Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The neural systems that mediate human perceptual decision making

Key Points

  • Perceptual decision making is the act of choosing one option or course of action from a set of alternatives on the basis of the available sensory evidence.

  • Findings from monkey physiology experiments have parallels with those from human neuroimaging work.

  • In both species sensory evidence is represented in sensory processing areas, but the accumulation of sensory evidence occurs in decision-making areas that are downstream of the sensory processing areas; these decision-making areas form a decision by comparing outputs from sensory neurons. Candidate decision-making regions in the human brain include the posterior dorsolateral prefrontal cortex.

  • In both monkeys and humans the regions that represent decision variables and perform a comparison are the same as those that select, plan and execute motor responses; they thus include motor and premotor areas.

  • Findings in humans show that there are additional components to the decision-making network. These include a region that translates the decision variable into a response and that is independent of the motor system that executes the response.

  • There is also evidence in humans for a system that detects perceptual uncertainty or difficulty and signals when more attentional resources are required to process a stimulus accurately.

  • Finally, there is evidence in humans for a system that is involved in performance monitoring, which detects when errors occur and when decision strategies need to be adjusted in order to maximize performance.

  • The functional architecture for human perceptual decision making thus consists of separate processes that interact in a heterarchical manner in which at least some of the processes happen in parallel.

Abstract

Perceptual decision making is the act of choosing one option or course of action from a set of alternatives on the basis of available sensory evidence. Thus, when we make such decisions, sensory information must be interpreted and translated into behaviour. Neurophysiological work in monkeys performing sensory discriminations, combined with computational modelling, has paved the way for neuroimaging studies that are aimed at understanding decision-related processes in the human brain. Here we review findings from human neuroimaging studies in conjunction with data analysis methods that can directly link decisions and signals in the human brain on a trial-by-trial basis. This leads to a new view about the neural basis of human perceptual decision-making processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representation of sensory evidence in lower-level sensory regions and perceptual decision making in the posterior DLPFC.
Figure 2: A neural system for human perceptual decision making.

Similar content being viewed by others

References

  1. Platt, M. L. Neural correlates of decisions. Curr. Opin. Neurobiol. 12, 141–148 (2002).

    CAS  PubMed  Google Scholar 

  2. Schall, J. D. Neural basis of deciding, choosing and acting. Nature Rev. Neurosci. 2, 33–42 (2001).

    CAS  Google Scholar 

  3. Glimcher, P. W. The neurobiology of visual-saccadic decision making. Annu. Rev. Neurosci. 26, 133–179 (2003).

    CAS  PubMed  Google Scholar 

  4. Romo, R. & Salinas, E. Flutter discrimination: neural codes, perception, memory and decision making. Nature Rev. Neurosci. 4, 203–218 (2003).

    CAS  Google Scholar 

  5. Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    CAS  PubMed  Google Scholar 

  6. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A. & Nieuwenhuis, S. The role of the medial frontal cortex in cognitive control. Science 306, 443–447 (2004).

    CAS  PubMed  Google Scholar 

  7. Ullsperger, M., Volz, K. G. & von Cramon, D. Y. A common neural system signaling the need for behavioral changes. Trends Cogn. Sci. 8, 445–446; author reply 446–447 (2004).

    PubMed  Google Scholar 

  8. Tversky, A. & Kahneman, D. The framing of decisions and the psychology of choice. Science 211, 453–458 (1981).

    CAS  PubMed  Google Scholar 

  9. Cisek, P. Cortical mechanisms of action selection: the affordance competition hypothesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 1585–1599 (2007).

    PubMed  PubMed Central  Google Scholar 

  10. Salinas, E., Hernandez, A., Zainos, A. & Romo, R. Periodicity and firing rate as candidate neural codes for the frequency of vibrotactile stimuli. J. Neurosci. 20, 5503–5515 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shadlen, M. N., Britten, K. H., Newsome, W. T. & Movshon, J. A. A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J. Neurosci. 16, 1486–1510 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Salzman, C. D., Britten, K. H. & Newsome, W. T. Cortical microstimulation influences perceptual judgements of motion direction. Nature 346, 174–174 (1990).

    CAS  PubMed  Google Scholar 

  14. Ditterich, J., Mazurek, M. E. & Shadlen, M. N. Microstimulation of visual cortex affects the speed of perceptual decisions. Nature Neurosci. 6, 891–898 (2003).

    CAS  PubMed  Google Scholar 

  15. Romo, R., Hernandez, A., Zainos, A. & Salinas, E. Somatosensory discrimination based on cortical microstimulation. Nature 392, 387–390 (1998).

    CAS  PubMed  Google Scholar 

  16. Romo, R., Hernandez, A., Zainos, A., Brody, C. D. & Lemus, L. Sensing without touching: psychophysical performance based on cortical microstimulation. Neuron 26, 273–278 (2000). In this study, substitution of mechanical flutter tactile stimuli with microstimulation of the SI cortex produced identical discrimination performance, indicating that microstimulation of the SI cortex is sufficient to initiate all of the neural responses that are associated with tactile decision making.

    CAS  PubMed  Google Scholar 

  17. Newsome, W. T., Britten, K. H. & Movshon, J. A. Neuronal correlates of a perceptual decision. Nature 341, 52–54 (1989). In this classic study, which linked behaviour with neuronal activity, the perceptual performance of monkeys and the activity of neurons in area MT were measured during the monkeys' performance of a direction-of-motion visual-discrimination task. The results showed that the sensitivity of most of the neurons equalled or exceeded that of the monkeys, indicating that the monkeys' psychophysical judgements could be based on the activity of a relatively small number of neurons.

    CAS  PubMed  Google Scholar 

  18. Afraz, S. R., Kiani, R. & Esteky, H. Microstimulation of inferotemporal cortex influences face categorization. Nature 442, 692–695 (2006).

    CAS  PubMed  Google Scholar 

  19. Gold, J. I. & Shadlen, M. N. Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron 36, 299–308 (2002).

    CAS  PubMed  Google Scholar 

  20. Romo, R., Hernandez, A., Zainos, A. & Salinas, E. Correlated neuronal discharges that increase coding efficiency during perceptual discrimination. Neuron 38, 649–657 (2003).

    CAS  PubMed  Google Scholar 

  21. de Lafuente, V. & Romo, R. Neuronal correlates of subjective sensory experience. Nature Neurosci. 8, 1698–1703 (2005).

    CAS  PubMed  Google Scholar 

  22. Hernandez, A., Zainos, A. & Romo, R. Temporal evolution of a decision-making process in medial premotor cortex. Neuron 33, 959–972 (2002).

    CAS  PubMed  Google Scholar 

  23. Romo, R., Hernandez, A. & Zainos, A. Neuronal correlates of a perceptual decision in ventral premotor cortex. Neuron 41, 165–173 (2004).

    CAS  PubMed  Google Scholar 

  24. Kim, J. N. & Shadlen, M. N. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nature Neurosci. 2, 176–185 (1999).

    PubMed  Google Scholar 

  25. Smith, P. L. & Ratcliff, R. Psychology and neurobiology of simple decisions. Trends Neurosci. 27, 161–168 (2004).

    CAS  PubMed  Google Scholar 

  26. Bogacz, R. Optimal decision-making theories: linking neurobiology with behaviour. Trends Cogn. Sci. 11, 118–125 (2007).

    PubMed  Google Scholar 

  27. Ratcliff, R. & McKoon, G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20, 873–922 (2007).

    Google Scholar 

  28. Romo, R., Brody, C., Hernandez, A. & Lemus, L. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 399, 470–478 (1999).

    CAS  PubMed  Google Scholar 

  29. Romo, R., Hernandez, A., Zainos, A., Lemus, L. & Brody, C. D. Neuronal correlates of decision-making in secondary somatosensory cortex. Nature Neurosci. 5, 1217–1278 (2002).

    CAS  PubMed  Google Scholar 

  30. Machens, C. K., Romo, R. & Brody, C. D. Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science 307, 1121–1124 (2005).

    CAS  PubMed  Google Scholar 

  31. Lemus, L. et al. Neural correlates of a postponed decision report. Proc. Natl Acad. Sci. USA 104, 17174–17179 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gold, J. I. & Shadlen, M. N. The influence of behavioral context on the representation of a perceptual decision in developing oculomotor commands. J. Neurosci. 23, 632–651 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gold, J. I. & Shadlen, M. N. Representation of a perceptual decision in developing oculomotor commands. Nature 404, 390–394 (2000).

    CAS  PubMed  Google Scholar 

  34. Horwitz, G. D., Batista, A. P. & Newsome, W. T. Representation of an abstract perceptual decision in macaque superior colliculus. J. Neurophysiol. 91, 2281–2296 (2004).

    PubMed  Google Scholar 

  35. Wyss, R., Konig, P. & Verschure, P. F. Involving the motor system in decision making. Proc. Biol. Sci. 271, S50–S52 (2004).

    PubMed  PubMed Central  Google Scholar 

  36. Verschure, P. M. J. F. & Althaus, P. A real-world rational agent: unifying old and new AI. Cogn. Sci. 27, 561–590 (2003).

    Google Scholar 

  37. Cisek, P. Integrated neural processes for defining potential actions and deciding between them: a computational model. J. Neurosci. 26, 9761–9770 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shidara, M. & Richmond, B. J. Anterior cingulate: single neuronal signals related to degree of reward expectancy. Science 296, 1709–1711 (2002).

    PubMed  Google Scholar 

  39. Stuphorn, V., Taylor, T. L. & Schall, J. D. Performance monitoring by the supplementary eye field. Nature 408, 857–860 (2000).

    CAS  PubMed  Google Scholar 

  40. Ito, S., Stuphorn, V., Brown, J. W. & Schall, J. D. Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science 302, 120–122 (2003).

    CAS  PubMed  Google Scholar 

  41. Schall, J. D. Decision making: neural correlates of response time. Curr. Biol. 12, R800–R801 (2002).

    CAS  PubMed  Google Scholar 

  42. Uchida, N., Kepecs, A. & Mainen, Z. F. Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision making. Nature Rev. Neurosci. 7, 485–491 (2006).

    CAS  Google Scholar 

  43. Preuschhof, C., Heekeren, H. R., Taskin, B., Schubert, T. & Villringer, A. Neural correlates of vibrotactile working memory in the human brain. J. Neurosci. 26, 13231–13239 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pleger, B. et al. Neural coding of tactile decisions in the human prefrontal cortex. J. Neurosci. 26, 12596–12601 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tegenthoff, M. et al. Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS. PLoS Biol. 3, 2031–2040 (2005). In this study, brief periods of repetitive TMS (rTMS) in humans produced an improvement of tactile discrimination performance and an enlargement of cortical somatosensory maps. Thus, rTMS seems to be effective in driving improvements in the perception of touch.

    CAS  Google Scholar 

  46. Heekeren, H. R., Marrett, S., Bandettini, P. A. & Ungerleider, L. G. A general mechanism for perceptual decision-making in the human brain. Nature 431, 859–862 (2004). This fMRI study of a face–house task showed that activity in the dorsolateral prefrontal cortex covaried with the difference signal between face- and house-selective regions in the ventral temporal cortex and predicted behavioural performance in the task. Thus, a comparison of the outputs of different pools of selectively tuned lower-level neurons could be a general mechanism by which the primate brain computes perceptual decisions.

    CAS  PubMed  Google Scholar 

  47. Haxby, J. V. The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. J. Neurosci. 14, 6336–6353 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. McCarthy, G., Puce, A., Gore, J. C. & Allison, T. Face-specific processing in the human fusiform gyrus. J. Cogn. Neurosci. 9, 605–610 (1997).

    CAS  PubMed  Google Scholar 

  50. Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

    CAS  PubMed  Google Scholar 

  51. Ishai, A., Ungerleider, L. G., Martin, A., Schouten, J. L. & Haxby, J. V. Distributed representation of objects in the human ventral visual pathway. Proc. Natl Acad. Sci. USA 96, 9379–9384 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Philiastides, M. G. & Sajda, P. Temporal characterization of the neural correlates of perceptual decision making in the human brain. Cereb. Cortex 16, 509–518 (2006).

    PubMed  Google Scholar 

  53. Binder, J. R., Liebenthal, E., Possing, E. T., Medler, D. A. & Ward, B. D. Neural correlates of sensory and decision processes in auditory object identification. Nature Neurosci. 7, 295–301 (2004).

    CAS  PubMed  Google Scholar 

  54. Kaiser, J., Lennert, T. & Lutzenberger, W. Dynamics of oscillatory activity during auditory decision making. Cereb. Cortex 17, 2258–2267 (2006).

    PubMed  Google Scholar 

  55. Niessing, J. et al. Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309, 948–951 (2005).

    CAS  PubMed  Google Scholar 

  56. Roitman, J. D. & Shadlen, M. N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. In memoriam F. C. D. Acta Psychol. (Amst.) 30, 389–408 (1969).

    Google Scholar 

  58. Thielscher, A. & Pessoa, L. Neural correlates of perceptual choice and decision making during fear-disgust discrimination. J. Neurosci. 27, 2908–2917 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Grinband, J., Hirsch, J. & Ferrera, V. P. A neural representation of categorization uncertainty in the human brain. Neuron 49, 757–763 (2006).

    CAS  PubMed  Google Scholar 

  60. Ploran, E. J. et al. Evidence accumulation and the moment of recognition: dissociating perceptual recognition processes using fMRI. J. Neurosci. 2007, 11912–11924 (2007). In this study, pictures were revealed gradually and subjects indicated the time of recognition. Whereas activity in occipital regions increased primarily as stimulus information increased, activity in inferior temporal, frontal and parietal regions showed a gradual build-up, peaking at the time of recognition. The results indicate that these latter regions participate in the accumulation of sensory evidence that supports object identity.

    Google Scholar 

  61. Heekeren, H. R., Marrett, S., Ruff, D. A., Bandettini, P. A. & Ungerleider, L. G. Involvement of human left dorsolateral prefrontal cortex in perceptual decision making is independent of response modality. Proc. Natl Acad. Sci. USA 103, 10023–10028 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Philiastides, M. G., Ratcliff, R. & Sajda, P. Neural representation of task difficulty and decision making during perceptual categorization: a timing diagram. J. Neurosci. 26, 8965–8975 (2006). This study used a single-trial analysis of EEG to identify the neural representation of task difficulty and decision making during perceptual categorization. The results showed a decision-difficulty component of the EEG arising between two EEG components that were predictive of decision accuracy.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Philiastides, M. G. & Sajda, P. EEG-informed fMRI reveals spatiotemporal characteristics of perceptual decision making. J. Neurosci. 27, 13082–13091 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Heekeren, H. R., Marrett, S., Bandettini, P. A. & Ungerleider, L. G. Human fMRI evidence for representation of a perceptual decision in oculomotor areas. Abstr. 228.8 (Society for Neuroscience Meeting, Washington DC, 2003).

  65. Sereno, M. I., Pitzalis, S. & Martinez, A. Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294, 1350–1354 (2001).

    CAS  PubMed  Google Scholar 

  66. Heinen, S. J., Rowland, J., Lee, B. T. & Wade, A. R. An oculomotor decision process revealed by functional magnetic resonance imaging. J. Neurosci. 26, 13515–13522 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rorie, A. E. & Newsome, W. T. A general mechanism for decision-making in the human brain? Trends Cogn. Sci. 9, 41–43 (2005).

    PubMed  Google Scholar 

  68. Debener, S. et al. Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J. Neurosci. 25, 11730–11737 (2005). This study showed that single-trial error-related negativity of the EEG was systematically related to behaviour in the subsequent trial, thus demonstrating trial-by-trial adjustments of a cognitive monitoring system. Moreover, this trial-by-trial monitoring predicted fMRI activity in the rostral cingulate cortex, a brain region that has been implicated in the processing of response errors.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rushworth, M. F. & Behrens, T. E. Choice, uncertainty and value in prefrontal and cingulate cortex. Nature Neurosci. 11, 389–397 (2008).

    CAS  PubMed  Google Scholar 

  70. Egner, T. & Hirsch, J. Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neurosci. 8, 1784–1790 (2005).

    CAS  PubMed  Google Scholar 

  71. Logothetis, N. K. & Wandell, B. A. Interpreting the BOLD signal. Annu. Rev. Physiol. 66, 735–769 (2004).

    CAS  PubMed  Google Scholar 

  72. Hamalainen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J. & Lounasmaa, O. V. Magnetoencephalography - theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413–497 (1993).

    CAS  Google Scholar 

  73. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    CAS  PubMed  Google Scholar 

  74. Tsao, D. Y., Freiwald, W. A., Tootell, R. B. & Livingstone, M. S. A cortical region consisting entirely of face-selective cells. Science 311, 670–674 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sugrue, L. P., Corrado, G. S. & Newsome, W. T. Choosing the greater of two goods: neural currencies for valuation and decision making. Nature Rev. Neurosci. 6, 363–375 (2005).

    CAS  Google Scholar 

  76. Montague, P. R., King-Casas, B. & Cohen, J. D. Imaging valuation models in human choice. Annu. Rev. Neurosci. 29, 417–448 (2006).

    CAS  PubMed  Google Scholar 

  77. Lee, D. Game theory and neural basis of social decision making. Nature Neurosci. 11, 404–409 (2008).

    CAS  PubMed  Google Scholar 

  78. Bogacz, R., Brown, E., Moehlis, J., Holmes, P. & Cohen, J. D. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113, 700–765 (2006).

    PubMed  Google Scholar 

  79. Simen, P., Cohen, J. D. & Holmes, P. Rapid decision threshold modulation by reward rate in a neural network. Neural Netw. 19, 1013–1026 (2006).

    PubMed  PubMed Central  Google Scholar 

  80. Glimcher, P. W. & Rustichini, A. Neuroeconomics: the consilience of brain and decision. Science 306, 447–452 (2004).

    CAS  PubMed  Google Scholar 

  81. Lee, D. Neural basis of quasi-rational decision making. Curr. Opin. Neurobiol. 16, 191–198 (2006).

    CAS  PubMed  Google Scholar 

  82. Aouizerate, B. et al. Pathophysiology of obsessive-compulsive disorder: a necessary link between phenomenology, neuropsychology, imagery and physiology. Prog. Neurobiol. 72, 195–221 (2004).

    PubMed  Google Scholar 

  83. Rauch, S. L. et al. A functional neuroimaging investigation of deep brain stimulation in patients with obsessive-compulsive disorder. J. Neurosurg. 104, 558–565 (2006).

    PubMed  Google Scholar 

  84. Saxena, S., Brody, A. L., Schwartz, J. M. & Baxter, L. R. Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br. J. Psychiatry Suppl, 26–37 (1998).

  85. Sachdev, P. S. & Malhi, G. S. Obsessive-compulsive behaviour: a disorder of decision-making. Aust. N. Z. J. Psychiatry 39, 757–763 (2005).

    PubMed  Google Scholar 

  86. Meriau, K. et al. A neural network reflecting individual differences in cognitive processing of emotions during perceptual decision making. Neuroimage 33, 1016–1027 (2006).

    PubMed  Google Scholar 

  87. Pessoa, L. & Padmala, S. Quantitative prediction of perceptual decisions during near-threshold fear detection. Proc. Natl Acad. Sci. USA 102, 5612–5617 (2005). Quantitative analysis showed that fMRI signals in a near-threshold fear-detection task predicted behavioural choice in a network of areas linked to emotional processing, including the posterior cingulate cortex, the medial prefrontal cortex, the right inferior frontal gyrus and the left insula.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lieberman, M. D. Social cognitive neuroscience: a review of core processes. Annu. Rev. Psychol. 58, 259–289 (2007).

    PubMed  Google Scholar 

  89. Ratcliff, R., Cherian, A. & Segraves, M. A. A comparison of macaque behavior and superior colliculus neuronal activity to predictions from models of two-choice decisions. J. Neurophysiol. 90, 1392–1407 (2003).

    PubMed  Google Scholar 

  90. Ratcliff, R., Hasegawa, Y. T., Hasegawa, R. P., Smith, P. L. & Segraves, M. A. Dual diffusion model for single-cell recording data from the superior colliculus in a brightness-discrimination task. J. Neurophysiol. 97, 1756–1774 (2007).

    PubMed  Google Scholar 

  91. Schall, J. D. On building a bridge between brain and behavior. Annu. Rev. Psychol. 55, 23–50 (2004).

    PubMed  Google Scholar 

  92. Donner, T. H. et al. Population activity in the human dorsal pathway predicts the accuracy of visual motion detection. J. Neurophysiol. 98, 345–359 (2007).

    PubMed  Google Scholar 

  93. Debener, S., Ullsperger, M., Siegel, M. & Engel, A. K. Single-trial EEG-fMRI reveals the dynamics of cognitive function. Trends Cogn. Sci. 10, 558–563 (2006).

    PubMed  Google Scholar 

  94. Petrides, M., Alivisatos, B., Evans, A. C. & Meyer, E. Dissociation of human mid-dorsolateral from posterior dorsolateral frontal cortex in memory processing. Proc. Natl Acad. Sci. USA 90, 873–877 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Petrides, M. Deficits in non-spatial conditional associative learning after periarcuate lesions in the monkey. Behav. Brain Res. 16, 95–101 (1985).

    CAS  PubMed  Google Scholar 

  96. Thoenissen, D., Zilles, K. & Toni, I. Differential involvement of parietal and precentral regions in movement preparation and motor intention. J. Neurosci. 22, 9024–9034 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Summerfield, C. et al. Predictive codes for forthcoming perception in the frontal cortex. Science 314, 1311–1314 (2006).

    CAS  PubMed  Google Scholar 

  98. Summerfield, C., Egner, T., Mangels, J. & Hirsch, J. Mistaking a house for a face: neural correlates of misperception in healthy humans. Cereb. Cortex 16, 500–508 (2006).

    PubMed  Google Scholar 

  99. ffytche, D. H. & Howard, R. J. The perceptual consequences of visual loss: 'positive' pathologies of vision. Brain 122, 1247–1260 (1999).

    PubMed  Google Scholar 

  100. Warrington, E. K. & Shallice, T. Category specific semantic impairments. Brain 107, 829–854 (1984).

    PubMed  Google Scholar 

  101. Persaud, R. & Cutting, J. Lateralized anomalous perceptual experiences in schizophrenia. Psychopathology 24, 365–368 (1991).

    CAS  PubMed  Google Scholar 

  102. Grossberg, S. How hallucinations may arise from brain mechanisms of learning, attention, and volition. J. Int. Neuropsychol. Soc. 6, 583–592 (2000).

    CAS  PubMed  Google Scholar 

  103. Collerton, D., Perry, E. & McKeith, I. Why people see things that are not there: a novel Perception and Attention Deficit model for recurrent complex visual hallucinations. Behav. Brain Sci. 28, 737–757; discussion 757–94 (2005).

    PubMed  Google Scholar 

  104. Haynes, J. D. & Rees, G. Decoding mental states from brain activity in humans. Nature Rev. Neurosci 7, 523–534 (2006).

    CAS  Google Scholar 

  105. Opris, I. & Bruce, C. J. Neural circuitry of judgment and decision mechanisms. Brain Res. Brain Res. Rev. 48, 509–526 (2005).

    PubMed  Google Scholar 

Download references

Acknowledgements

In the preparation of this article, we benefitted from feedback from and discussions with M. Bauer and M. Philiastides. We would like to thank R. Romo and two anonymous reviewers for their constructive feedback. The assistance of A. Parr is also acknowledged. H.R.H. was supported by the DFG (Deutsche Forschungsgemeinschaft) (HE 3347/1-2); S.M. and L.G.U. were supported by the National Institute of Mental Health Intramural Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hauke R. Heekeren.

Related links

Related links

FURTHER INFORMATION

Hauke Heekeren's homepage

Glossary

Decision variable

A quantity that is monotonically related to the relative likelihood of one alternative occurring versus another occurring. In perceptual decision-making tasks, the link between the sensory representation and the commitment to a choice is thought to involve the computation of a decision variable.

Functional MRI

(fMRI). An imaging technique that measures the brain's haemodynamic response to changes in neural activity.

Electroencephalography

(EEG). A technique used to measure neural activity by monitoring electrical signals from the brain that reach the scalp. EEG has good temporal resolution but relatively poor spatial resolution.

Magnetoencephalography

(MEG). A method of measuring physiological activity across the cortex by detecting perturbations in the magnetic field that is generated by the electrical activity of neuronal populations.

Transcranial magnetic stimulation

(TMS). A technique that delivers brief, strong electrical pulses through a coil placed on the scalp. These create a local magnetic field that in turn induces a current in the surface of the cortex, temporarily disrupting local neural activity.

Discrimination thresholds

In discrimination tasks, this is a measure of the smallest detectable change in a stimulus or the smallest difference between two stimuli that can reliably be detected. It is often defined as the difference for which the correct discrimination is made 75% (or sometimes 82%) of the time.

Beta frequency band

Neural activity in the frequency range of 12–25Hz.

Gamma frequency band

Neural activity in the frequency range of 30–80Hz.

Psychometric curve

A plot of the percentage of correct behavioural responses as a function of changes in the properties of the test stimulus.

Heterarchy

A term used in social and information sciences that describes networks of elements in which each element has the same 'horizontal' position of power and authority and has a theoretically equal role. It is used here as an antonym to hierarchy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heekeren, H., Marrett, S. & Ungerleider, L. The neural systems that mediate human perceptual decision making. Nat Rev Neurosci 9, 467–479 (2008). https://doi.org/10.1038/nrn2374

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2374

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing