Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Specificity of priming: a cognitive neuroscience perspective

Key Points

  • When subjects are shown words or objects during a training phase, and are then asked to perform a task that involves, for example, generating words from word stems or making a judgement about objects, their responses are quicker or more accurate for those words or objects to which they have previously been exposed. This effect is known as priming, and is accompanied by reductions in cortical activity that can be observed using functional imaging techniques.

  • An important question relates to the specificity of priming: does priming reflect the influence of abstract representations of stimuli, or does it depend on their specific features? Three types of specificity can be considered: stimulus specificity, associative specificity and response specificity.

  • Stimulus specificity relates to the effects on priming of changing the perceptual features of stimuli. For example, modality-specific priming refers to the fact that subjects show greater priming when both initial exposure and subsequent testing are done in the same modality (for example, visual) rather than in different modalities (visual and auditory). Results from patients with amnesia, and from neuroimaging studies, indicate that there are two routes to cross-modality priming: one involving changes in phonological processing and the other involving explicit retrieval. Stimulus specificity also refers to the effects of changing the typeface or case of a word between the study session and the test, or changing the view or examplar of an object. There is some evidence that medial temporal and diencephalic structures contribute to font- and voice-specific priming, but they are not essential for stimulus specificity in object priming.

  • Associative specificity reflects the effects of changes in associations between pairs of stimuli. Priming is greater when associations (for example between pairs of words) are maintained. Associative priming seems to reflect some aspect of explicit memory, and to involve medial temporal structures.

  • Response specificity refers to the effects of a change in the required response to a stimulus between the study phase and the test. Although priming occurs even when different responses are required (as in most studies of priming), the required response influences the degree of priming. It is possible that, with repetition, subjects begin to bypass semantic analysis of stimuli in favour of directly retrieving previous stimulus–response associations. This process could reduce demands on the prefrontal cortex, relying instead on the medial temporal lobe.

Abstract

Priming is a nonconscious form of memory that involves a change in a person's ability to identify, produce or classify an item as a result of a previous encounter with that item or a related item. One important question relates to the specificity of priming — the extent to which priming reflects the influence of abstract representations or the retention of specific features of a previous episode. Cognitive neuroscience analyses provide evidence for three types of specificity: stimulus, associative and response. We consider empirical, methodological and conceptual issues that relate to each type of specificity, and suggest a theoretical perspective to help in guiding future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three types of priming specificity.
Figure 2: Response learning.
Figure 3: Hypothetical instance-learning model.

Similar content being viewed by others

References

  1. Eichenbaum, H. & Cohen, N. J. From Conditioning to Conscious Recollection: Memory Systems of the Brain (Oxford Univ. Press, New York, 2001).

    Google Scholar 

  2. Foster, J. K. & Jelicic, M. Memory: Systems, Process or Function? (Oxford Univ. Press, Oxford, 1999).

    Book  Google Scholar 

  3. Schacter, D. L. & Tulving, E. Memory Systems 1994 (MIT Press, Cambridge, Massachusetts, 1994).

    Google Scholar 

  4. Schacter, D. L., Wagner, A. D. & Buckner, R. L. in The Oxford Handbook of Memory (eds Tulving, E. & Craik, F. I. M.) 627–643 (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  5. Squire, L. R. & Kandel, E. R. Memory: From Mind to Molecules (Scientific American Library, New York, 1999).

    Google Scholar 

  6. Henson, R. N. A. Neuroimaging studies of priming. Prog. Neurobiol. 70, 53–81 (2003). This article provides a comprehensive review and analysis of neuroimaging studies of priming, covering a variety of issues and topics that are beyond the scope of the present article.

    Article  CAS  PubMed  Google Scholar 

  7. Schacter, D. L. & Buckner, R. L. Priming and the brain. Neuron 20, 185–195 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Tulving, E. & Schacter, D. L. Priming and human memory systems. Science 247, 301–306 (1990). Argues for the view that priming reflects the operation of a perceptual representation system that can function separately from other memory systems, such as episodic, semantic and procedural memory.

    Article  CAS  PubMed  Google Scholar 

  9. Richardson-Klavehn, A. & Bjork, R. A. Measures of memory. Annu. Rev. Psychol. 36, 475–543 (1988).

    Article  Google Scholar 

  10. Schacter, D. L. Implicit memory: history and current status. J. Exp. Psychol. Learn. Mem. Cogn. 13, 501–518 (1987).

    Article  Google Scholar 

  11. Hamann, S. B. & Squire, L. R. Intact perceptual memory in the absence of conscious memory. Behav. Neurosci. 111, 850–854 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Schacter, D. L. & Badgaiyan, R. D. Neuroimaging of priming: new perspectives on implicit and explicit memory. Curr. Dir. Psychol. Sci. 10, 1–4 (2001).

    Article  Google Scholar 

  13. Wiggs, C. L. & Martin, A. Properties and mechanisms of perceptual priming. Curr. Opin. Neurobiol. 8, 227–233 (1998). Based on neuroimaging and electrophysiological evidence, this paper argues for the view that priming reflects a sharpening, or tuning, of object representations.

    Article  CAS  PubMed  Google Scholar 

  14. Scarborough, D. L., Cortese, C. & Scarborough, H. S. Frequency and repetition effects in lexical memory. J. Exp. Psychol. Hum. Percept. Perform. 3, 1–17 (1977).

    Article  Google Scholar 

  15. Morton, J. in Processing Models of Visible Language (eds Kolers, P. A., Wrolstad, M. E. & Bouma, H.) 259–268 (Plenum, New York, 1979).

    Book  Google Scholar 

  16. Graf, P. & Ryan, L. Transfer-appropriate processing for implicit and explicit memory. J. Exp. Psychol. Learn. Mem. Cogn. 16, 978–992 (1990). Shows that stimulus-specificity effects in priming (changing the typefont of words between study and test) are increased when subjects focus on the perceptual properties of words compared with when they focus on the semantic properties of words.

    Article  Google Scholar 

  17. Graf, P. & Schacter, D. L. Implicit and explicit memory for new associations in normal subjects and amnesic patients. J. Exp. Psychol. Learn. Mem. Cogn. 11, 501–518 (1985).

    Article  CAS  PubMed  Google Scholar 

  18. Bowers, J. S. In defense of abstractionist theories of repetition and word identification. Psychon. Bull. Rev. 7, 83–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Marsolek, C. J., Schacter, D. L. & Nicholas, C. D. Form-specific visual priming for new associations in the right cerebral hemisphere. Mem. Cognit. 24, 539–556 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Tenpenny, P. L. Abstractionist versus episodic theories of repetition priming and word identification. Psychon. Bull. Rev. 2, 339–363 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Graf, P., Squire, L. R. & Mandler, G. The information that amnesic patients do not forget. J. Exp. Psychol. Learn. Mem. Cogn. 10, 164–178 (1984).

    Article  CAS  PubMed  Google Scholar 

  22. Carlesimo, G. A. Perceptual and conceptual priming in amnesic and alcoholic patients. Neuropsychologia 32, 903–921 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Carlesimo, G. A., Marfia, G. A., Loasses, A. & Caltagirone, C. Perceptual and conceptual components in implicit and explicit stem completion. Neuropsychologia 34, 785–792 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Graf, P., Shimamura, A. P. & Squire, L. R. Priming across modalities and priming across category levels: extending the domain of preserved functioning in amnesia. J. Exp. Psychol. Learn. Mem. Cogn. 11, 386–396 (1985). An early demonstration that amnesic patients can show normal modality-specific and nonspecific priming despite impaired explicit memory.

    Article  CAS  PubMed  Google Scholar 

  25. Kohler, S., Black, S. & Habib, R. Cross-modal priming in the densely amnesic subject K.C. Brain Cogn. 35, 420–426 (1997).

    Google Scholar 

  26. Vaidya, C. J., Gabrieli, J. D. E., Keane, M. M. & Monti, L. A. Perceptual and conceptual memory processes in global amnesia. Neuropsychology 9, 580–591 (1995).

    Article  Google Scholar 

  27. Jacoby, L. L., Toth, J. P. & Yonelinas, A. P. Seperating conscious and unconscious influences of memory measuring recollection. J. Exp. Psychol. Gen. 122, 139–154 (1993).

    Article  Google Scholar 

  28. Backman, L. et al. Brain activation in young and older adults during implicit and explicit retrieval. J. Cogn. Neurosci. 9, 378–391 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Buckner, R. L. et al. Functional anatomical studies of explicit and implicit memory retrieval tasks. J. Neurosci. 15, 12–29 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Buckner, R. L., Koutstaal, W., Schacter, D. L. & Rosen, B. R. Functional MRI evidence for a role of frontal and inferior temporal cortex in amodal components of priming. Brain 123, 620–640 (2000).

    Article  PubMed  Google Scholar 

  31. Schacter, D. L., Alpert, N. M., Savage, C. R., Rauch, S. L. & Albert, M. S. Conscious recollection and the human hippocampal formation: evidence from positron emission tomography. Proc. Natl Acad. Sci. USA 93, 321–325 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Squire, L. R. et al. Activation of the hippocampus in normal humans: a functional anatomical study of memory. Proc. Natl Acad. Sci. USA 89, 1837–1841 (1992). The first neuroimaging study to provide evidence for a priming-related reduction in activity in extrastriate occipital cortex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schacter, D. L., Badgaiyan, R. D. & Alpert, N. M. Visual word stem completion priming within and across modalities: a PET study. Neuroreport 10, 2061–2065 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Gabrieli, J. D. E., Fleischman, D. A., Keane, M. M., Reminger, S. L. & Morrell, F. Double dissociation between memory systems underlying explicit and implicit memory in the human brain. Psychol. Sci. 6, 76–82 (1995).

    Article  Google Scholar 

  35. Keane, M. M., Gabrieli, J. D. E., Noland, J. S. & McNealy, S. I. Normal perceptual priming of orthographically illegal nonwords in amnesia. J. Int. Neuropsychol. Soc. 1, 425–433 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Kroll, N. E. et al. The neural substrates of visual implicit memory: do the two hemispheres play different roles? J. Cogn. Neurosci. 15, 833–842 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Badgaiyan, R. D., Schacter, D. L. & Alpert, N. M. Auditory priming within and across modalities: evidence from positron emission tomography. J. Cogn. Neurosci. 11, 337–348 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Carlesimo, G. A. et al. Brain activity during intra- and cross-modal priming: new empirical data and review of the literature. Neuropsychologia 42, 14–24 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Swick, D., Miller. K. M. & Larsen, J. Auditory repetition priming is impaired in pure alexic patients. Brain Lang. 89, 543–553 (2004).

    Article  PubMed  Google Scholar 

  40. Bergerbest, D., Ghahremani, D. G. & Gabrieli, J. D. E. Neural correlates of auditory repetition priming: reduced fMRI activation in the auditory cortex. J. Cogn. Neurosci. 16, 966–977 (2004).

    Article  PubMed  Google Scholar 

  41. Carlesimo, G. A., Fadda, L., Sabbadini, M. & Caltagirone, C. Visual repetition priming for words relies on access to the visual input lexicon: evidence from a dyslexic patient. Neuropsychologia 32, 1089–1100 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Richardson-Klavehn, A. & Gardiner, J. M. Cross-modality priming in stem completion reflects conscious memory, but not voluntary memory. Psychon. Bull. Rev. 3, 238–244 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Logan, G. D. Toward an instance theory of automatization. Psychol. Rev. 95, 492–527 (1988).

    Article  Google Scholar 

  44. Logan, G. Repetition priming and automaticity: common underlying mechanisms? Cognit. Psychol. 22, 1–35 (1990).

    Article  Google Scholar 

  45. Curran, T., Schacter, D. L. & Galluccio, L. Cross-modal priming and explicit memory in patients with verbal production deficits. Brain Cogn. 39, 133–146 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Marsolek, C. J., Kosslyn, S. M. & Squire, L. R. Form specific visual priming in the right cerebral hemisphere. J. Exp. Psychol. Learn. Mem. Cogn. 18, 492–508 (1992). Uses a divided visual field procedure to show that stimulus specificity effects in priming (changing the case of words) affects the right hemisphere more than the left hemisphere.

    Article  CAS  PubMed  Google Scholar 

  47. Marsolek, C. J., Squire, L. R., Kosslyn, S. M. & Lulenski, M. Form-specific explicit and implicit memory in the right cerebral hemisphere. Neuropsychology 8, 588–597 (1994).

    Article  Google Scholar 

  48. Vaidya, C. J., Gabrieli, J. D. E., Verfaellie, M., Fleischman, D. & Askari, N. Font-specific priming following global amnesia and occipital lobe damage. Neuropsychology 12, 183–192 (1998). Provides evidence for stimulus specficity (font change) effects on priming in both patients with amnesia and a patient with right-occipital damage.

    Article  CAS  PubMed  Google Scholar 

  49. Dehaene, S. et al. Cerebral mechanisms of word masking and unconscious repetition priming. Nature Neurosci. 4, 752–758 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Forster, K. I. & Davis, C. Repetition priming and frequency attenuation in lexical access. J. Exp. Psychol. Learn. Mem. Cogn. 10, 680–698 (1984).

    Article  Google Scholar 

  51. Schnyer, D. M., Ryan, L., Trouard, T. & Forster, K. Masked word repetition results in increased fMRI signal: a framework for understanding signal changes in priming. Neuroreport 13, 281–284 (2002).

    Article  PubMed  Google Scholar 

  52. Dehaene, S. et al. Letter binding and invariant recognition of masked words: behavioral and neuroimaging evidence. Psychol. Sci. 15, 307–313 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Burgund, E. D. & Marsolek, C. J. Letter-case-specific priming in the right cerebral hemisphere with a form-specific perceptual identification task. Brain Cogn. 35, 239–258 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Koivisto, M. On functional brain asymmetries in perceptual priming. Brain Cogn. 29, 36–53 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Kroll, N. E., Rocha, D. A., Yonelinas, A. P., Baynes, K. & Frederick, C. Form-specific visual priming in the left and right hemispheres. Brain Cogn. 47, 564–569 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Marsolek, C. J. & Burgund, E. D. in Rethinking Implicit Memory (eds Bowers, J. S. & Marsolek, C. J.) 139–156 (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

  57. Buckner, R. et al. Functional-anatomic correlates of object priming in humans revealed by rapid presentation event-related fMRI. Neuron 20, 285–296 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Grill-Spector, K. et al. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24, 187–203 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Henson, R., Shallice, T. & Dolan, R. Neuroimaging evidence for dissociable forms of repetition priming. Science 287, 1269–1272 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Wagner, A. D., Desmond, J. E., Demb, J. B., Glover, G. H. & Gabrieli, J. Semantic repetition priming for verbal and pictoral knowledge: a functional MRI study of left inferior prefrontal cortex. J. Cogn. Neurosci. 9, 714–726 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Koutstaal, W. et al. Perceptual specificity in visual object priming: fMRI evidence for a laterality difference in fusiform cortex. Neuropsychologia 39, 184–199 (2001). Provides fMRI evidence that stimulus specificity (changing from one example of an object to another) is more pronounced in the right fusiform cortex than in the left.

    Article  CAS  PubMed  Google Scholar 

  62. Simons, J. S., Koutstaal, W., Prince, S., Wagner, A. D. & Schacter, D. L. Neural mechanisms of visual object priming: evidence for perceptual and semantic distinctions in fusiform cortex. Neuroimage 19, 613–626 (2003).

    Article  PubMed  Google Scholar 

  63. Vuilleumier, P., Henson, R. N., Driver, J. & Dolan, R. J. Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming. Nature Neurosci. 5, 491–499 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Kinoshita, S. & Wayland, S. V. Effects of surface features on word-fragment completion in amnesic subjects. Am. J. Psychol. 106, 67–80 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Schacter, D. L., Church, B. & Bolton, E. Implicit memory in amnesic patients: impairment of voice-specific priming. Psychol. Sci. 6, 20–25 (1995).

    Article  Google Scholar 

  66. Curran, T., Schacter, D. L. & Bessenoff, G. Visual specificity effects on word stem completion: beyond transfer appropriate processing? Can. J. Exp. Psychol. 50, 22–33 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Cave, C. B. & Squire, L. R. Intact and long-lasting repetition priming in amnesia. J. Exp. Psychol. Learn. Mem. Cogn. 18, 509–520 (1992).

    Article  CAS  PubMed  Google Scholar 

  68. Cermak, L. S., Verfallie, M., Letourneau, L. & Jacoby, L. L. Episodic effects on picture identification for alcoholic Korsakoff patients. Brain Cogn. 22, 85–97 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Schacter, D. L. & Graf, P. Preserved learning in amnesic patients: perspectives on research from direct priming. J. Clin. Exp. Neuropsychol. 8, 727–743 (1986). Shows that patients with severe amnesia do not exhibit priming of new associations on a stem-completion task (associative specificity).

    Article  CAS  PubMed  Google Scholar 

  70. Cermak, L. S., Bleich, R. P. & Blackford, M. Deficits in the implicit retention of new associations by alcoholic Korsakoff patients. Brain Cogn. 7, 145–156 (1988).

    Article  CAS  PubMed  Google Scholar 

  71. Mayes, A. R. & Gooding, P. Enhancement of word completion priming in amnesics by cueing with previously novel associates. Neuropsychologia 27, 1057–1072 (1989).

    Article  CAS  PubMed  Google Scholar 

  72. Shimamura, A. P. & Squire, L. R. Impaired priming of new associations in amnesia. J. Exp. Psychol. Learn. Mem. Cogn. 15, 721–728 (1989).

    Article  CAS  PubMed  Google Scholar 

  73. Bowers, J. S. & Schacter, D. L. Implicit memory and test awareness. J. Exp. Psychol. Learn. Mem. Cogn. 16, 404–416 (1990).

    Article  CAS  PubMed  Google Scholar 

  74. McKone, E. & Slee, J. A. Explicit contamination in 'implicit' memory for new associations. Mem. Cognit. 25, 352–366 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Badgaiyan, R. D., Schacter, D. L. & Alpert, N. M. Priming of new associations: a PET study. Neuroreport 14, 2475–2479 (2003).

    Article  PubMed  Google Scholar 

  76. Dobbins, I. G., Foley, H., Schacter, D. L. & Wagner, A. D. Executive control during episodic retrieval: multiple prefrontal processes subserve source memory. Neuron 35, 989–996 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Nolde, S. F., Johnson, M. K. & D'Esposito, M. Left prefrontal activation during episodic remembering: an event-related fMRI study. Neuroreport 9, 3509–3514 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Rugg, M. D., Fletcher, P. C., Chua, P. M. & Dolan, R. J. The role of the prefrontal cortex in recognition memory and memory for source: an fMRI study. Neuroimage 10, 520–529 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Thompson-Schill, S. L., D'Esposito, M., Aguirre, G. K. & Farah, M. J. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc. Natl Acad. Sci. USA 94, 14792–14797 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Giovanello, K. S., Schnyer, D. M. & Verfaellie, M. A critical role for the anterior hippocampus in relational memory: evidence from an fMRI study comparing associative and item recognition. Hippocampus 14, 5–8 (2004).

    Article  PubMed  Google Scholar 

  81. Henke, K. et al. Active hippocampus during nonconscious memories. Conscious Cogn. 12, 31–48 (2003).

    Article  PubMed  Google Scholar 

  82. Jackson, O. & Schacter, D. L. Encoding activity in anterior medial temporal lobe supports subsequent associative recognition. Neuroimage 21, 456–462 (2004).

    Article  PubMed  Google Scholar 

  83. Stark, C. E., Bayley, P. J. & Squire, L. R. Recognition memory for single items and for associations is similarly impaired following damage to the hippocampal region. Learn. Mem. 9, 238–242 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gooding, P. A., Mayes, A. R. & van Eijk, R. A meta-analysis of indirect memory tests for novel material in organic amnesics. Neuropsychologia 38, 666–676 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Gabrieli, J. D. E., Keane, M. M., Zarella, M. M. & Poldrack, R. A. Preservation of implicit memory for new associations in global amnesia. Psychol. Sci. 8, 326–329 (1997).

    Article  Google Scholar 

  86. Moscovitch, M., Winocur, G. & McLachlan, D. Memory as assessed by recognition and reading time in normal and memory impaired people with Alzheimer's disease and other neurological disorders. J. Exp. Psychol. Gen. 115, 331–346 (1986).

    Article  CAS  PubMed  Google Scholar 

  87. Musen, G. & Squire, L. R. On the implicit learning of new associations by amnesic patients and normal subjects. Neuropsychology 7, 119–135 (1993).

    Article  Google Scholar 

  88. Paller, K. A. & Mayes, A. M. New-association priming of word identification in normal and amnesic subjects. Cortex 30, 53–73 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Goshen-Gottstein, Y., Moscovitch, M. & Melo, B. Intact implicit memory for newly formed verbal associations in amnesic patients following single study trials. Neuropsychology 14, 570–578 (2000). Some of the strongest evidence to date that patients with amnesia can show associative specificity effects on priming under certain task conditions.

    Article  CAS  PubMed  Google Scholar 

  90. Yang, J. et al. Involvement of the medial temporal lobe in priming for new associations. Neuropsychologia 41, 818–829 (2003).

    Article  PubMed  Google Scholar 

  91. Dennis, I. & Schmidt, L. Associative processes in repetition priming. J. Exp. Psychol. Learn. Mem. Cogn. 29, 532–538 (2003).

    Article  PubMed  Google Scholar 

  92. Marsolek, C. J. & Field, J. E. Perceptual-motor sequence learning of general regularities and specific sequences. J. Exp. Psychol. Hum. Percept. Perform. 25, 815–836 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Wagner, A. D., Koutstaal, W., Maril, A., Schacter, D. L. & Buckner, R. L. Task-specific repetition priming in left inferior prefrontal cortex. Cereb. Cortex 10, 1176–1184 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Thompson-Schill, S. L., D'Esposito, M. & Kan, I. P. Effects of repetition and competition on activity in left prefrontal cortex during word generation. Neuron 23, 513–522 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Raichle, M. E. et al. Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb. Cortex 4, 8–26 (1994).

    Article  CAS  PubMed  Google Scholar 

  96. Seger, C. A., Rabin, L. A., Desmond, J. E. & Gabrieli, J. D. E. Verb generation priming involves conceptual implicit memory. Brain Cogn. 41, 150–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Dobbins, I. G., Schnyer, D. M., Verfaellie, M. & Schacter, D. L. Cortical activity reductions during repetition priming can result from rapid response learning. Nature 428, 316–319 (2004). fMRI study that provides some of the neural evidence for response specificity in priming, showing that priming-related reductions in activity are greatly affected by what seems to be a simple change in the response that subjects are required to provide about repeatedly presented visual objects.

    Article  CAS  PubMed  Google Scholar 

  98. Seger, C. A., Rabin, L. A., Zarella, M. & Gabrieli, J. D. E. Preserved verb generation priming in global amnesia. Neuropsychologia 35, 1069–1074 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Chun, M. M. & Phelps, E. A. Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nature Neurosci. 2, 844–847 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Chun, M. M. & Jiang, Y. Implicit, long-term spatial contextual memory. J. Exp. Psychol. Learn. Mem. Cogn. 29, 224–234 (2003).

    Article  PubMed  Google Scholar 

  101. Manns, J. R. & Squire, L. R. Perceptual learning, awareness, and the hippocampus. Hippocampus 11, 776–782 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Roediger III, H. L. & McDermott, K. B. in Handbook of Neuropsychology (eds Spinnler, H. & Boller, F.) 63–131 (Elsevier, Amsterdam, 1993).

    Google Scholar 

  103. Schacter, D. L., Chiu, C. Y. P. & Ochsner, K. N. Implicit memory: a selective review. Annu. Rev. Neurosci. 16, 159–182 (1993).

    Article  CAS  PubMed  Google Scholar 

  104. Bowers, J. S. & Marsolek, C. J. Rethinking Implicit Memory (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

  105. Vriezen, E. R., Moscovitch, M. & Bellos, S. A. Priming effects in semantic classification tasks. J. Exp. Psychol. Learn. Mem. Cogn. 21, 933–946 (1995).

    Article  Google Scholar 

  106. Ryan, J. D., Althoff, R. R., Whitlow, S. & Cohen, N. J. Amnesia is a deficit in relational memory. Psychol. Sci. 11, 454–461 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by grants from the National Institute of Mental Health (D.L.S and D.M.S.) and National Institute on Aging (D.L.S.). We thank C. Moore for help with prepatation of the manuscript and S. Slotnick for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Schacter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Wernicke–Korsakoff Syndrome

FURTHER INFORMATION

Encyclopedia of Life Sciences

amnesia

memory: clinical disorders

Schacter's homepage

Dobbins' homepage

Schnyer's homepage

Glossary

EXTRASTRIATE CORTEX

A belt of visually responsive areas of cortex surrounding the primary visual cortex.

BRODMANN'S AREAS

(BA) Korbinian Brodmann (1868–1918) was an anatomist who divided the cerebral cortex into numbered subdivisions on the basis of cell arrangements, types and staining properties (for example, the dorsolateral prefrontal cortex contains subdivisions, including BA 46, BA 9 and others). Modern derivatives of his maps are commonly used as the reference system for discussion of brain-imaging findings.

CONTEXTUAL CUEING

A model for studying how people learn visual regularities that guide their subsequent responses in perceptual tasks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schacter, D., Dobbins, I. & Schnyer, D. Specificity of priming: a cognitive neuroscience perspective. Nat Rev Neurosci 5, 853–862 (2004). https://doi.org/10.1038/nrn1534

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1534

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing