Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Choosing the greater of two goods: neural currencies for valuation and decision making

Key Points

  • This review surveys recent behavioural and electrophysiological studies concerning the neural basis of value-based decisions. Psychophysicists and sensory physiologists traditionally emphasize the effects of sensory stimuli on decision-making, but cognitive psychologists and economists have long known that decision-making is strongly influenced by an organism's prior experience or beliefs concerning the 'value' of alternative choices, often expressed in terms of appetitive or aversive consequences. Although the neural mechanisms that underlie the computation of value are largely unknown, the emerging field of 'neuroeconomics' has taken on the task of elucidating these computations and how they influence choice behaviour.

  • Here we outline a programme of research for the electrophysiological investigation of value-based decision making in awake, behaving monkeys. The key components of this programme are: first, showing that choice behaviour is under the control of value computations emerging from an animal's history of choices and rewards; second, the modelling of behavioural data to gain insight into the decision variables in the brain that might specify these choices; and third, electrophysiological analysis to determine whether and how the hypothesized decision variables are actually encoded within specific neural systems. The heart of the review is a comparison of three recent papers on value-based choice, with specific attention to the key components outlined above. Through a careful consideration of this series of new studies, we aim to elucidate principles that will guide the investigation of value-based choice in the future.

  • From a broader point of view, the new effort to understand value-based choice offers hope for a substantive synthesis of two areas of systems neuroscience that have traditionally existed in separate spheres — the study of cognition and the study of reward and motivation. These subjects are intrinsically linked: cognitive behaviour is typically fuelled by motivation and reward; reward and motivation in turn serve cognitive and behavioural ends. The study of value-based choice provides an ideal platform for analysing the interaction of a quintessentially cognitive behaviour — decision-making — and a quintessentially motivational drive — reward harvesting. The studies reviewed in this paper make a promising start on this ambitious agenda.

Abstract

To make adaptive decisions, animals must evaluate the costs and benefits of available options. The nascent field of neuroeconomics has set itself the ambitious goal of understanding the brain mechanisms that are responsible for these evaluative processes. A series of recent neurophysiological studies in monkeys has begun to address this challenge using novel methods to manipulate and measure an animal's internal valuation of competing alternatives. By emphasizing the behavioural mechanisms and neural signals that mediate decision making under conditions of uncertainty, these studies might lay the foundation for an emerging neurobiology of choice behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visual and oculomotor systems of the primate brain.
Figure 2: Conceptual frameworks for decision making.
Figure 3: Decision-making tasks.
Figure 4: Payoff matrices for competitive games.
Figure 5: Demonstrating behavioural control.
Figure 6: A local model of matching behaviour.
Figure 7: Influence of global and local values on monkey choices and lateral intraparietal area activity.

Similar content being viewed by others

References

  1. Bauby, J. D. The Diving Bell and The Butterfly: A Memoir of Life in Death (Alfred A. Knopf Inc., New York, 1997).

    Google Scholar 

  2. Glimcher, P. W. & Rustichini, A. R. Neuroeconomics: the consilience of brain and decision. Science 306, 447–452 (2004).

    CAS  PubMed  Google Scholar 

  3. Parker, A. J. & Newsome, W. T. Sense and the single neuron: probing the physiology of perception. Annu. Rev. Neurosci. 21, 227–277 (1998). An exploration of the link between neural activity and sensory perception, summarizing work that comprises the background to recent neurophysiological studies of perceptual decision making.

    CAS  PubMed  Google Scholar 

  4. Rizzolatti, G. & Luppino, G. The cortical motor system. Neuron 31, 889–901 (2001).

    CAS  PubMed  Google Scholar 

  5. Graziano, M. S., Taylor, C. S., Moore, T. & Cooke, D. F. The cortical control of movement revisited. Neuron 36, 349–362 (2002).

    CAS  PubMed  Google Scholar 

  6. Andersen, R. A. & Bruneo, C. A. Intentional maps in posterior parietal cortex. Annu. Rev. Neurosci. 25, 189–220 (2002).

    CAS  PubMed  Google Scholar 

  7. Leon, M. I. & Shadlen, M. N. Exploring the neurophysiology of decisions. Neuron 21, 669–672 (1998).

    CAS  PubMed  Google Scholar 

  8. Georgopoulos, A. P. Neural aspects of cognitive motor control. Curr. Opin. Neurobiol. 10, 238 (2000).

    CAS  PubMed  Google Scholar 

  9. Schall, J. D. Neural basis of deciding, choosing and acting. Nature Rev. Neurosci. 2, 33–42 (2001).

    CAS  Google Scholar 

  10. Gold, J. I. & Shadlen, M. N. Neural computations that underlie decisions about sensory stimuli. Trends Cogn. Sci. 5, 10–16 (2001). Proposes that neural systems implement categorical decisions about perceptual stimuli by computing a decision variable related to the logarithm of the likelihood ratio in favour of one or another alternative. Discusses how this framework can be used to interpret neural signals recorded from eye movement planning centres during perceptual discrimination tasks.

    PubMed  Google Scholar 

  11. Glimcher, P. W. Making choices: the neurophysiology of visual-saccadic decision making. Trends Neurosci. 24, 654–659 (2001).

    CAS  PubMed  Google Scholar 

  12. Romo, R. & Salinas, E. Touch and go: decision making mechanisms in somatosensation. Annu. Rev. Neurosci. 24, 107–137 (2001).

    CAS  PubMed  Google Scholar 

  13. Romo, R., Hernandez, A., Zainos, A., Lemus, L. & Brody, C. Neural correlates of decision-making in secondary somatosensory cortex. Nature Neurosci. 5, 1217–1225 (2002).

    CAS  PubMed  Google Scholar 

  14. Romo, R. & Salinas, E. Flutter discrimination: neural codes, perception, memory and decision making. Nature Rev. Neurosci. 4, 203–218 (2003).

    CAS  Google Scholar 

  15. Graham, N. V. S. Visual Pattern Analysers (Oxford Univ. Press, Oxford, 1989).

    Google Scholar 

  16. Shadlen, M. N. & Newsome, W. T. Motion perception: seeing and deciding. Proc. Natl Acad. Sci. USA 93, 628–633 (1996). One of the first demonstrations of a correlation between the activity of single cortical neurons and an evolving perceptual decision.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shadlen, M. N. & Newsome, W. T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

    CAS  PubMed  Google Scholar 

  18. Kim, J. N. & Shadlen, M. N. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nature Neurosci. 2, 176–185 (1999).

    PubMed  Google Scholar 

  19. Horwitz, G. D. & Newsome, W. T. Target selection for saccadic eye movements: prelude activity in the superior colliculus during a direction-discrimination task. J. Neurophysiol. 86, 2543–2558 (2001).

    CAS  PubMed  Google Scholar 

  20. Roitman, J. D. & Shadlen, M. N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hanks, T. D. & Shadlen, M. N. Microstimulation of macaque area LIP affects decision making in a motion discrimination task. Soc. Neurosci. Abstr. 20.9 (2004).

  22. Bisley, J. W. & Goldberg, M. E. Neuronal activity in the lateral intraparietal area and spatial attention. Science 299, 81–86 (2003).

    CAS  PubMed  Google Scholar 

  23. Platt, M. L. & Glimcher, P. W. Neural correlates of decision variables in parietal cortex. Nature 400, 233–238 (1998).

    Google Scholar 

  24. Kahneman, D. & Tversky, A. (eds) Choices, Values, and Frames (Cambridge Univ. Press, Cambridge, 2000).

    Google Scholar 

  25. Berridge, K. C. & Robinson, T. E. Parsing reward. Trends Neurosci. 26, 507–513 (2003). Discusses the distinct psychological components of reward and their underlying neural substrates. Emphasizes the distinction between systems devoted to the affective ('liking') and motivational ('wanting') aspects of reward, and between motivational processes based on simple Pavlovian associations and those involving more cognitive representations of value.

    CAS  PubMed  Google Scholar 

  26. Olds, J. & Milner, P. M. Positive reinforcement produced by electrical stimulation of septal area and other regions of the rat brain. J. Comp. Physiol. Psychol. 47, 419–427 (1954).

    CAS  PubMed  Google Scholar 

  27. Shizgal, P. Neural basis of utility estimation. Curr. Opin. Neurobiol. 7, 198–208 (1997). Summarizes findings from a series of elegant experiments involving BSR in the rat that indicate the existence of a final common neural representation for reward information.

    CAS  PubMed  Google Scholar 

  28. Wise, R. A. & Bozarth, M. A. A psychomotor stimulant theory of addiction. Psychol. Rev. 94, 469–492 (1987).

    CAS  PubMed  Google Scholar 

  29. Hyman, S. E. & Malenka, R. C. Addiction and the brain: the neurobiology of compulsion and its persistence. Nature Rev. Neurosci. 2, 695–703 (2001).

    CAS  Google Scholar 

  30. Kelley, A. E. Memory and addiction. Shared neural circuitry and molecular mechanisms. Neuron 44, 161–167 (2004).

    CAS  PubMed  Google Scholar 

  31. Berridge, K. C. & Robinson, T. E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Rev. 28, 309–369 (1998).

    CAS  PubMed  Google Scholar 

  32. Garris, P. A. et al. Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Nature 398, 67–69 (1999).

    CAS  PubMed  Google Scholar 

  33. Pecina, S., Cagniard, B., Berridge, K. C., Aldridge, J. W. & Zhuang, X. Hyperdopaminergic mutant mice have higher 'wanting' but not 'liking' for sweet rewards. J. Neurosci. 23, 9395–9402 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, Z. et al. DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward. Proc. Natl Acad. Sci. USA 101, 12336–12341 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Schultz, W., Apicella, P. & Ljungberg, T. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J. Neurosci. 13, 900–913 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).

    CAS  PubMed  Google Scholar 

  37. Hollerman, J. R. & Schultz, W. Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neurosci. 1, 304–309 (1998).

    CAS  PubMed  Google Scholar 

  38. Sutton, R. S. & Barto, A. G. Reinforcement Learning (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  39. Dayan, P. & Abbott, L. F. Theoretical Neuroscience Ch. 9 (MIT Press, Cambridge, Massachusetts, 2001).

    Google Scholar 

  40. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997). Reviews evidence indicating that midbrain dopamine neurons signal an error in the prediction of future reward (see references 35–37). Proposes that the function of these neurons is particularly well described by a specific class of reinforcement learning algorithms, and shows how a model that uses a dopamine-like signal to implement such an algorithm can learn to predict future rewards and guide action selection.

    CAS  PubMed  Google Scholar 

  41. Schultz, W. Getting formal with dopamine and reward. Neuron 36, 241–263 (2002).

    CAS  PubMed  Google Scholar 

  42. Montague, P. R., Dayan, P., Person, C. & Sejnowski, T. Bee foraging in uncertain environments using predictive Hebbian learning. Nature 377, 725–728 (1995).

    CAS  PubMed  Google Scholar 

  43. Barto, A. G. in Models of Information Processing in the Basal Ganglia (eds Houk, J. C., Davis, J. L. & Beiser, D. G.) 215–232 (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  44. Kawagoe, R., Takikawa, Y. & Hikosaka, O. Expectation of reward modulates cognitive signals in the basal ganglia. Nature Neurosci. 1, 411–416 (1998).

    CAS  PubMed  Google Scholar 

  45. Lauwereyns, J., Watanabe, K., Coe, B. & Hikosaka, O. A neural correlate of response bias in monkey caudate nucleus. Nature 418, 413–417 (2002).

    CAS  PubMed  Google Scholar 

  46. Gold, J. I. Linking reward expectation to behavior in the basal ganglia. Trends Neurosci. 26, 12–14 (2003).

    CAS  PubMed  Google Scholar 

  47. Montague, P. R. & Berns, G. S. Neural economics and the biological substrates of valuation. Neuron 36, 265–284 (2002). Among the first of a series of recent attempts (see also references 41,48,49) to integrate our emerging understanding of the role of dopamine with other reward-related neural signals for the purpose of developing a coherent framework for understanding the neural basis of reward and valuation.

    CAS  PubMed  Google Scholar 

  48. McClure, S. M., Daw, N. D. & Montague, P. R. A computational substrate for incentive salience. Trends Neurosci. 26, 423–428 (2003).

    CAS  PubMed  Google Scholar 

  49. Montague, P. R., Hyman, S. E. & Cohen, J. D. Computational roles for dopamine in behavioral control. Nature 431, 760–767 (2004).

    CAS  PubMed  Google Scholar 

  50. Nakahara, H., Itoh, H., Kawagoe, R., Takikawa, Y. & Hikosaka, O. Dopamine neurons can represent context-dependent prediction error. Neuron 41, 269–280 (2004).

    CAS  PubMed  Google Scholar 

  51. Rolls, E. T., Critchley, H., Mason, R. & Wakeman, E. A. Orbitofrontal cortex neurons: role in olfactory and visual association learning. J. Neurophysiol. 75, 1970–1978 (1996).

    CAS  PubMed  Google Scholar 

  52. Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).

    CAS  PubMed  Google Scholar 

  53. Tremblay, L. & Schultz, W. Modifications of reward expectation-related neuronal activity during learning in primate orbitofrontal cortex. J. Neurophysiol. 83, 1877–1885 (2000).

    CAS  PubMed  Google Scholar 

  54. Watanabe, M. Reward expectancy in primate prefrontal neurons. Nature 382, 629–632 (1996).

    CAS  PubMed  Google Scholar 

  55. Leon, M. I. & Shadlen, M. N. Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron 24, 415–425 (1999).

    CAS  PubMed  Google Scholar 

  56. Kobayashi, S., Lauwereyns, J., Koizumi, M., Sakagami, M. & Hikosaka, O. Influence of reward expectation on visuospatial processing in macaque lateral prefrontal cortex. J. Neurophysiol. 87, 1488–1498 (2002).

    PubMed  Google Scholar 

  57. Wallis, J. D. & Miller, E. K. Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. Eur. J. Neurosci. 18, 2069–2081 (2003).

    PubMed  Google Scholar 

  58. Roesch, M. R. & Olson, C. R. Impact of expected reward on neuronal activity in prefrontal cortex, frontal and supplementary eye fields and premotor cortex. J. Neurophysiol. 90, 1766–1789 (2003).

    PubMed  Google Scholar 

  59. Roesch, M. R. & Olson, C. R. Neuronal activity related to reward value and motivation in primate frontal cortex. Science 304, 307–310 (2004).

    CAS  PubMed  Google Scholar 

  60. Shidara, M. & Richmond, B. J. Anterior cingulate: single neuron signals related to the degree of reward expectancy. Science 296, 1709–1711 (2002).

    PubMed  Google Scholar 

  61. McCoy, A. N., Crowley, J. C., Haghighian, G., Dean, H. L. & Platt, M. L. Saccade reward signals in posterior cingulate cortex. Neuron 40, 1031–1040 (2003).

    CAS  PubMed  Google Scholar 

  62. Ito, S., Stuphorn, V., Brown, J. W. & Schall, J. D. Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science 302, 120–122 (2003).

    CAS  PubMed  Google Scholar 

  63. Fuster, J. in Cerebral Cortex (eds Peter, J. & Jones, E.) 151–177 (Plenum, New York, 1985).

    Google Scholar 

  64. Segraves, M. A. & Goldberg, M. E. Functional properties of corticotectal neurons in the monkey's frontal eye field. J. Neurophysiol. 58, 1387–1419 (1987).

    CAS  PubMed  Google Scholar 

  65. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331–349 (1989).

    CAS  PubMed  Google Scholar 

  66. Romo, R., Brody, C. D., Hernandez, A. & Lemus, L. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 339, 470–473 (1999).

    Google Scholar 

  67. Gnadt, J. W. & Andersen, R. A. Memory related motor planning activity in posterior parietal cortex of macaque. Exp. Brain Res. 70, 216–220 (1988).

    CAS  PubMed  Google Scholar 

  68. Barash, S., Bracewell, R. M., Fogassi, L., Gnadt, J. W. & Andersen, R. A. Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. J. Neurophysiol. 66, 1095–1108 (1991).

    CAS  PubMed  Google Scholar 

  69. Colby, C. L., Duhamel, J. R. & Goldberg, M. E. Visual, presaccadic, and cognitive activation of single neurons in monkey intraparietal area. J. Neurophysiol. 76, 2841–2852 (1996).

    CAS  PubMed  Google Scholar 

  70. Bechara, A., Tranel, D., Damasio, H. & Damasio, A. R. Deciding advantageously before knowing the advantageous strategy. Science 275, 1293–1295 (1997).

    CAS  PubMed  Google Scholar 

  71. Iversen, S. D. & Mishkin, M. Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Exp. Brain Res. 11, 376–386 (1970).

    CAS  PubMed  Google Scholar 

  72. Rolls, E. T. The orbitofrontal cortex and reward. Cereb. Cortex 10, 284–294 (2000).

    CAS  PubMed  Google Scholar 

  73. Damasio, A. R. Descartes' Error: Emotion, Reason, and the Human Brain (Grosset/Putnam, New York, 1994).

    Google Scholar 

  74. Musallam, S., Corneil, B. D., Greger, B., Scherberger, H. & Andersen, R. A. Cognitive control signals for neural prosthetics. Science 305, 258–262 (2004).

    CAS  PubMed  Google Scholar 

  75. Schultz, W. Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioral ecology. Curr. Opin. Neurobiol. 14, 139–147 (2004). An up-to-date survey of the types and locations of reward-related signals that have been documented using neurophysiological techniques.

    CAS  PubMed  Google Scholar 

  76. Barraclough, D. J., Conroy, M. L. & Lee, D. Prefrontal cortex and decision making in a mixed-strategy game. Nature Neurosci. 7, 404–410 (2004).

    CAS  PubMed  Google Scholar 

  77. Sugrue, L. P., Corrado, G. S. & Newsome, W. T. Matching behavior and the representation of value in the parietal cortex. Science 304, 1782–1787 (2004).

    CAS  PubMed  Google Scholar 

  78. Dorris, M. C. & Glimcher, P. W. Activity in posterior parietal cortex is correlated with the relative subjective desirability of action. Neuron 44, 365–378 (2004). References 76–78 describe studies that all used a novel free-choice approach to investigate the behavioural and neural basis of value-based decision making in awake monkeys. These papers are discussed at length in the main text of this review.

    CAS  PubMed  Google Scholar 

  79. Erev, I. & Roth, A. E. Predicting how people play games: reinforcement learning in experimental games with unique, mixed strategy equilibria. Am. Econ. Rev. 88, 848–881 (1998).

    Google Scholar 

  80. Platt, M. L. & Glimcher, P. W. Response fields of intraparietal neurons quantified with multiple saccadic targets. Exp. Brain Res. 121, 65–75 (1998).

    CAS  PubMed  Google Scholar 

  81. Gottlieb, J. P., Kusunoki, M. & Goldberg, M. E. The representation of visual salience in monkey parietal cortex. Nature 391, 481–484 (1998).

    CAS  PubMed  Google Scholar 

  82. Colby, C. L. & Goldberg, M. E. Space and attention in parietal cortex. Annu. Rev. Neurosci. 22, 319–349 (1999).

    CAS  PubMed  Google Scholar 

  83. Glimcher, P. W. The neurobiology of visual-saccadic decision making. Annu. Rev. Neurosci. 26, 133–179 (2003).

    CAS  PubMed  Google Scholar 

  84. Glimcher, P. W., Dorris, M. C. & Bayer, H. M. Physiological utility theory and the neuroeconomics of choice. Games Econ. Behav. (in the press).

  85. Gold, J. I. & Shadlen, M. N. Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron 36, 299–308 (2002).

    CAS  PubMed  Google Scholar 

  86. Gold, J. I. & Shadlen, M. N. Representation of a perceptual decision in developing oculomotor commands. Nature 404, 390–394 (2000).

    CAS  PubMed  Google Scholar 

  87. Shadlen, M. N. Pursuing commitments. Nature Neurosci. 5, 819–821 (2002).

    CAS  PubMed  Google Scholar 

  88. Horwitz, G. D., Batista, A. P. & Newsome, W. T. Representation of an abstract perceptual decision in macaque superior colliculus. J. Neurophysiol. 91, 2281–2296 (2004).

    PubMed  Google Scholar 

  89. Rizzolatti, G. & Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004).

    CAS  PubMed  Google Scholar 

  90. Maunsell, J. H. Neuronal representations of cognitive state: reward of attention? Trends Cogn. Sci. 8, 261–265 (2004).

    PubMed  Google Scholar 

  91. Koch, C. & Ullman, S. Shifts in selective visual attention: toward the underlying neural circuitry. Hum. Neurobiol. 4, 219–227 (1985).

    CAS  PubMed  Google Scholar 

  92. Itti, L. & Koch, C. Computational modeling of visual attention. Nature Rev. Neurosci. 2, 194–203 (2001).

    CAS  Google Scholar 

  93. Kahneman, D. in Les Prix Nobel 2002 (ed. Frangsmyr, T.) 416–499 (2002). A clear summary of the pioneering work of Kahneman and Tversky on the psychology of valuation and choice, which emphasizes the importance of intuitive over deliberative decision making and challenges basic economic assumptions of rationality.

    Google Scholar 

  94. Dayan, P. & Balleine, B. W. Reward, motivation, and reinforcement learning. Neuron 36, 285–298 (2002).

    CAS  PubMed  Google Scholar 

  95. Dickinson, A. in Animal Learning and Cognition (ed. Mackintosh, N. J.) 45–79 (Academic, Orlando, 1994).

    Google Scholar 

  96. Nevin, J. A. Analyzing Thorndike's law of effect: the question of stimulus-response bonds. J. Exp. Anal. Behav. 72, 447–450 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Colwill, R. M. & Rescorla, R. A. Instrumental responding remains sensitive to reinforcer devaluation after extensive training. J. Exp. Psychology Anim. Behav. Process. 11, 520–536 (1985).

    Google Scholar 

  98. Nash, J. F. Equilibrium points in n-person games. Proc. Natl Acad. Sci. USA 36, 48–49 (1950).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Holt, C. A. & Roth, A. E. The Nash equilibrium: a perspective. Proc. Natl Acad. Sci. USA 101, 3999–4002 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Herrnstein, R. J. Relative and absolute strength of response as a function of frequency of reinforcement. J. Exp. Anal. Behav. 4, 267–272 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Stephens, D. W. & Krebs, J. R. Foraging Theory (Princeton Univ. Press, Princeton, New Jersey, 1986).

    Google Scholar 

  102. Baum, W. M. Optimization and the matching law as accounts of instrumental behavior. J. Exp. Anal. Behav. 36, 387–401 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gallistel, C. R. & Gibbon, J. Time, rate and conditioning. Psychol. Rev. 107, 289–344 (2000). A refreshing, if controversial, look at the subject of operant choice. Argues for distinct decision mechanisms in choice situations that involve opting for the single best alternative, compared with those settings in which an animal must decide in what proportion to allocate its time or responses between alternatives.

    CAS  PubMed  Google Scholar 

  104. Heyman, G. M. A Markov model description of changeover probabilities on concurrent variable-interval schedules. J. Exp. Anal. Behav. 31, 41–51 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics (Wiley, New York, 1966). A seminal work that contributed the key theoretical foundation to research on perceptual decision making.

    Google Scholar 

  106. Van Essen, D. C. in The Visual Neurosciences (eds Chalupa, L. & Werner, J. S.) 507–521 (MIT Press, Cambridge, Massachusetts, 2004).

    Google Scholar 

  107. Van Essen, D. C. et al. An integrated software suite for surface-based analyses of cerebral cortex. J. Am. Med. Inform. Assoc. 8, 443–459 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank several colleagues who provided critical comments and suggestions during the preparation of this review: S. Baccus, C. Fiorillo, B. Linkenhoker, J. Reppas, A. Rorie and M. Shadlen. We also thank R. Gallistel of Rutgers University who taught us a great deal about matching behaviour and helped us design the oculomotor matching task used in our own studies. L.P.S. was supported by a Stanford Graduate Fellowship and by the Medical Scientist Training Program at the Johns Hopkins University School of Medicine. G.S.C. was also supported by a Stanford Graduate Fellowship and is currently supported by a National Research Service Award predoctoral fellowship from the National Institute of Mental Health. W.T.N. is an Investigator of the Howard Hughes Medical Institute and is also support by the National Eye Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leo P. Sugrue or William T. Newsome.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

SumsDB

CARET and Surface-Based Atlases

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugrue, L., Corrado, G. & Newsome, W. Choosing the greater of two goods: neural currencies for valuation and decision making. Nat Rev Neurosci 6, 363–375 (2005). https://doi.org/10.1038/nrn1666

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1666

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing