Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The neural basis of visual body perception

Key Points

  • There is now substantial evidence from various techniques for body-selective neural mechanisms in humans and non-human primates. The neural signature of body processing generally resembles that of face processing, but there are also important differences.

  • In the monkey inferotemporal cortex, there are different cells that respond selectively to visual images of isolated body parts, to whole bodies and to actions involving bodies. Functional MRI (fMRI) in monkeys has revealed that these cells are located near cells that respond selectively to images of faces.

  • Intracranial and scalp measurements of electrical activity in humans have revealed body-selective waveforms that are similar to those elicited by faces, but that originate in different brain areas.

  • fMRI studies in humans have provided evidence for two body-selective brain areas in the visual cortex: the extrastriate body area (EBA) and the fusiform body area (FBA). These areas respond selectively to (headless) bodies and body parts, even when the bodies are represented schematically. They can be dissociated from overlapping areas with high-resolution fMRI or by taking into account patterns of activation across voxels.

  • Transcranial magnetic stimulation studies have shown that the EBA is actively involved in the successful processing of body parts but not of object parts or face parts.

  • Some researchers have suggested that the EBA is involved in the representation of one's own body and that it contributes to the 'body schema'. However, the EBA does not distinguish between images of one's own body parts and those of others, and shows a modest preference for allocentric views of bodies and body parts.

  • Both the EBA and the FBA are modulated by the emotional significance of body postures and body movements. This modulation is related to concurrent activation in the amygdala.

  • The EBA can be dissociated from other brain areas involved in perceiving body actions, such as those comprising the 'mirror neuron' system. In contrast to these other areas, the EBA does not seem to be specifically involved in the representation or discrimination of body actions.

Abstract

The human body, like the human face, is a rich source of socially relevant information about other individuals. Evidence from studies of both humans and non-human primates points to focal regions of the higher-level visual cortex that are specialized for the visual perception of the body. These body-selective regions, which can be dissociated from regions involved in face perception, have been implicated in the perception of the self and the 'body schema', the perception of others' emotions and the understanding of actions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key findings from non-human primates.
Figure 2: Key findings from intracranial recordings in humans with epilepsy.
Figure 3: Event-related potentials reveal similar, but distinct, responses to faces and bodies.
Figure 4: Body- and face-selective regions of the human occipitotemporal cortex, as revealed by functional MRI.
Figure 5: Disentangling the regions of the occipitotemporal cortex.
Figure 6: Transcranial magnetic stimulation studies of the involvement of the extrastriate body area in body-perception tasks.

Similar content being viewed by others

References

  1. Farah, M. J. Is face recognition 'special'? Evidence from neuropsychology. Behav. Brain Res. 76, 181–189 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Haxby, J. V., Hoffman, E. A. & Gobbini, M. I. The distributed human neural system for face perception. Trends Cogn. Sci. 4, 223–233 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Kanwisher, N. Domain specificity in face perception. Nature Neurosci. 3, 759–763 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Slaughter, V., Stone, V. E. & Reed, C. Perception of faces and bodies — similar or different? Curr. Dir. Psychol. Sci. 13, 219–223 (2004).

    Article  Google Scholar 

  5. Downing, P. E., Bray, D., Rogers, J. & Childs, C. Bodies capture attention when nothing is expected. Cognition 93, B27–B38 (2004).

    Article  PubMed  Google Scholar 

  6. Mack, A. & Rock, I. Inattentional Blindness (MIT Press, London, 1998).

    Book  Google Scholar 

  7. Tamietto, M., Geminiani, G., Genero, R. & de Gelder, B. Seeing fearful body language overcomes attentional deficits in patients with neglect. J. Cogn. Neurosci. 19, 445–454 (2007).

    Article  PubMed  Google Scholar 

  8. Rizzolatti, G. & Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Rizzolatti, G., Fogassi, L. & Gallese, V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Rev. Neurosci. 2, 661–670 (2001).

    Article  CAS  Google Scholar 

  10. Blake, R. & Shiffrar, M. Perception of human motion. Annu. Rev. Psychol. 58, 47–73 (2006).

    Article  Google Scholar 

  11. Puce, A. & Perrett, D. Electrophysiology and brain imaging of biological motion. Phil. Trans. R. Soc. Lond. Biol. Sci 358, 435–445 (2003).

    Article  Google Scholar 

  12. Haggard, P. & Wolpert, D. in Higher-order Motor Disorders: From Neuroanatomy and Neurobiology to Clinical Neurology (eds Freund, H.-J., Jeannerod, M., Hallet, M. & Leiguarda, R.) 261–271 (Oxford Univ. Press, Oxford, UK, 2005).

    Google Scholar 

  13. de Gelder, B. Towards the neurobiology of emotional body language. Nature Rev. Neurosci. 7, 242–249 (2006).

    Article  CAS  Google Scholar 

  14. Kiani, R., Esteky, H., Mirpour, K. & Tanaka, K. Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. J. Neurophysiol. 97, 4296–4309 (2007).

    Article  PubMed  Google Scholar 

  15. Desimone, R., Albright, T. D., Gross, C. G. & Bruce, C. Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4, 2051–2062 (1984). Provides a detailed investigation of hand-selective cells in the monkey inferior temporal cortex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gross, C. G., Rocha-Miranda, C. E. & Bender, D. B. Visual properties of neurons in inferotemporal cortex of the Macaque. J. Neurophysiol. 35, 96–111 (1972).

    Article  CAS  PubMed  Google Scholar 

  17. Gross, C. G., Bender, D. B. & Rocha-Miranda, C. E. Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science 166, 1303–1306 (1969). The first report of a cell in the monkey inferior temporal cortex that responds most strongly to hands.

    Article  CAS  PubMed  Google Scholar 

  18. Wachsmuth, E., Oram, M. W. & Perrett, D. I. Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque. Cereb. Cortex 4, 509–522 (1994). Reports cells in the monkey STS that respond to whole bodies without heads.

    Article  CAS  PubMed  Google Scholar 

  19. Barraclough, N. E., Xiao, D., Oram, M. W. & Perrett, D. I. The sensitivity of primate STS neurons to walking sequences and to the degree of articulation in static images. Prog. Brain Res. 154, 135–148 (2006).

    Article  PubMed  Google Scholar 

  20. Jellema, T. & Perrett, D. I. Perceptual history influences neural responses to face and body postures. J. Cogn. Neurosci. 15, 961–971 (2003).

    Article  PubMed  Google Scholar 

  21. Jellema, T. & Perrett, D. I. Cells in monkey STS responsive to articulated body motions and consequent static posture: a case of implied motion? Neuropsychologia 41, 1728–1737 (2003).

    Article  PubMed  Google Scholar 

  22. Oram, M. W. & Perrett, D. I. Responses of anterior superior temporal polysensory (STPa) neurons to biological motion stimuli. J. Cogn. Neurosci. 6, 99–116 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Perrett, D. I. et al. Visual analysis of body movements by neurones in the temporal cortex of the macaque monkey: a preliminary report. Behav. Brain Res. 16, 153–170 (1985). Provides evidence for the existence of cells in the monkey STS that respond to particular body movements.

    Article  CAS  PubMed  Google Scholar 

  24. Pinsk, M. A., DeSimone, K., Moore, T., Gross, C. G. & Kastner, S. Representations of faces and body parts in macaque temporal cortex: a functional MRI study. Proc. Natl Acad. Sci. USA 102, 6996–7001 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsao, D. Y., Freiwald, W. A., Knutsen, T. A., Mandeville, J. B. & Tootell, R. B. Faces and objects in macaque cerebral cortex. Nature Neurosci. 6, 989–995 (2003). Reports fMRI evidence for a body-selective area in the monkey STS that neighbours a face-selective area.

    Article  CAS  PubMed  Google Scholar 

  26. Tsao, D. Y., Freiwald, W. A., Tootell, R. B. & Livingstone, M. S. A cortical region consisting entirely of face-selective cells. Science 311, 670–674 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McCarthy, G., Puce, A., Belger, A. & Allison, T. Electrophysiological studies of human face perception. II: Response properties of face-specific potentials generated in occipitotemporal cortex. Cereb. Cortex 9, 431–444 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Downing, P. E., Jiang, Y., Shuman, M. & Kanwisher, N. A cortical area selective for visual processing of the human body. Science 293, 2470–2473 (2001). Reports the discovery with fMRI of a body-selective area in the human extrastriate visual cortex: the EBA.

    Article  CAS  PubMed  Google Scholar 

  29. Pourtois, G., Peelen, M., Spinelli, L., Seeck, M. & Vuilleumier, P. Direct intracranial recording of body-selective responses in human extrastriate visual cortex. Neuropsychologia 45, 2621–2625 (2007). Reports body-selective intracranial event-related potentials in the human lateral occipitotemporal cortex, at the approximate location of the EBA.

    Article  PubMed  Google Scholar 

  30. Herrmann, M. J., Ehlis, A. C., Muehlberger, A. & Fallgatter, A. J. Source localization of early stages of face processing. Brain Topogr. 18, 77–85 (2005).

    Article  PubMed  Google Scholar 

  31. Liu, J., Harris, A. & Kanwisher, N. Stages of processing in face perception: an MEG study. Nature Neurosci. 5, 910–916 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Pegna, A. J., Khateb, A., Michel, C. M. & Landis, T. Visual recognition of faces, objects, and words using degraded stimuli: where and when it occurs. Hum. Brain Mapp. 22, 300–311 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Thierry, G., Martin, C. D., Downing, P. & Pegna, A. J. Controlling for interstimulus perceptual variance abolishes N170 face selectivity. Nature Neurosci. 10, 505–511 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Bentin, S., Allison, T., Puce, A., Perez, E. & McCarthy, G. Electrophysiological studies of face perception in humans. J. Cogn. Neurosci. 8, 551–565 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Eimer, M. & McCarthy, R. A. Prosopagnosia and structural encoding of faces: evidence from event-related potentials. Neuroreport 10, 255–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Itier, R. J. & Taylor, M. J. N170 or N1? Spatiotemporal differences between object and face processing using ERPs. Cereb. Cortex 14, 132–142 (2004).

    Article  PubMed  Google Scholar 

  37. Jeffreys, D. Event-related potential studies of face and object processing. Vis. Cogn. 3, 1–38 (1996).

    Article  Google Scholar 

  38. Schweinberger, S., Pfutze, E.-M. & Sommer, W. Repetition priming and associative priming of face recognition: evidence from event-related potentials. J. Exp. Psychol. Learn. Mem. Cogn. 21, 722–736 (1995).

    Article  Google Scholar 

  39. Tanaka, J. W., Curran, T., Porterfield, A. L. & Collins, D. Activation of preexisting and acquired face representations: the N250 event-related potential as an index of face familiarity. J. Cogn. Neurosci. 18, 1488–1497 (2006).

    Article  PubMed  Google Scholar 

  40. Rossion, B., Curran, T. & Gauthier, I. A defense of the subordinate-level expertise account for the N170 component. Cognition 85, 189–196 (2002).

    Article  PubMed  Google Scholar 

  41. Kovács, G. et al. Electrophysiological correlates of visual adaptation to faces and body parts in humans. Cereb. Cortex 16, 742–753 (2005).

    Article  PubMed  Google Scholar 

  42. Mouchetant-Rostaing, Y., Giard, M. H., Delpuech, C., Echallier, J. F. & Pernier, J. Early signs of visual categorization for biological and non-biological stimuli in humans. Neuroreport 11, 2521–2525 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Stekelenburg, J. J. & de Gelder, B. The neural correlates of perceiving human bodies: an ERP study on the body-inversion effect. Neuroreport 15, 777–780 (2004).

    Article  PubMed  Google Scholar 

  44. Reed, C. L., Stone, V. E., Grubb, J. D. & McGoldrick, J. E. Turning configural processing upside down: part and whole body postures. J. Exp. Psychol. Hum. Percept. Perform. 32, 73–87 (2006).

    Article  PubMed  Google Scholar 

  45. Reed, C. L., Stone, V. E., Bozova, S. & Tanaka, J. The body-inversion effect. Psychol. Sci. 14, 302–308 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Yin, R. K. Looking at upside-down faces. J. Exp. Psychol. 81, 141–145 (1969).

    Article  Google Scholar 

  47. Gliga, T. & Dehaene-Lambertz, G. Structural encoding of body and face in human infants and adults. J. Cogn. Neurosci. 17, 1328–1340 (2005). An ERP study investigating body and face processing that shows similar waveforms for static bodies and faces in both 3-month-old infants and adults.

    Article  PubMed  Google Scholar 

  48. Thierry, G. et al. An event-related potential component sensitive to images of the human body. Neuroimage 32, 871–879 (2006). Provides evidence for a body-selective negativity in the ERP that peaks 20 ms later than the face-selective N170.

    Article  PubMed  Google Scholar 

  49. Johansson, G. Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14, 201–211 (1973).

    Article  Google Scholar 

  50. Bertenthal, B. I., Proffitt, D. R. & Kramer, S. J. Perception of biomechanical motions by infants: implementation of various processing constraints. J. Exp. Psychol. Hum. Percept. Perform. 13, 577–585 (1987).

    Article  CAS  PubMed  Google Scholar 

  51. Fox, R. & McDaniel, C. The perception of biological motion by human infants. Science 218, 486–487 (1982).

    Article  CAS  PubMed  Google Scholar 

  52. Hirai, M. & Hiraki, K. An event-related potentials study of biological motion perception in human infants. Brain Res. Cogn. Brain Res. 22, 301–304 (2005).

    Article  PubMed  Google Scholar 

  53. Reid, V. M., Hoehl, S. & Striano, T. The perception of biological motion by infants: an event-related potential study. Neurosci. Lett. 395, 211–214 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Slaughter, V. & Heron, M. Origins and early development of human body knowledge. Monogr. Soc. Res. Child Dev. 69, vii1–vii102 (2004).

    Article  Google Scholar 

  55. Striano, T. & Reid, V. M. Social cognition in the first year. Trends Cogn. Sci. 10, 471–476 (2006).

    Article  PubMed  Google Scholar 

  56. Downing, P. E., Chan, A. W., Peelen, M. V., Dodds, C. M. & Kanwisher, N. Domain specificity in visual cortex. Cereb. Cortex 16, 1453–1461 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Peelen, M. V. & Downing, P. E. Within-subject reproducibility of category-specific visual activation with functional MRI. Hum. Brain Mapp. 25, 402–408 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Spiridon, M., Fischl, B. & Kanwisher, N. Location and spatial profile of category-specific regions in human extrastriate cortex. Hum. Brain Mapp. 27, 77–89 (2005).

    Article  PubMed Central  Google Scholar 

  59. Downing, P. E., Wiggett, A. J. & Peelen, M. V. Functional magnetic resonance imaging investigation of overlapping lateral occipitotemporal activations using multi-voxel pattern analysis. J. Neurosci. 27, 226–233 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Peelen, M. V., Wiggett, A. J. & Downing, P. E. Patterns of fMRI activity dissociate overlapping functional brain areas that respond to biological motion. Neuron 49, 815–822 (2006). Shows that MVPA of fMRI data can dissociate body-selective from overlapping motion- and face-selective areas.

    Article  CAS  PubMed  Google Scholar 

  61. Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Haynes, J. D. & Rees, G. Decoding mental states from brain activity in humans. Nature Rev. Neurosci. 7, 523–534 (2006).

    Article  CAS  Google Scholar 

  63. Norman, K. A., Polyn, S. M., Detre, G. J. & Haxby, J. V. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10, 424–430 (2006).

    Article  PubMed  Google Scholar 

  64. Peelen, M. V. & Downing, P. E. Using multi-voxel pattern analysis of fMRI data to interpret overlapping functional activations. Trends Cogn. Sci. 11, 4–5 (2007).

    Article  PubMed  Google Scholar 

  65. Kamitani, Y. & Tong, F. Decoding the visual and subjective contents of the human brain. Nature Neurosci. 8, 679–685 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Peelen, M. V. & Downing, P. E. Selectivity for the human body in the fusiform gyrus. J. Neurophysiol. 93, 603–608 (2005). Reports the discovery with fMRI of a body-selective area in the fusiform gyrus: the FBA.

    Article  PubMed  Google Scholar 

  67. Schwarzlose, R. F., Baker, C. I. & Kanwisher, N. Separate face and body selectivity on the fusiform gyrus. J. Neurosci. 25, 11055–11059 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cox, D., Meyers, E. & Sinha, P. Contextually evoked object-specific responses in human visual cortex. Science 304, 115–117 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Grossman, E. D., Blake, R. & Kim, C. Y. Learning to see biological motion: brain activity parallels behavior. J. Cogn. Neurosci. 16, 1669–1679 (2004).

    Article  PubMed  Google Scholar 

  71. Grossman, E. D. & Blake, R. Brain areas active during visual perception of biological motion. Neuron 35, 1167–1175 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Michels, L., Lappe, M. & Vaina, L. M. Visual areas involved in the perception of human movement from dynamic form analysis. Neuroreport 16, 1037–1041 (2005).

    Article  PubMed  Google Scholar 

  73. Peuskens, H., Vanrie, J., Verfaillie, K. & Orban, G. A. Specificity of regions processing biological motion. Eur. J. Neurosci. 21, 2864–2875 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Santi, A., Servos, P., Vatikiotis-Bateson, E., Kuratate, T. & Munhall, K. Perceiving biological motion: dissociating visible speech from walking. J. Cogn. Neurosci. 15, 800–809 (2003).

    Article  PubMed  Google Scholar 

  75. Saygin, A. P., Wilson, S. M., Hagler, D. J. J., Bates, E. & Sereno, M. I. Point-light biological motion perception activates human premotor cortex. J. Neurosci. 24, 6181–6188 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Allison, T., Puce, A. & McCarthy, G. Social perception from visual cues: role of the STS region. Trends Cogn. Sci. 4, 267–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Beauchamp, M. S., Lee, K. E., Haxby, J. V. & Martin, A. Parallel visual motion processing streams for manipulable objects and human movements. Neuron 34, 149–159 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Bonda, E., Petrides, M., Ostry, D. & Evans, A. Specific involvement of human parietal systems and the amygdala in the perception of biological motion. J. Neurosci. 16, 3737–3744 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Taylor, J., Wiggett, A. & Downing, P. fMRI analysis of body and body part representations in the extrastriate and fusiform body areas. J. Neurophysiol. 27 Jun 2007 (doi:10.1152/jn.00012.2007).

  80. Pascual-Leone, A., Walsh, V. & Rothwell, J. Transcranial magnetic stimulation in cognitive neuroscience — virtual lesion, chronometry, and functional connectivity. Curr. Opin. Neurobiol. 10, 232–237 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Rafal, R. Virtual neurology. Nature Neurosci 4, 862–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Urgesi, C., Berlucchi, G. & Aglioti, S. M. Magnetic stimulation of extrastriate body area impairs visual processing of nonfacial body parts. Curr. Biol. 14, 2130–2134 (2004). Provides TMS evidence for a causal role for the EBA in body perception.

    Article  CAS  PubMed  Google Scholar 

  83. Zihl, J., von Cramon, D. & Mai, N. Selective disturbance of movement vision after bilateral brain damage. Brain 106, 313–340 (1983).

    Article  PubMed  Google Scholar 

  84. Zihl, J., von Cramon, D., Mai, N. & Schmid, C. Disturbance of movement vision after bilateral posterior brain damage. Further evidence and follow up observations. Brain 114, 2235–2252 (1991).

    Article  PubMed  Google Scholar 

  85. Schwoebel, J. & Coslett, H. B. Evidence for multiple, distinct representations of the human body. J. Cogn. Neurosci. 17, 543–553 (2005). A large-scale neuropsychological investigation that suggests a triple dissociation among types of body representation.

    Article  PubMed  Google Scholar 

  86. Barton, J. J. Disorders of face perception and recognition. Neurol. Clin. 21, 521–548 (2003).

    Article  PubMed  Google Scholar 

  87. Marotta, J. J., Genovese, C. R. & Behrmann, M. A functional MRI study of face recognition in patients with prosopagnosia. Neuroreport 12, 1581–1587 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Steeves, J. K. et al. The fusiform face area is not sufficient for face recognition: evidence from a patient with dense prosopagnosia and no occipital face area. Neuropsychologia 44, 594–609 (2005).

    Article  PubMed  Google Scholar 

  89. Sorger, B., Goebel, R., Schiltz, C. & Rossion, B. Understanding the functional neuroanatomy of acquired prosopagnosia. Neuroimage 35, 836–852 (2007).

    Article  PubMed  Google Scholar 

  90. Schiltz, C. et al. Impaired face discrimination in acquired prosopagnosia is associated with abnormal response to individual faces in the right middle fusiform gyrus. Cereb. Cortex 16, 574–586 (2005).

    Article  PubMed  Google Scholar 

  91. Hadjikhani, N. & de Gelder, B. Neural basis of prosopagnosia: an fMRI study. Hum. Brain Mapp. 16, 176–182 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Duchaine, B., Yovel, G., Butterworth, B. & Nakayama, K. Prosopagnosia as an impairment to face-specific mechanisms: elimination of the alternative hypotheses in a developmental case. Cogn. Neuropsychol. 23, 714–747 (2006).

    Article  PubMed  Google Scholar 

  93. Head, H. & Holmes, G. Sensory disturbances from cerebral lesions. Brain 34, 102–254 (1911).

    Article  Google Scholar 

  94. Astafiev, S. V., Stanley, C. M., Shulman, G. L. & Corbetta, M. Extrastriate body area in human occipital cortex responds to the performance of motor actions. Nature Neurosci. 7, 542–548 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. David, N. et al. The extrastriate cortex distinguishes between the consequences of one's own and others' behavior. Neuroimage 36, 1004–1014 (2007).

    Article  PubMed  Google Scholar 

  96. Jeannerod, M. Visual and action cues contribute to the self–other distinction. Nature Neurosci. 7, 422–423 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Peelen, M. V. & Downing, P. E. Is the extrastriate body area involved in motor actions? Nature Neurosci. 8, 125 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Ilg, U. J. & Schumann, S. Primate area MST-l is involved in the generation of goal-directed eye and hand movements. J. Neurophysiol. 97, 761–771 (2007).

    Article  PubMed  Google Scholar 

  99. Oreja-Guevara, C. et al. The role of V5 (hMT+) in visually guided hand movements: an fMRI study. Eur. J. Neurosci. 19, 3113–3120 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Schenk, T., Mai, N., Ditterich, J. & Zihl, J. Can a motion-blind patient reach for moving objects? Eur. J. Neurosci. 12, 3351–3360 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Botvinick, M. & Cohen, J. Rubber hands 'feel' touch that eyes see. Nature 391, 756 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Ehrsson, H. H., Holmes, N. P. & Passingham, R. E. Touching a rubber hand: feeling of body ownership is associated with activity in multisensory brain areas. J. Neurosci. 25, 10564–10573 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ehrsson, H. H., Spence, C. & Passingham, R. E. That's my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science 305, 875–877 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Tsakiris, M., Hesse, M. D., Boy, C., Haggard, P. & Fink, G. R. Neural signatures of body ownership: a sensory network for bodily self-consciousness. Cereb. Cortex 30 Nov 2006 (doi:10.1093/cercor/bhl131).

  105. Chan, A. W., Peelen, M. V. & Downing, P. E. The effect of viewpoint on body representation in the extrastriate body area. Neuroreport 15, 2407–2410 (2004).

    Article  PubMed  Google Scholar 

  106. Saxe, R., Jamal, N. & Powell, L. My body or yours? The effect of visual perspective on cortical body representations. Cereb. Cortex 16, 178–182 (2005).

    Article  PubMed  Google Scholar 

  107. Vuilleumier, P. & Pourtois, G. Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia 45, 174–194 (2007).

    Article  PubMed  Google Scholar 

  108. Calder, A. J., Lawrence, A. D. & Young, A. W. Neuropsychology of fear and loathing. Nature Rev. Neurosci. 2, 352–363 (2001).

    Article  CAS  Google Scholar 

  109. Vuilleumier, P. & Schwartz, S. Emotional facial expressions capture attention. Neurology 56, 153–158 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. de Gelder, B. & Hadjikhani, N. Non-conscious recognition of emotional body language. Neuroreport 17, 583–586 (2006).

    Article  PubMed  Google Scholar 

  111. Grieve, K. L., Acuna, C. & Cudeiro, J. The primate pulvinar nuclei: vision and action. Trends Neurosci. 23, 35–39 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Johnson, M. H. Subcortical face processing. Nature Rev. Neurosci. 6, 766–774 (2005).

    Article  CAS  Google Scholar 

  113. Vuilleumier, P. How brains beware: neural mechanisms of emotional attention. Trends Cogn. Sci. 9, 585–594 (2005).

    Article  PubMed  Google Scholar 

  114. Ward, R., Calder, A. J., Parker, M. & Arend, I. Emotion recognition following human pulvinar damage. Neuropsychologia 45, 1973–1978 (2007).

    Article  PubMed  Google Scholar 

  115. Hadjikhani, N. & de Gelder, B. Seeing fearful body expressions activates the fusiform cortex and amygdala. Curr. Biol. 13, 2201–2205 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Grosbras, M. H. & Paus, T. Brain networks involved in viewing angry hands or faces. Cereb. Cortex 16, 1087–1096 (2006).

    Article  PubMed  Google Scholar 

  117. Grezes, J., Pichon, S. & de Gelder, B. Perceiving fear in dynamic body expressions. Neuroimage 35, 959–967 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. de Gelder, B., Snyder, J., Greve, D., Gerard, G. & Hadjikhani, N. Fear fosters flight: a mechanism for fear contagion when perceiving emotion expressed by a whole body. Proc. Natl Acad. Sci. USA 101, 16701–16706 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Peelen, M., Atkinson, A., Andersson, F. & Vuilleumier, P. Emotional modulation of body-selective visual areas. Soc. Cogn. Affect. Neurosci. (in the press).

  120. Pessoa, L., McKenna, M., Gutierrez, E. & Ungerleider, L. G. Neural processing of emotional faces requires attention. Proc. Natl Acad. Sci. USA 99, 11458–11463 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Vuilleumier, P., Armony, J. L., Driver, J. & Dolan, R. J. Effects of attention and emotion on face processing in the human brain: an event-related fMRI study. Neuron 30, 829–841 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Winston, J. S., Vuilleumier, P. & Dolan, R. J. Effects of low-spatial frequency components of fearful faces on fusiform cortex activity. Curr. Biol. 13, 1824–1829 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Cheng, Y., Meltzoff, A. N. & Decety, J. Motivation modulates the activity of the human mirror-neuron system. Cereb. Cortex 31 Oct 2006 (doi:10.1093/cercor/bhl107).

  124. Ponseti, J. et al. A functional endophenotype for sexual orientation in humans. Neuroimage 33, 825–833 (2006).

    Article  PubMed  Google Scholar 

  125. Pichon, S., de Gelder, B. & Grezes, J. Emotional modulation of visual and motor areas by dynamic body expressions of anger. Soc. Neurosci. 25 May 2007 (doi:10.1080/17470910701394368).

  126. Meeren, H. K., van Heijnsbergen, C. C. & de Gelder, B. Rapid perceptual integration of facial expression and emotional body language. Proc. Natl Acad. Sci. USA 102, 16518–16523 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Grossman, E. et al. Brain areas involved in perception of biological motion. J. Cogn. Neurosci. 12, 711–720 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Buccino, G. et al. Neural circuits underlying imitation learning of hand actions: an event-related fMRI study. Neuron 42, 323–334 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Grafton, S. T., Arbib, M. A., Fadiga, L. & Rizzolatti, G. Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Exp. Brain Res. 112, 103–111 (1996).

    Article  CAS  PubMed  Google Scholar 

  130. Iacoboni, M. et al. Cortical mechanisms of human imitation. Science 286, 2526–2528 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Johnson-Frey, S. H. et al. Actions or hand–object interactions? Human inferior frontal cortex and action observation. Neuron 39, 1053–1058 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V. & Rizzolatti, G. Understanding motor events: a neurophysiological study. Exp. Brain Res. 91, 176–180 (1992).

    Article  CAS  PubMed  Google Scholar 

  133. Iacoboni, M. & Dapretto, M. The mirror neuron system and the consequences of its dysfunction. Nature Rev. Neurosci. 7, 942–951 (2006).

    Article  CAS  Google Scholar 

  134. Urgesi, C., Candidi, M., Ionta, S. & Aglioti, S. M. Representation of body identity and body actions in extrastriate body area and ventral premotor cortex. Nature Neurosci. 10, 30–31 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Downing, P., Peelen, M., Wiggett, A. & Tew, B. The role of the extrastriate body area in action perception. Soc. Neurosci. 1, 52–62 (2006).

    Article  PubMed  Google Scholar 

  136. Jackson, P. L., Meltzoff, A. N. & Decety, J. Neural circuits involved in imitation and perspective-taking. Neuroimage 31, 429–439 (2006).

    Article  PubMed  Google Scholar 

  137. Giese, M. A. & Poggio, T. Neural mechanisms for the recognition of biological movements. Nature Rev. Neurosci. 4, 179–192 (2003).

    Article  CAS  Google Scholar 

  138. Morris, J. P., Pelphrey, K. A. & McCarthy, G. Occipitotemporal activation evoked by the perception of human bodies is modulated by the presence or absence of the face. Neuropsychologia 44, 1919–1927 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Hoffman, E. A. & Haxby, J. V. Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nature Neurosci. 3, 80–84 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Loffler, G., Yourganov, G., Wilkinson, F. & Wilson, H. R. fMRI evidence for the neural representation of faces. Nature Neurosci. 8, 1386–1390 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Rotshtein, P., Henson, R. N., Treves, A., Driver, J. & Dolan, R. J. Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain. Nature Neurosci. 8, 107–113 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Kable, J. W. & Chatterjee, A. Specificity of action representations in the lateral occipitotemporal cortex. J. Cogn. Neurosci. 18, 1498–1517 (2006).

    Article  PubMed  Google Scholar 

  143. Grill-Spector, K. & Malach, R. The human visual cortex. Annu. Rev. Neurosci. 27, 649–677 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Grill-Spector, K., Knouf, N. & Kanwisher, N. The fusiform face area subserves face perception, not generic within-category identification. Nature Neurosci. 7, 555–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Haynes, J. D. & Rees, G. Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nature Neurosci. 8, 686–691 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Kamitani, Y. & Tong, F. Decoding seen and attended motion directions from activity in the human visual cortex. Curr. Biol. 16, 1096–1102 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Haynes, J. D. et al. Reading hidden intentions in the human brain. Curr. Biol. 17, 323–328 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Kriegeskorte, N., Goebel, R. & Bandettini, P. Information-based functional brain mapping. Proc. Natl Acad. Sci. USA 103, 3863–3868 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Fadiga, L., Craighero, L. & Olivier, E. Human motor cortex excitability during the perception of others' action. Curr. Opin. Neurobiol. 15, 213–218 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Grossman, E. D., Battelli, L. & Pascual-Leone, A. Repetitive TMS over posterior STS disrupts perception of biological motion. Vision Res. 45, 2847–2853 (2005).

    Article  PubMed  Google Scholar 

  151. Ruff, C. C. et al. Concurrent TMS–fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr. Biol. 16, 1479–1488 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Bledowski, C. et al. Localizing P300 generators in visual target and distractor processing: a combined event-related potential and functional magnetic resonance imaging study. J. Neurosci. 24, 9353–9360 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Brennan, P. A. & Kendrick, K. M. Mammalian social odours: attraction and individual recognition. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 2061–2078 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tate, A. J., Fischer, H., Leigh, A. E. & Kendrick, K. M. Behavioural and neurophysiological evidence for face identity and face emotion processing in animals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 2155–2172 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Krubitzer, L. & Kaas, J. The evolution of the neocortex in mammals: how is phenotypic diversity generated? Curr. Opin. Neurobiol. 15, 444–453 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Cox, D. D. & Savoy, R. L. Functional magnetic resonance imaging (fMRI) 'brain reading': detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 19, 261–270 (2003).

    Article  PubMed  Google Scholar 

  157. Polyn, S. M., Natu, V. S., Cohen, J. D. & Norman, K. A. Category-specific cortical activity precedes retrieval during memory search. Science 310, 1963–1966 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Haynes, J. D. & Rees, G. Predicting the stream of consciousness from activity in human visual cortex. Curr. Biol. 15, 1301–1307 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Tarr, M. J. & Gauthier, I. FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise. Nature Neurosci. 3, 764–769 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank G. Thierry for helpful comments, and the Biotechnology and Biological Sciences Research Council and the Wales Institute of Cognitive Neuroscience for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. Downing.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Paul E. Downing's homepage

Glossary

Transcranial magnetic stimulation

(TMS). A technique that delivers brief, strong electric pulses through a coil placed on the scalp. These create a local magnetic field, which in turn induces a current in the surface of the cortex that temporarily disrupts local neural activity.

Stimulus-evoked potential

An electrical or magnetic potential, resulting from coordinated neural activity, that is time-locked to the onset of a stimulus.

Configural processing

The recognition of an object by the specific spatial relationships among (or configuration of) its parts. Sometimes referred to as holistic processing.

Source localization

A technique used in electroencephalogram (EEG) and magnetoencephalogram (MEG) research to estimate the location of the brain areas that give rise to the electrical or magnetic responses that are measured on the scalp.

Structure-from-motion

Even a few dots can create the vivid perception of an object or structure when they move in a way that is typical of that object.

Voxel

In MRI research, a voxel refers to the smallest measured volume unit, analogous to a three-dimensional pixel. In fMRI studies, these are typically of the order of 30 mm3, although much smaller voxel volumes have been achieved in more recent work.

Human motion-selective area MT

An area in the human extrastriate visual cortex that responds strongly to visual displays containing moving items. It can be functionally localized with fMRI by contrasting activation relating to moving stimuli with that relating to static stimuli.

Object-form selective area LO

A region of the human extrastriate visual cortex that responds to object form. It can be functionally localized by contrasting fMRI activation relating to intact objects with activation relating to scrambled objects.

Functional region-of-interest design

A design used in fMRI research in which one or more brain areas are defined on the basis of their functional properties (typically in each subject individually), and their response properties are further investigated in subsequent experiments.

Delayed match-to-sample task

A task in which subjects have to choose which of multiple target stimuli matches a previously presented sample stimulus that is held in memory.

Linear classifier

A statistical procedure in which items are divided into two or more groups on the basis of a weighted linear combination of their features.

Corollary discharge

A copy of the motor signal that can be used to adjust for changes in sensory input that result from the motor action.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peelen, M., Downing, P. The neural basis of visual body perception. Nat Rev Neurosci 8, 636–648 (2007). https://doi.org/10.1038/nrn2195

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2195

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing