Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DNA-microarray analysis of brain cancer: molecular classification for therapy

Key Points

  • The genomic revolution is transforming clinical medicine — instead of the present model of population risk assessment and empirical treatment, we will move to one of predictive individualized care based on molecular classification and targeted therapy. This review highlights the role of DNA microarrays in developing predictive molecular diagnostics for patients with brain tumours.

  • The molecular events that are crucial for normal development and function are similar between individuals. However, in cancer, genetic and epigenetic alterations result in cascades of deregulated molecular events, which lead to genetically complex, highly individual tumours. Finding consistencies that can be therapeutically exploited is vital for the development of new treatments.

  • Brain cancer is now the leading cause of death from cancer in children under the age of 15 and the second leading cause of death from cancer from age 15 to 34. In adults, brain cancer is proportionately less common than other cancers, yet it accounts for a disproportionate percentage of deaths from cancer.

  • Primary brain tumours arise from the constituent cells of the CNS or their meningeal covering, whereas secondary brain tumours metastasize from a distant site. In 1928, Bailey and Cushing suggested that brain tumours could be classified by their microscopic resemblance to a presumed CNS cell of origin or its developmental precursor. Although recent work shows a more complex pattern, this model has remained a guiding principle for brain tumour classification.

  • New approaches are being developed to specifically target proteins or pathways that are altered in cancer cells. Morphologically identical tumours can be distinct in their mutational patterns, signalling-pathway alterations and gene-expression profiles, and, most importantly, in their response to a range of therapies.

  • Medulloblastomas have distinctive global gene-expression profiles that readily distinguish them from morphological mimics, and DNA microarrays can detect molecular subsets of medulloblastoma cases that differ in survival. Low-grade astrocytomas, oligodendrogliomas and glioblastomas also have distinctive global gene-expression profiles.

  • The fact that DNA microarrays can be used to detect molecular subsets that differ in survival indicates that it will soon be possible to develop gene-based predictors of therapeutic response. DNA microarrays might also facilitate the functional analysis of new anti-cancer compounds and the identification of novel biomarkers and molecular-imaging probes.

  • Cancer cells do not 'invent' new pathways; they use pre-existing pathways in different ways or they combine components of these pathways in a new fashion. By mapping, expanding and refining pathway maps in brain cancer, DNA-microarray studies might provide insight into the connectivity of these pathways in the developing and normally functioning brain.

  • It is possible to imagine a day in the not-too-distant future when serum biomarkers and molecular-imaging probes that are identified by DNA microarrays will be used for screening or early detection. Tumours will undergo microarray analysis to identify pathway alterations that point to the most beneficial therapy, and response to therapy will be monitored using molecular imaging probes and/or serum biomarkers.

Abstract

Primary brain tumours are among the most lethal of all cancers, largely as a result of their lack of responsiveness to current therapy. Numerous new therapies hold great promise for the treatment of patients with brain cancer, but the main challenge is to determine which treatment is most likely to benefit an individual patient. DNA-microarray-based technologies, which allow simultaneous analysis of expression of thousands of genes, have already begun to uncover previously unrecognized patient subsets that differ in their survival. Here, we review the progress made so far in using DNA microarrays to optimize brain cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classification scheme for brain tumours.
Figure 2: DNA-microarray analyses can identify relevant clinical subsets of gliomas.
Figure 3: Prospects for integrating genomic analysis of brain tumours with clinical-trial development.

Similar content being viewed by others

References

  1. Slonim, D. K. From patterns to pathways: gene expression data analysis comes of age. Nature Genet. 32 (Suppl.), 502–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Barabasi, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nature Rev. Genet. 5, 101–113 (2004). This paper is an excellent review of the concept of network biology, and describes the quantitative tools that can be used to analyse networks.

    Article  CAS  PubMed  Google Scholar 

  3. Ideker, T. Systems biology 101 — what you need to know. Nature Biotechnol. 22, 473–475 (2004).

    Article  CAS  Google Scholar 

  4. Legler, J. M. et al. RESPONSE: re: brain and other central nervous system cancers: recent trends in incidence and mortality. J. Natl Cancer Inst. 92, 77–78 (2000).

    Article  Google Scholar 

  5. Mischel, P. S. & Cloughesy, T. F. Targeted molecular therapy of GBM. Brain Pathol. 13, 52–61 (2003).

    Article  PubMed  Google Scholar 

  6. Bailey, P. & Cushing, H. A Classification of the Tumors of the Glioma Group on a Histogenic Basis with a Correlated Study of Prognosis (Lippincott, Philadelphia, 1928).

    Google Scholar 

  7. Lu, Q. R. et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75–86 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Doetsch, F. The glial identity of neural stem cells. Nature Neurosci. 6, 1127–1134 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Zhou, Q. & Anderson, D. J. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61–73 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Hemmati, H. D. et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl Acad. Sci. USA 100, 15178–15183 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bachoo, R. M. et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1, 269–277 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Kleihues, P. et al. The WHO classification of tumors of the nervous system. J. Neuropathol. Exp. Neurol. 61, 215–225 (2002).

    Article  PubMed  Google Scholar 

  14. Holland, E. C. et al. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nature Genet. 25, 55–57 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Lee, Y. & McKinnon, P. J. DNA ligase IV suppresses medulloblastoma formation. Cancer Res. 62, 6395–6399 (2002). In this paper, the authors compare the global gene-expression profiles of medulloblastomas that are derived from a set of genetically defined mouse crosses, thereby identifying the contribution of a number of genes, including PTC1, LIG4 and p53 , in the development of medulloblastoma.

    CAS  PubMed  Google Scholar 

  16. Lee, Y. et al. A molecular fingerprint for medulloblastoma. Cancer Res. 63, 5428–5437 (2003).

    CAS  PubMed  Google Scholar 

  17. Weiner, H. L. et al. Induction of medulloblastomas in mice by sonic hedgehog, independent of Gli1. Cancer Res. 62, 6385–6389 (2002).

    CAS  PubMed  Google Scholar 

  18. Rao, G., Pedone, C. A., Coffin, C. M., Holland, E. C. & Fults, D. W. c-Myc enhances sonic hedgehog-induced medulloblastoma formation from nestin-expressing neural progenitors in mice. Neoplasia 5, 198–204 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rao, G. et al. Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin-expressing neural progenitors in mice. Oncogene 23, 6156–6162 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Choe, G. et al. Analysis of the phosphatidylinositol 3'-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res. 63, 2742–2746 (2003).

    CAS  PubMed  Google Scholar 

  21. Ermoian, R. P. et al. Dysregulation of PTEN and protein kinase B is associated with glioma histology and patient survival. Clin. Cancer Res. 8, 1100–1106 (2002).

    CAS  PubMed  Google Scholar 

  22. Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nature Rev. Cancer 2, 489–501 (2002).

    Article  CAS  Google Scholar 

  23. Berman, D. M. et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297, 1559–1561 (2002). This paper was crucial in defining the role of the hedgehog pathway in the genesis of medulloblastoma, and in identifying inhibition of the hedgehog pathway as a potential therapy.

    Article  CAS  PubMed  Google Scholar 

  24. Wechsler-Reya, R. & Scott, M. P. The developmental biology of brain tumors. Annu. Rev. Neurosci. 24, 385–428 (2001). This outstanding review highlights the genetic mechanisms that are known to be involved in medulloblastoma, as well as other paediatric brain tumours.

    Article  CAS  PubMed  Google Scholar 

  25. Ramaswamy, S. Translating cancer genomics into clinical oncology. N. Engl. J. Med. 350, 1814–1816 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Liotta, L. A. et al. Protein microarrays: meeting analytical challenges for clinical applications. Cancer Cell 3, 317–325 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Lindblad-Toh, K. et al. Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays. Nature Biotechnol. 18, 1001–1005 (2000).

    Article  CAS  Google Scholar 

  28. Hoque, M. O., Lee, C. C., Cairns, P., Schoenberg, M. & Sidransky, D. Genome-wide genetic characterization of bladder cancer: a comparison of high-density single-nucleotide polymorphism arrays and PCR-based microsatellite analysis. Cancer Res. 63, 2216–2222 (2003).

    CAS  PubMed  Google Scholar 

  29. Albertson, D. G. & Pinkel, D. Genomic microarrays in human genetic disease and cancer. Hum. Mol. Genet. 12, R145–R152 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Shi, H. et al. Triple analysis of the cancer epigenome: an integrated microarray system for assessing gene expression, DNA methylation, and histone acetylation. Cancer Res. 63, 2164–2171 (2003).

    CAS  PubMed  Google Scholar 

  31. Yeakley, J. M. et al. Profiling alternative splicing on fiber-optic arrays. Nature Biotechnol. 20, 353–358 (2002).

    Article  CAS  Google Scholar 

  32. Mischel, P. S., Nelson, S. F. & Cloughesy, T. F. Molecular analysis of glioblastoma: pathway profiling and its implications for patient therapy. Cancer Biol. Ther. 2, 242–247 (2003). This review provides an overview of the gene-expression and signal-transduction alterations in glioblastoma and suggests potential therapeutic strategies.

    Article  CAS  PubMed  Google Scholar 

  33. Druker, B. J. Perspectives on the development of a molecularly targeted agent. Cancer Cell 1, 31–36 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Sawyers, C. L. Disabling Abl-perspectives on Abl kinase regulation and cancer therapeutics. Cancer Cell 1, 13–15 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Betensky, R. A., Louis, D. N. & Cairncross, J. G. Influence of unrecognized molecular heterogeneity on randomized clinical trials. J. Clin. Oncol. 20, 2495–2499 (2002).

    Article  PubMed  Google Scholar 

  36. Bianco, R. et al. Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 22, 2812–2822 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Armstrong, S. A. et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genet. 30, 41–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100, 8418–8423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ramaswamy, S. et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl Acad. Sci. USA 98, 15149–15154 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shia, J. et al. Value of histopathology in predicting microsatellite instability in hereditary nonpolyposis colorectal cancer and sporadic colorectal cancer. Am. J. Surg. Pathol. 27, 1407–1417 (2003).

    Article  PubMed  Google Scholar 

  44. Cardiff, R. D. et al. Validation: the new challenge for pathology. Toxicol. Pathol. 32, 31–39 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Boorman, G. A. et al. Toxicogenomics, drug discovery, and the pathologist. Toxicol. Pathol. 30, 15–27 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Dhanasekaran, S. M. et al. Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–826 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Shappell, S. B. et al. Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res. 64, 2270–2305 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Lossos, I. S. et al. Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N. Engl. J. Med. 350, 1828–1837 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Bullinger, L. et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N. Engl. J. Med. 350, 1605–1616 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Valk, P. J. et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N. Engl. J. Med. 350, 1617–1628 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Rosenwald, A. et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl. J. Med. 346, 1937–1947 (2002).

    Article  PubMed  Google Scholar 

  52. Glinsky, G. V., Higashiyama, T. & Glinskii, A. B. Classification of human breast cancer using gene expression profiling as a component of the survival predictor algorithm. Clin. Cancer Res. 10, 2272–2283 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Glinsky, G. V., Glinskii, A. B., Stephenson, A. J., Hoffman, R. M. & Gerald, W. L. Gene expression profiling predicts clinical outcome of prostate cancer. J. Clin. Invest. 113, 913–923 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hedenfalk, I. et al. Molecular classification of familial non-BRCA1/BRCA2 breast cancer. Proc. Natl Acad. Sci. USA 100, 2532–2537 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Lapointe, J. et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc. Natl Acad. Sci. USA 101, 811–816 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Pomeroy, S. L. et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442 (2002). This important paper showed that medulloblastomas can be readily distinguished from other brain tumours, including morphological mimics, on the basis of gene-expression profiling. It also showed that a relatively small number of genes could accurately predict patient survival and response to therapy.

    Article  CAS  PubMed  Google Scholar 

  60. Fernandez-Teijeiro, A. et al. Combining gene expression profiles and clinical parameters for risk stratification in medulloblastomas. J. Clin. Oncol. 22, 994–998 (2004). In a logical continuation of the work described in reference 59, the authors showed that gene-expression data can predict the outcome for patients with medulloblastoma, independent of clinical variables.

    Article  CAS  PubMed  Google Scholar 

  61. MacDonald, T. J. et al. Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nature Genet. 29, 143–152 (2001). In this paper, the authors used cDNA-microarray analysis to identify a potentially crucial and therapeutically targetable pathway that might promote metastasis in medulloblastoma.

    Article  CAS  PubMed  Google Scholar 

  62. Oliver, T. G. et al. Transcriptional profiling of the sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc. Natl Acad. Sci. USA 100, 7331–7336 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shai, R. et al. Gene expression profiling identifies molecular subtypes of gliomas. Oncogene 22, 4918–2493 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Rickman, D. S. et al. Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res. 61, 6885–6891 (2001).

    CAS  PubMed  Google Scholar 

  65. Sallinen, S. L. et al. Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res. 60, 6617–6622 (2000).

    CAS  PubMed  Google Scholar 

  66. Huang, H. et al. Gene expression profiling of low-grade diffuse astrocytomas by cDNA arrays. Cancer Res. 60, 6868–6874 (2000).

    CAS  PubMed  Google Scholar 

  67. Fuller, G. N. et al. Reactivation of insulin-like growth factor binding protein 2 expression in glioblastoma multiforme: a revelation by parallel gene expression profiling. Cancer Res. 59, 4228–4232 (1999).

    CAS  PubMed  Google Scholar 

  68. Godard, S. et al. Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res. 63, 6613–6625 (2003).

    CAS  PubMed  Google Scholar 

  69. Khatua, S. et al. Overexpression of the EGFR/FKBP12/HIF-2α pathway identified in childhood astrocytomas by angiogenesis gene profiling. Cancer Res. 63, 1865–1870 (2003).

    CAS  PubMed  Google Scholar 

  70. Nutt, C. L. et al. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res. 63, 1602–1607 (2003). This paper showed that cDNA-microarray technology could potentially be used to address diagnostically confusing gliomas, and that transcriptional information contains more data about outcome than does pathological examination.

    CAS  PubMed  Google Scholar 

  71. Mischel, P. S. et al. Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene 22, 2361–2373 (2003). This paper highlights the potential of cDNA microarrays to detect molecular subsets of morphologically identical glioblastomas.

    Article  CAS  PubMed  Google Scholar 

  72. Freije, W. A. et al. Gene expression profiling of gliomas strongly predicts survival. Cancer Res. [In the press]. In this paper, the authors demonstrate that gene-expression-based grouping of malignant gliomas is a more powerful predictor of survival than pathological type, grade or age.

  73. Scherf, U. et al. A gene expression database for the molecular pharmacology of cancer. Nature Genet. 24, 236–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Staunton, J. E. et al. Chemosensitivity prediction by transcriptional profiling. Proc. Natl Acad. Sci. USA 98, 10787–10792 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wallqvist, A. et al. Mining the NCI screening database: explorations of agents involved in cell cycle regulation. Prog. Cell Cycle Res. 5, 173–179 (2003).

    PubMed  Google Scholar 

  76. Butte, A. J., Tamayo, P., Slonim, D., Golub, T. R. & Kohane, I. S. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc. Natl Acad. Sci. USA 97, 12182–12186 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bohen, S. P. et al. Variation in gene expression patterns in follicular lymphoma and the response to rituximab. Proc. Natl Acad. Sci. USA 100, 1926–1930 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sotiriou, C. et al. Gene expression profiles derived from fine needle aspiration correlate with response to systemic chemotherapy in breast cancer. Breast Cancer Res. 4, R3 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cheok, M. H. et al. Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nature Genet. 34, 85–90 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Stegmaier, K. et al. Gene expression-based high-throughput screening (GE-HTS) and application to leukemia differentiation. Nature Genet. 36, 257–263 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Reifenberger, G. & Louis, D. N. Oligodendroglioma: toward molecular definitions in diagnostic neuro-oncology. J. Neuropathol. Exp. Neurol. 62, 111–126 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Gajjar, A. et al. Clinical, histopathologic, and molecular markers of prognosis: toward a new disease risk stratification system for medulloblastoma. J. Clin. Oncol. 22, 984–993 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Liu, E. T. & Karuturi, K. R. Microarrays and clinical investigations. N. Engl. J. Med. 350, 1595–1597 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Diehn, M., Eisen, M. B., Botstein, D. & Brown, P. O. Large-scale identification of secreted and membrane-associated gene products using DNA microarrays. Nature Genet. 25, 58–62 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Tanwar, M. K., Gilbert, M. R. & Holland, E. C. Gene expression microarray analysis reveals YKL-40 to be a potential serum marker for malignant character in human glioma. Cancer Res. 62, 4364–4368 (2002).

    CAS  PubMed  Google Scholar 

  86. Herschman, H. R. Molecular imaging: looking at problems, seeing solutions. Science 302, 605–608 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Bergmann, S., Ihmels, J. & Barkai, N. Similarities and differences in genome-wide expression data of six organisms. PLoS Biol. 2, E9 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Stuart, J. M., Segal, E., Koller, D. & Kim, S. K. A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Chang, H. Y. et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2, E7 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Whitfield, M. L. et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell 13, 1977–2000 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ficenec, D. et al. Computational knowledge integration in biopharmaceutical research. Brief. Bioinform. 4, 260–278 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Buckingham, S. Bioinformatics: programmed for success. Nature 425, 209–215 (2003).

    PubMed  Google Scholar 

  93. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Angelastro, J. M. et al. Identification of diverse nerve growth factor-regulated genes by serial analysis of gene expression (SAGE) profiling. Proc. Natl Acad. Sci. USA 97, 10424–10429 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu, D. X. & Greene, L. A. Regulation of neuronal survival and death by E2F-dependent gene repression and derepression. Neuron 32, 425–438 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402 (Suppl.), C47–C52 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Alon, U. Biological networks: the tinkerer as an engineer. Science 301, 1866–1867 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Agrawal, H. Extreme self-organization in networks constructed from gene expression data. Phys. Rev. Lett. 89, 268702 (2002).

    Article  PubMed  CAS  Google Scholar 

  100. Chen, J. et al. The PEPR GeneChip data warehouse, and implementation of a dynamic time series query tool (SGQT) with graphical interface. Nucleic Acids Res. 32, D578–D581 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ramaswamy, S. & Golub, T. R. DNA microarrays in clinical oncology. J. Clin. Oncol. 20, 1932–1941 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank S. Horvath, M. Carlson, W. Freije and Z. Fang for their contribution to this work, and we thank D. Geschwind and H. Kornblum for helpful discussions about this review. The authors are supported by the NINDS and NCI and by Accelerate Brain Cancer Cure, the Packard Foundation, the Harry Allgauer Foundation through The Doris R. Ullmann Fund for Brain Tumor Research Technologies, the Henry E. Singleton Brain Tumor Endowment, Art of the Brain and the Ziering Family Foundation in memory of Sigi Ziering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Mischel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

EGFR

ErbB2

FKBP12

p53

SHH

TRKC

YKL40

FURTHER INFORMATION

Encyclopedia of Life Sciences

Brain Cancers

Mischel homepage

Cloughesy homepage

Nelson homepage

National Cancer Institute

Glossary

GLIOMA

Any brain tumour that originates from the glial cell lineage.

METASTASIS

The spread of cancer cells from one organ or tissue to another, usually though the blood stream or the lymphatic system.

SINGLE NUCLEOTIDE POLYMORPHISMS

Bi-allelic (typically) base pair substitutions, which are the most common forms of genetic polymorphism.

ALTERNATIVE SPLICING

During splicing, introns are excised from RNA after transcription and the cut ends are rejoined to form a continuous message. Alternative splicing allows the production of different messages from the same DNA molecule.

DESMOPLASTIC

A term that refers to the growth of dense fibrous tissue around a tumour.

cDNA

Complementary DNA that is produced from an RNA template by an RNA-dependent DNA polymerase.

CHEMOTAXIS

The movement of cells in response to a chemical gradient that is provided by chemotactic agents.

RT-PCR

Reverse transcriptase–polymerase chain reaction (PCR) — a reaction in which messenger RNA is converted into DNA (reverse transcription), which is then amplified by PCR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mischel, P., Cloughesy, T. & Nelson, S. DNA-microarray analysis of brain cancer: molecular classification for therapy. Nat Rev Neurosci 5, 782–792 (2004). https://doi.org/10.1038/nrn1518

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1518

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing