, D. I. Territorial organization of direction-selective ganglion-cells in rabbit retina. J. Neurosci. 14, 6301–6316 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dacey, D. M. Monoamine-accumulating ganglion-cell type of the cat's retina. J. Comp. Neurol. 288, 59–80 (1989).

    Article  CAS  PubMed  Google Scholar 

  66. Buhl, E. H. & Peichl, L. Morphology of rabbit retinal ganglion-cells projecting to the medial terminal nucleus of the accessory optic-system. J. Comp. Neurol. 253, 163–174 (1986).

    Article  CAS  PubMed  Google Scholar 

  67. Isayama, T., Berson, D. M. & Pu, M. Theta ganglion cell type of cat retina. J. Comp. Neurol. 417, 32–48 (2000). Berson and colleagues have investigated the morphological and physiological classes and the central projections of cat RGCs in a series of careful papers. Their classification scheme of RGCs in the cat is the most advanced description of RGCs in any retina.

    Article  CAS  PubMed  Google Scholar 

  68. Kuffler, S. W. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37–68 (1953).

    Article  CAS  PubMed  Google Scholar 

  69. Enroth-Cugell, C. & Robson, J. C. The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. (Lond.) 187, 517–552 (1966). This classic paper has established parallel processing in the mammalian retina by showing that cat RGCs can be subdivided into those with linear summation of light stimuli (X-cells) and those with nonlinear summation (Y-cells).

    Article  CAS  Google Scholar 

  70. Boycott, B. B. & Wässle, H. The morphological types of ganglion cells of the domestic cat's retina. J. Physiol. (Lond.) 240, 397–419 (1974).

    Article  CAS  PubMed Central  Google Scholar 

  71. Levick, W. R. Receptive fields of cat retinal ganglion cells with special reference to the alpha cells. Prog. Retin. Eye Res. 15, 457–500 (1996).

    Article  Google Scholar 

  72. Dacey, D. M. & Packer, O. S. Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Curr. Opin. Neurobiol. 13, 421–427 (2003). A review of the retinal circuits that are involved in the segregation of L- versus M-signals and with blue–yellow oppenency.

    Article  CAS  PubMed  Google Scholar 

  73. Demb, J. B., Haarsma, L., Freed, M. A. & Sterling, P. Functional circuitry of the retinal ganglion cell's nonlinear receptive field. J. Neurosci. 19, 9756–9767 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Berry, M. J. II, Brivanlou, I. H., Jordan, T. A. & Meister, M. Anticipation of moving stimuli by the retina. Nature 398, 334–338 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Demb, J. B., Zaghloul, K. & Sterling, P. Cellular basis for the response to second-order motion cues in Y retinal ganglion cells. Neuron 32, 711–721 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Demb, J. B., Zaghloul, K., Haarsma, L. & Sterling, P. Bipolar cells contribute to nonlinear spatial summation in the brisk-transient (Y) ganglion cell in mammalian retina. J. Neurosci. 21, 7447–7454 (2001). In a series of excellent papers, Demb and colleagues have investigated the functional circuitry of brisk transient (Y) cells of the mammalian retina.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ölveczky, B. P., Baccus, S. A. & Meister, M. Segregation of object and background motion in the retina. Nature 423, 401–408 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Brown, S. P. & Masland, R. H. Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells. Nature Neurosci. 4, 44–51 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Baccus, S. A. & Meister, M. Retina versus cortex: contrast adaptation in parallel visual pathways. Neuron 42, 5–7 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Freed, M. A. Rate of quantal excitation to a retinal ganglion cell evoked by sensory input. J. Neurophysiol. 83, 2956–2966 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Freed, M. A., Smith, R. G. & Sterling, P. Timing of quantal release from the retinal bipolar terminal is regulated by a feedback circuit. Neuron 38, 89–101 (2003). In a series of careful experiments the authors studied the signal transfer from cone bipolar cells onto RGCs.

    Article  CAS  PubMed  Google Scholar 

  82. Chiao, C. -C. & Masland, R. H. Contextual tuning of direction-selective retinal ganglion cells. Nature Neurosci. 6, 1251–1252 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Barlow, H. B. & Levick, W. R. The mechanism of directionally selective units in rabbit's retina. J. Physiol (Lond.) 178, 477–504 (1965).

    Article  CAS  Google Scholar 

  84. Taylor, W. R., He, S., Levick, W. R. & Vaney, D. I. Dendritic computation of direction selectivity by retinal ganglion cells. Science 289, 2347–2350 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Borg-Graham, L. J. The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell. Nature Neurosci. 4, 176–183 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Fried, S. I., Münch, T. A. & Werblin, F. S. Mechanisms and circuitry underlying directional selectivity in the retina. Nature 420, 411–414 (2002). The authors recorded direction-selective ganglion cells and studied their synaptic inputs. They describe different connectivities for the preferred and the null direction.

    Article  CAS  PubMed  Google Scholar 

  87. Yoshida, K. et al. A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 30, 771–780 (2001). In an elegant experiment, using transgenic mouse technology, the authors were able to knock out cholinergic (starburst) amacrine cells and to show that directional selectivity was abolished. This strongly indicates that cholinergic amacrine cells are a vital participant in directional selectivity.

    Article  CAS  PubMed  Google Scholar 

  88. Euler, T., Detwiler, P. B. & Denk, W. Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845–852 (2002). By the application of two-photon microscopy and calcium-imaging, the authors showed that cholinergic amacrine cells (starburst cells) have directionally selective light responses.

    Article  CAS  PubMed  Google Scholar 

  89. Münch, T. A., Fried, S. I. & Werblin, F. S. Starburst cells initiate directional selective responses in rabbit retina. Invest. Ophthalmol. Vis. Sci. 43 (Suppl. 2), 2981 (2002).

    Google Scholar 

  90. Taylor, W. R. & Vaney, D. I. Diverse synaptic mechanisms generate direction selectivity in the rabbit retina. J. Neurosci. 22, 7712–7720 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Taylor, W. R. & Vaney, D. I. New directions in retinal research. Trends Neurosci. 26, 379–385 (2003). The most recent and comprehensive review of the mechanisms underlying direction selectivity. Both the presynaptic and the postsynaptic mechanisms, as well as evidence for and against them, are discussed.

    Article  CAS  PubMed  Google Scholar 

  92. Martin, P. R. Colour processing in the primate retina: recent progress. J. Physiol. (Lond.) 513, 631–638 (1998).

    Article  CAS  Google Scholar 

  93. Martin, P. R., Lee, B. B., White, A. J. R., Solomon, S. G. & Rüttiger, L. Chromatic sensitivity of ganglion cells in the peripheral primate retina. Nature 410, 933–935 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Diller, L. et al. L and M cone contributions to the midget and parasol ganglion cell receptive fields of macaque monkey retina. J. Neurosci. 24, 1079–1088 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mullen, K. T. & Kingdom, F. A. A. Differential distributions of red-green and blue-yellow cone opponency across the visual field. Vis. Neurosci. 19, 109–118 (2002).

    Article  PubMed  Google Scholar 

  96. Dacey, D. M. & Lee, B. B. The blue-on opponent pathway in primate retina originates from a distinct bistratified ganglion-cell type. Nature 367, 731–735 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. Dacey, D. M., Peterson, B. B. & Robinson, F. R. Identification of an S-cone opponent OFF pathway in the macaque monkey retina: morphology, physiology and possible circuitry. Invest. Ophthalmol. Vis. Sci. 43 (Suppl. 2), 2983 (2002).

    Google Scholar 

  98. Peterson, B. B. et al. Functional architecture of the photoreceptive ganglion cells in the primate retina: morphology, mosaic organization and central targets of melanopsin immunostained cells. Invest. Ophthalmol. Vis. Sci. 44, Assoc. Res. Vis. Ophthalmol. Meeting E-Abstr. 5182 (2003).

    Article  Google Scholar 

  99. Barlow, H. B. & Levick, W. R. Changes in the maintained discharge with adaptation level in the cat retina. J. Physiol. (Lond.) 202, 699–718 (1969).

    Article  CAS  Google Scholar 

  100. Roska, B. & Werblin, F. Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 410, 583–587 (2001). The authors studied light responses of the different RGC classes in the rabbit retina and correlated them with the stratification level of RGC dendrites within the IPL.

    Article  CAS  PubMed  Google Scholar 

  101. Werblin, F. S. & Roska, B. M. Parallel visual processing: a tutorial of retinal function. Int. J. Bifurc. Chaos 14, 843–852 (2004).

    Article  Google Scholar 

  102. Haverkamp, S. & Wässle, H. Immunocytochemical analysis of the mouse retina. J. Comp. Neurol. 424, 1–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Brandstätter, J. H., Greferath, U., Euler, T. & Wässle, H. Co-stratification of GABAA receptors with the directionally selective circuitry of the rat retina. Vis. Neurosci. 12, 345–358 (1995).

    Article  PubMed  Google Scholar 

  104. Brown, S. P. & Masland, R. H. Costratification of a population of bipolar cells with the direction-selective circuitry of the rabbit retina. J. Comp. Neurol. 408, 97–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Vaney, D. I. Retinal neurons: cell types and coupled networks. Perspect. Analyt. Philos. 136, 239–254 (2002).

    Google Scholar 

  106. Menger, N., Pow, D. V. & Wässle, H. Glycinergic amacrine cells of the rat retina. J. Comp. Neurol. 401, 34–46 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Strettoi, E., Porciatti, V., Falsini, B., Pignatelli, V. & Rossi, C. Morphological and functional abnormalities in the inner retina of the rd/rd mouse. J. Neurosci. 22, 5492–5504 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Marc, R. E., Jones, B. W., Watt, C. B. & Strettoi, E. Neural remodeling in retinal degeneration. Prog. Retin. Eye Res. 22, 607–655 (2003). This is an excellent review of the changes in the mammalian retina that are triggered by degeneration of the photoreceptors.

    Article  PubMed  Google Scholar 

  109. Marc, R. E. & Jones, B. W. Retinal remodeling in inherited photoreceptor degenerations. Mol. Neurobiol. 28, 139–147 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Loewenstein, J. I., Montezuma, S. R. & Rizzo, J. F. 3rd. Outer retinal degeneration. Arch. Ophthalmol. 122, 587–596 (2004).

    Article  PubMed  Google Scholar 

  111. Surace, E. M. & Auricchio, A. Adeno-associated viral vectors for retinal gene transfer. Prog. Retin. Eye Res. 22, 705–719 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Meister, M. Multineuronal codes in retinal signaling. Proc. Natl Acad. Sci. USA 93, 609–614 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Berry, M. J., Warland, D. K. & Meister, M. The structure and precision of retinal spike trains. Proc. Natl Acad. Sci. USA 94, 5411–5416 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Meister, M. & Berry, M. J. The neural code of the retina. Neuron 22, 435–450 (1999). One of several recently published papers describing how RGCs react to specific aspects of complex light stimuli and how they adapt to natural stimuli. Their studies are excellent examples of the application of multielectrode recordings for the study of neuronal assemblies.

    Article  CAS  PubMed  Google Scholar 

  115. Nirenberg, S. & Latham, P. E. Population coding in the retina. Curr. Opin. Neurobiol. 8, 488–493 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Nirenberg, S. & Latham, P. E. Decoding neuronal spike trains: how important are correlations? Proc. Natl Acad. Sci. USA 100, 7348–7353 (2003). The authors address the question of whether the correlated firing of neighbouring RGCs transfers more information to the brain than uncorrelated signals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chichilnisky, E. J. & Kalmar, R. S. Temporal resolution of ensemble visual motion signals in primate retina. J. Neurosci. 23, 6681–6689 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Boos, R., Schneider, H. & Wässle, H. Voltage-gated and transmitter-gated currents of AII-amacrine cells in a slice preparation of the rat retina. J. Neurosci. 13, 2874–2888 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Flores-Herr, N., Protti, D. A. & Wässle, H. Synaptic currents generating the inhibitory surround of ganglion cells in the mammalian retina. J. Neurosci. 21, 4852–4863 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. McMahon, M. J., Packer, O. S. & Dacey, D. M. The classical receptive field surround of primate parasol ganglion cells is mediated primarely by a non-GABAergic pathway. J. Neurosci. 24, 3736–3745 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rodieck, R. W. The First Steps in Seeing (Sinauer Ass. Inc., Sunderland, Massachusetts, 1998).

    Google Scholar 

  122. Witkovsky, P. Dopamine and retinal function. Doc. Ophthalmol. 108, 17–40 (2004).

    Article  PubMed  Google Scholar 

  123. Demb, J. B. & Pugh, E. N. Jr. Connexin36 forms synapses essential for night vision. Neuron 36, 551–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Sun, W., Li, N. & He, S. Large-scale morphological survey of mouse retinal ganglion cells. J. Comp. Neurol. 451, 115–126 (2002).

    Article  PubMed  Google Scholar 

  126. Wässle, H. Die Netzhaut ein Gehirn im Auge. Jahrbuch 2001 Deutschen Akademie Naturforscher Leopoldina 47, 493–506 (2002).

    Google Scholar 

  127. Fried, S. I., Münch, T. A. & Werblin, F. S. The circuitry underlying directional excitation and inhibition to DS cells. Invest. Ophthalmol. Vis. Sci. 45, Assoc. Res. Vis. Ophthalmol. Meeting E-Abstr. 2266 (2004).

    Google Scholar 

Download references

Acknowledgements

I would like to thank Silke Haverkamp for excellent cooperation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Protein

Melanopsin

FURTHER INFORMATION

Encyclopedia of Life Sciences

AMPA receptors

Circadian rhythms

Dopamine

GABAA Receptors

Glutamate as a neurotransmitter

Glossary

IONOTROPIC RECEPTOR

A receptor that exerts its effects through modulation of ion channel activity.

METABOTROPIC RECEPTOR

A receptor that is associated with G proteins and exerts its effects through enzyme activation.

TWO-PHOTON MICROSCOPY

A form of microscopy in which a fluorochrome that would normally be excited by a single photon is stimulated quasi-simultaneously by two photons of lower energy. Under these conditions, only fluorochrome molecules near the plane of focus are excited, greatly reducing light scattering and photodamage of the sample.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wässle, H. Parallel processing in the mammalian retina. Nat Rev Neurosci 5, 747–757 (2004). https://doi.org/10.1038/nrn1497

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1497

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing