Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Animal models of Alzheimer's disease and frontotemporal dementia

Key Points

  • Alzheimer's disease (AD) is the most common cause of dementia, comprising 50–70% of all cases. Frontotemporal dementia (FTD) is less common, but makes up 50% of dementia cases presenting before age 60. At present neither can be cured.

  • The AD brain is characterized by massive neuronal cell and synapse loss at specific sites, as well as β-amyloid (Aβ) plaques and tau-containing neurofibrillary lesions. The neurofibrillary lesions (such as neurofibrillary tangles) are also abundant in FTD, in which there is an absence of overt plaques.

  • In familial AD (FAD), autosomal dominant mutations have been identified in three genes: APP, presenilin 1 (PSEN1) and PSEN2. In FTD with parkinsonism linked to chromosome 17 (FTDP-17), mutations were identified in MAPT (which encodes tau), and in FTD with tau-negative lesions, mutations in progranulin (PGRN) have been reported.

  • Tau transgenic mouse models for FTD proved that mutations found in familial cases of FTD (FTDP-17) accelerate tau aggregation and cause nerve cell dysfunction and loss. Transgenic mice with an inducible tau expression showed that elevated levels of tau impair memory function but that NFTs are not sufficient to cause cognitive decline or neuronal death.

  • Combinatorial transgenic approaches have shown that Aβ can promote tau pathology but also that increased lethality and susceptibility to excitotoxicity of Aβ-producing transgenic mice can be prevented by breeding the APP transgene into a tau-deficient background. By genetically interfering with β- and γ-secretase activity, the role of key enzymes in APP processing, Aβ deposition and memory impairment has been established.

  • Invertebrate models, such as the nematode C aenorhabditis elegans and the fruitfly Drosophila melanogaster, have emerged as a powerful tool in AD and FTD research. In tau transgenic flies neurodegeneration can occur without NFT formation and is associated with the accumulation of filamentous actin-containing rods.

  • Transcriptomic and proteomic techniques are increasingly being applied to animal models of AD and FTD, and have allowed the identification of novel differentially regulated genes and proteins. Proteomic work in transgenic mice suggests that mitochondria are early targets of Aβ and tau aggregates.

  • Imaging techniques such as positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI) and multiphoton imaging are increasingly being used for the clinical diagnosis of AD and FTD. In mice, Aβ plaques can be labelled with the PET tracer 11C-labelled Pittsburgh Compound-B (PIB) that enters the brain quickly.

  • Among the therapeutic strategies that have emerged from transgenic animal work, are the active and passive vaccination trials targeting Aβ. In tau transgenic mice, injections of the microtubule-binding drug paclitaxel have been shown to effectively ameliorate motor impairment.

  • The role of diet in preventing AD, in particular when it contains anti-oxidants such as Ginkgo biloba or green tea extracts is gaining recognition. Caloric restriction is a means to reduce Aβ plaque numbers in transgenic mice.

Abstract

Insoluble protein aggregates have been linked to Alzheimer's disease (AD) and frontotemporal dementia (FTD). Recent work in transgenic mice has shed light on the role of these aggregates by identifying soluble oligomeric species that may interfere with essential cellular mechanisms at an early disease stage. This review summarizes what we have learned about the roles of these proteins from transgenic mice and invertebrate species such as flies and worms. Proteomic and transcriptomic analyses of tissue from these animal models have identified new molecules with crucial roles in disease. Moreover, transgenic animals have been instrumental in defining drug targets and designing novel therapeutic strategies. With advanced imaging techniques that can be used in both humans and mice an early, preclinical diagnosis of AD and FTD could be within reach.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reproducing plaques and NFTs in transgenic mice.
Figure 2: Behavioural tests used to assess memory functions in AD mouse models.
Figure 3: Sequence alignment of Aβ and tau from vertebrate and invertebrate species.
Figure 4: Application of functional genomics to AD mouse models.

References

  1. Ballatore, C., Lee, V. M. & Trojanowski, J. Q. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nature Rev. Neurosci. 8, 663–672 (2007).

    Article  CAS  Google Scholar 

  2. Cummings, J. L. & Askin-Edgar, S. Evidence for psychotropic effects of acetylcholinesterase inhibitors. CNS Drugs 13, 385–395 (2000).

    Article  CAS  Google Scholar 

  3. Arnold, S. E., Hyman, B. T., Flory, J., Damasio, A. R. & Van Hoesen, G. W. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. Cereb. Cortex 1, 103–116 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Neary, D. et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria [see comments]. Neurology 51, 1546–1554 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Snowden, J. S. et al. Distinct behavioural profiles in frontotemporal dementia and semantic dementia. J. Neurol. Neurosurg. Psychiatry 70, 323–332 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weder, N. D., Aziz, R., Wilkins, K. & Tampi, R. R. Frontotemporal dementias: a review. Ann. Gen. Psychiatry 6, 15 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Selkoe, D. J. Alzheimer's disease is a synaptic failure. Science 298, 789–791 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Lee, V. M., Goedert, M. & Trojanowski, J. Q. Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24, 1121–1159 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Murrell, J., Farlow, M., Ghetti, B. & Benson, M. D. A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease. Science 254, 97–99 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Mullan, M. et al. A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of β-amyloid. Nature Genet. 1, 345–347 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Nilsberth, C. et al. The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Aβ protofibril formation. Nature Neurosci. 4, 887–893 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Bertram, L. & Tanzi, R. E. The genetic epidemiology of neurodegenerative disease. J. Clin. Invest. 115, 1449–1457 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hutton, M. et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Poorkaj, P. et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann. Neurol. 43, 815–825 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Spillantini, M. G. et al. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc. Natl Acad. Sci. USA 95, 7737–7741 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cruts, M. & Van Broeckhoven, C. Loss of progranulin function in frontotemporal lobar degeneration. Trends Genet. (2008).

  18. Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Cruts, M. et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442, 920–924 (2006). This study, together with reference 18, identifies null mutations in progranulin as a cause of tau-negative frontotemporal dementia.

    Article  CAS  PubMed  Google Scholar 

  20. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006). This study shows that the tau-negative, ubiquitin-positive lesions in some forms of frontotemporal dementia and amyotrophic lateral sclerosis contain the protein TDP-43.

    Article  CAS  PubMed  Google Scholar 

  21. Gitcho, M. A. et al. TDP-43 A315T mutation in familial motor neuron disease. Ann. Neurol. 63, 535–538 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kabashi, E. et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nature Genet. 40, 572–574 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Yokoseki, A. et al. TDP-43 mutation in familial amyotrophic lateral sclerosis. Ann. Neurol. 63, 538–542 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Ye, Y. et al. Inaugural Article: Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. Proc. Natl Acad. Sci. USA 102, 14132–14138 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Neumann, M. et al. TDP-43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations. J. Neuropathol. Exp. Neurol. 66, 152–157 (2007).

    Article  PubMed  Google Scholar 

  26. Kayasuga, Y. et al. Alteration of behavioural phenotype in mice by targeted disruption of the progranulin gene. Behav. Brain Res. 185, 110–118 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Götz, J. et al. A decade of tau transgenic animal models and beyond Brain Pathol. 17, 91–103 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Götz, J. et al. Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. Embo J. 14, 1304–1313 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lewis, J. et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nature Genet. 25, 402–405 (2000). This study presented the first mouse model with NFT formation by expression of FTDP-17 (P301L) mutant tau.

    Article  CAS  PubMed  Google Scholar 

  30. Götz, J., Chen, F., van Dorpe, J. & Nitsch, R. M. Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ 42 fibrils. Science 293, 1491–1495 (2001).

    Article  PubMed  Google Scholar 

  31. Götz, J. et al. Transgenic animal models of Alzheimer's disease and related disorders: Histopathology, behavior and therapy. Mol. Psychiatry 9, 664–683 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Santacruz, K. et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476–481 (2005). This study shows that NFT formation is not related to functional impairment in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Higuchi, M. et al. Axonal degeneration induced by targeted expression of mutant human tau in oligodendrocytes of transgenic mice that model glial tauopathies. J. Neurosci. 25, 9434–9443 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Forman, M. S. et al. Transgenic mouse model of tau pathology in astrocytes leading to nervous system degeneration. J. Neurosci. 25, 3539–3550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Allen, B. et al. Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J. Neurosci. 22, 9340–9351 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Bellucci, A. et al. Induction of inflammatory mediators and microglial activation in mice transgenic for mutant human P301S tau protein. Am. J. Pathol. 165, 1643–1652 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wyss-Coray, T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nature Med. 12, 1005–1015 (2006).

    CAS  PubMed  Google Scholar 

  39. Götz, J. Tau and transgenic animal models. Brain Res. Brain Res. Rev. 35, 266–286 (2001).

    Article  PubMed  Google Scholar 

  40. Roberson, E. D. et al. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model. Science 316, 750–754 (2007). This study shows that tau reduction protects from Aβ-mediated toxicity and excitotoxicity.

    Article  CAS  PubMed  Google Scholar 

  41. Lewis, J. et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant Tau and APP. Science 293, 1487–1491 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Bolmont, T. et al. Induction of tau pathology by intracerebral infusion of amyloid-β-containing brain extract and by amyloid-β deposition in APP x Tau transgenic mice. Am. J. Pathol. 171, 2012–2020 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Terwel, D. et al. Amyloid activates GSK-3β to aggravate neuronal tauopathy in bigenic mice. Am. J. Pathol. 172, 786–798 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Phiel, C. J., Wilson, C. A., Lee, V. M. & Klein, P. S. GSK-3α regulates production of Alzheimer's disease amyloid-β peptides. Nature 423, 435–439 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Liou, Y. C. et al. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424, 556–561 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Pastorino, L. et al. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-β production. Nature 440, 528–534 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Oddo, S. et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles. Intracellular aβ and synaptic dysfunction. Neuron 39, 409–421 (2003). This study combines transgenic expression of mutant APP, PSEN1 and tau, achieving both Aβ plaque and NFT formation.

    Article  CAS  PubMed  Google Scholar 

  48. Casas, C. et al. Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Aβ42 accumulation in a novel Alzheimer transgenic model. Am. J. Pathol. 165, 1289–1300 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Holcomb, L. et al. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nature Med. 4, 97–100 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Schmitz, C. et al. Hippocampal neuron loss exceeds amyloid plaque load in a transgenic mouse model of Alzheimer's disease. Am. J. Pathol. 164, 1495–1502 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wang, R., Wang, B., He, W. & Zheng, H. Wild-type presenilin 1 protects against Alzheimer disease mutation-induced amyloid pathology. J. Biol. Chem. 281, 15330–15336 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Ohno, M. et al. BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer's disease. Neuron 41, 27–33 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. McConlogue, L. et al. Partial reduction of BACE1 has dramatic effects on Alzheimer plaque and synaptic pathology in APP transgenic mice. J. Biol. Chem. 282, 26326–26334 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Willem, M. et al. β-site amyloid precursor protein cleaving enzyme 1 increases amyloid deposition in brain parenchyma but reduces cerebrovascular amyloid angiopathy in aging BACE x APP[V717I] double-transgenic mice. Am. J. Pathol. 165, 1621–1631 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ma, H. et al. Involvement of β-site APP cleaving enzyme 1 (BACE1) in amyloid precursor protein-mediated enhancement of memory and activity-dependent synaptic plasticity. Proc. Natl Acad. Sci. USA 104, 8167–8172 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Postina, R. et al. A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J. Clin. Invest. 113, 1456–1464 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bales, K. R. et al. Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nature Genet. 17, 263–264 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Dodart, J. C. et al. Gene delivery of human apolipoprotein E alters brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 102, 1211–1216 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wahrle, S. E. et al. Deletion of Abca1 increases Aβ deposition in the PDAPP transgenic mouse model of Alzheimer disease. J. Biol. Chem. 280, 43236–43242 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Koldamova, R., Staufenbiel, M. & Lefterov, I. Lack of ABCA1 considerably decreases brain ApoE level and increases amyloid deposition in APP23 mice. J. Biol. Chem. 280, 43224–43235 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Hirsch-Reinshagen, V. et al. The absence of ABCA1 decreases soluble ApoE levels but does not diminish amyloid deposition in two murine models of Alzheimer disease. J. Biol. Chem. 280, 43243–43256 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Wahrle, S. E. et al. Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease. J. Clin. Invest. 118, 671–682 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hirokawa, N. & Takemura, R. Molecular motors and mechanisms of directional transport in neurons. Nature Rev. Neurosci. 6, 201–214 (2005).

    Article  CAS  Google Scholar 

  64. Ishihara, T. et al. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 24, 751–762 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Stokin, G. B. et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307, 1282–1288 (2005). This study identifies correlates of impaired axonal transport in APP transgenic mice and AD brains. Formation of spheroids increases with reduced kinesin function.

    Article  CAS  PubMed  Google Scholar 

  66. Dixit, R., Ross, J. L., Goldman, Y. E. & Holzbaur, E. L. Differential regulation of dynein and kinesin motor proteins by tau. Science 319, 1086–1089 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kamal, A., Stokin, G. B., Yang, Z., Xia, C. H. & Goldstein, L. S. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449–459 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Kamal, A., Almenar-Queralt, A., LeBlanc, J. F., Roberts, E. A. & Goldstein, L. S. Kinesin-mediated axonal transport of a membrane compartment containing β-secretase and presenilin-1 requires APP. Nature 414, 643–648 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Goedert, M. & Spillantini, M. G. A century of Alzheimer's disease. Science 314, 777–781 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Magnani, E. et al. Interaction of tau protein with the dynactin complex. Embo J. 26, 4546–4554 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Driscoll, M. & Gerstbrein, B. Dying for a cause: invertebrate genetics takes on human neurodegeneration. Nature Rev. Genet. 4, 181–194 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Wittmann, C. W. et al. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293, 711–714 (2001). This study shows in D. melanogaster that tau-mediated neurodegeneration can occur in the absence of NFT formation.

    Article  CAS  PubMed  Google Scholar 

  73. Jackson, G. R. et al. Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 34, 509–519 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Dias-Santagata, D., Fulga, T. A., Duttaroy, A. & Feany, M. B. Oxidative stress mediates tau-induced neurodegeneration in Drosophila. J. Clin. Invest. 117, 236–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Arendt, T. Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: the 'Dr. Jekyll and Mr. Hyde concept' of Alzheimer's disease or the yin and yang of neuroplasticity. Prog. Neurobiol. 71, 83–248 (2003).

    Article  PubMed  Google Scholar 

  76. Khurana, V. et al. TOR-mediated cell-cycle activation causes neurodegeneration in a Drosophila tauopathy model. Curr. Biol. 16, 230–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Ferrari, A., Hoerndli, F., Baechi, T., Nitsch, R. M. & Götz, J. β-amyloid induces PHF-like tau filaments in tissue culture. J. Biol. Chem. 278, 40162–40168 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Steinhilb, M. L., Dias-Santagata, D., Fulga, T. A., Felch, D. L. & Feany, M. B. Tau phosphorylation sites work in concert to promote neurotoxicity in vivo. Mol. Biol. Cell 18, 5060–5068 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fulga, T. A. et al. Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nature Cell Biol. 9, 139–148 (2007). This study links tau pathology to the formation of actin-containing rods.

    Article  CAS  PubMed  Google Scholar 

  80. Takasugi, N. et al. The role of presenilin cofactors in the γ-secretase complex. Nature 422, 438–441 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Fossgreen, A. et al. Transgenic Drosophila expressing human amyloid precursor protein show γ-secretase activity and a blistered-wing phenotype. Proc. Natl Acad. Sci. USA 95, 13703–13708 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. O'Nuallain, B. & Wetzel, R. Conformational Abs recognizing a generic amyloid fibril epitope. Proc. Natl Acad. Sci. USA 99, 1485–1490 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Habicht, G. et al. Directed selection of a conformational antibody domain that prevents mature amyloid fibril formation by stabilizing Aβ protofibrils. Proc. Natl Acad. Sci. USA 104, 19232–19237 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bertram, L. et al. Family-based association between Alzheimer's disease and variants in UBQLN1. N. Engl. J. Med. 352, 884–894 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Li, A. et al. Isolation and characterization of the Drosophila ubiquilin ortholog dUbqln: in vivo interaction with early-onset Alzheimer disease genes. Hum. Mol. Genet. 16, 2626–2639 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Iijima, K. et al. Dissecting the pathological effects of human Aβ40 and Aβ42 in Drosophila: a potential model for Alzheimer's disease. Proc. Natl Acad. Sci. USA 101, 6623–6628 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Luheshi, L. M. et al. Systematic in vivo analysis of the intrinsic determinants of amyloid β pathogenicity. PLoS Biol. 5, e290 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Seidner, G. A., Ye, Y., Faraday, M. M., Alvord, W. G. & Fortini, M. E. Modeling clinically heterogeneous presenilin mutations with transgenic Drosophila. Curr. Biol. 16, 1026–1033 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Muqit, M. M. & Feany, M. B. Modelling neurodegenerative diseases in Drosophila: a fruitful approach? Nature Rev. Neurosci. 3, 237–243 (2002).

    Article  CAS  Google Scholar 

  91. Micchelli, C. A. et al. γ-secretase/presenilin inhibitors for Alzheimer's disease phenocopy Notch mutations in Drosophila. Faseb J. 17, 79–81 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Kraemer, B. C. et al. From the Cover: Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc. Natl Acad. Sci. USA 100, 9980–9985 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Miyasaka, T. et al. Progressive neurodegeneration in C. elegans model of tauopathy. Neurobiol. Dis. 20, 372–383 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Dickey, C. A. et al. Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species. J. Neurosci. 26, 6985–6996 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kraemer, B. C. & Schellenberg, G. D. SUT-1 enables tau-induced neurotoxicity in C. elegans. Hum. Mol. Genet. 16, 1959–1971 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Francis, R. et al. aph-1 and pen-2 are required for Notch pathway signaling, γ-secretase cleavage of βAPP, and presenilin protein accumulation. Dev. Cell 3, 85–97 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Schafer, W. F. Genetics of egg-laying in worms. Annu. Rev. Genet. 40, 487–509 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Smialowska, A. & Baumeister, R. Presenilin function in Caenorhabditis elegans. Neurodegener. Dis. 3, 227–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Ellerbrock, B. R., Coscarelli, E. M., Gurney, M. E. & Geary, T. G. Screening for presenilin inhibitors using the free-living nematode, Caenorhabditis elegans. J. Biomol. Screen 9, 147–152 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. David, D., Hoerndli, F. & Götz, J. Functional Genomics meets neurodegenerative disorders Part I: Transcriptomic and proteomic technology. Prog. Neurobiol. 76, 153–168 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Hoerndli, F., David, D. & Götz, J. Functional genomics meets neurodegenerative disorders. Part II: Application and data integration. Prog. Neurobiol. 76, 169–188 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Ray, S. et al. Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nature Med. 13, 1359–1362 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Zhao, X. et al. Transcriptional profiling reveals strict boundaries between hippocampal subregions. J. Comp. Neurol. 441, 187–196 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Sandberg, R. et al. Regional and strain-specific gene expression mapping in the adult mouse brain. Proc. Natl Acad. Sci. USA 97, 11038–11043 (2000). This study shows differentially regulated genes in subregions of the hippocampus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zirlinger, M., Kreiman, G. & Anderson, D. J. Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei. Proc. Natl Acad. Sci. USA 98, 5270–5275 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nature Rev. Mol. Cell Biol. 8, 101–112 (2007).

    Article  CAS  Google Scholar 

  107. Ebneth, A. et al. Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. J. Cell Biol. 143, 777–794 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. David, D. C. et al. Proteomic and functional analysis reveal a mitochondrial dysfunction in P301L tau transgenic mice. J. Biol. Chem. 280, 23802–23814 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Melov, S. et al. Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS ONE 2, e536 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Lustbader, J. W. et al. ABAD directly links Aβ to mitochondrial toxicity in Alzheimer's disease. Science 304, 448–452 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Gillardon, F. et al. Proteomic and functional alterations in brain mitochondria from Tg2576 mice occur before amyloid plaque deposition. Proteomics 7, 605–616 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Colangelo, V. et al. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J. Neurosci. Res. 70, 462–473 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Ho, L. et al. Gene expression profiling of the tau mutant (P301L) transgenic mouse brain. Neurosci. Lett. 310, 1–4 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Götz, J., Chen, F., Barmettler, R. & Nitsch, R. M. Tau filament formation in transgenic mice expressing P301L tau. J. Biol. Chem. 276, 529–534 (2001).

    Article  PubMed  Google Scholar 

  115. Chen, F. et al. Role for glyoxalase I in Alzheimer's disease. Proc. Natl Acad. Sci. USA 101, 7687–7692 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. David, D. C. et al. β-Amyloid treatment of two complementary P301L tau-expressing Alzheimer's disease models reveals similar deregulated cellular processes. Proteomics 6, 6566–6577 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Karsten, S. L. et al. A genomic screen for modifiers of tauopathy identifies puromycin-sensitive aminopeptidase as an inhibitor of tau-induced neurodegeneration. Neuron 51, 549–560 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Dickey, C. A. et al. Selectively reduced expression of synaptic plasticity-related genes in amyloid precursor protein + presenilin-1 transgenic mice. J. Neurosci. 23, 5219–5226 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lazarov, O. et al. Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice. Cell 120, 701–713 (2005). This study shows how environmental enrichment can reduce Aβ levels and improve memory deficits.

    Article  CAS  PubMed  Google Scholar 

  120. Selwood, S. P. et al. Gene expression profile of the PDAPP mouse model for Alzheimer's disease with and without Apolipoprotein E. Neurobiol. Aging Sep 29 2007 (doi:10.1016/j.neurobiolaging.2007.08.006).

    Article  CAS  PubMed  Google Scholar 

  121. Skovronsky, D. M. et al. In vivo detection of amyloid plaques in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 97, 7609–7614 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Klunk, W. E. et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann. Neurol. 55, 306–319 (2004). This study shows that the Pittsburgh Compound-B (PIB) is a suitable PET tracer in vivo .

    Article  CAS  PubMed  Google Scholar 

  123. Bacskai, B. J. et al. Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-β ligand in transgenic mice. Proc. Natl Acad. Sci. USA 100, 12462–12467 (2003). This study introduces the Pittsburgh Compound-B (PIB) that binds to Aβ plaques in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Klunk, W. E. et al. Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-β in Alzheimer's disease brain but not in transgenic mouse brain. J. Neurosci. 25, 10598–10606 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Maeda, J. et al. Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer's disease enabled by positron emission tomography. J. Neurosci. 27, 10957–10968 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Higuchi, M. et al. 19F and 1H MRI detection of amyloid β plaques in vivo. Nature Neurosci. 8, 527–533 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Marjanska, M. et al. Monitoring disease progression in transgenic mouse models of Alzheimer's disease with proton magnetic resonance spectroscopy. Proc. Natl Acad. Sci. USA 102, 11906–11910 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Van Dam, D. & De Deyn, P. P. Drug discovery in dementia: the role of rodent models. Nature Rev. Drug Discov. 5, 956–970 (2006).

    Article  CAS  Google Scholar 

  129. Lichtlen, P. & Mohajeri, M. H. Antibody-based approaches in Alzheimer's research: safety, pharmacokinetics, metabolism, and analytical tools. J. Neurochem. 104, 859–874 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Bard, F. et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Med. 6, 916–919 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Oddo, S. et al. Reduction of soluble Aβ and tau, but not soluble Aβ alone, ameliorates cognitive decline in transgenic mice with plaques and tangles. J. Biol. Chem. 281, 39413–39423 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Orgogozo, J. M. et al. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology 61, 46–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Hock, C. et al. Antibodies against β-amyloid slow cognitive decline in Alzheimer's disease. Neuron 38, 547–554 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Asuni, A. A., Boutajangout, A., Quartermain, D. & Sigurdsson, E. M. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J. Neurosci. 27, 9115–9129 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kulic, L. et al. Active immunization trial in Aβ(42)-injected P301L tau transgenic mice. Neurobiol. Dis. 22, 50–56 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Zhang, B. et al. Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc. Natl Acad. Sci. USA 102, 227–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Dineley, K. T., Hogan, D., Zhang, W. R. & Taglialatela, G. Acute inhibition of calcineurin restores associative learning and memory in Tg2576 APP transgenic mice. Neurobiol. Learn. Mem. 88, 217–224 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rapoport, M., Dawson, H. N., Binder, L. I., Vitek, M. P. & Ferreira, A. Tau is essential to β-amyloid-induced neurotoxicity. Proc. Natl Acad. Sci. USA 99, 6364–6369 (2002). This study shows in primary neuronal cultures of Tau−/− mice that tau is needed for Aβ-mediated toxicity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Patel, N. V. et al. Caloric restriction attenuates Aβ-deposition in Alzheimer transgenic models. Neurobiol. Aging 26, 995–1000 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Halagappa, V. K. et al. Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer's disease. Neurobiol. Dis. 26, 212–220 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Kim, D. et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. Embo J. 26, 3169–3179 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rezai-Zadeh, K. et al. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J. Neurosci. 25, 8807–8814 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lim, G. P. et al. A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J. Neurosci. 25, 3032–3040 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Jayasooriya, A. P. et al. Perinatal omega-3 polyunsaturated fatty acid supply modifies brain zinc homeostasis during adulthood. Proc. Natl Acad. Sci. USA 102, 7133–7138 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang, J. et al. Moderate consumption of Cabernet Sauvignon attenuates Aβ neuropathology in a mouse model of Alzheimer's disease. Faseb J. 20, 2313–2320 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Youm, J. W. et al. Transgenic potato expressing Aβ reduce Aβ burden in Alzheimer's disease mouse model. FEBS Lett. 579, 6737–6744 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Cheng, H. et al. Mechanisms of disease: new therapeutic strategies for Alzheimer's disease — targeting APP processing in lipid rafts. Nature Clin. Pract Neurol. 3, 374–382 (2007).

    Article  CAS  Google Scholar 

  149. Barnham, K. J., Masters, C. L. & Bush, A. I. Neurodegenerative diseases and oxidative stress. Nature Rev. Drug Discov. 3, 205–214 (2004).

    Article  CAS  Google Scholar 

  150. Caccamo, A. et al. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron 49, 671–682 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Di Rosa, G., Odrijin, T., Nixon, R. A. & Arancio, O. Calpain inhibitors: a treatment for Alzheimer's disease. J. Mol. Neurosci. 19, 135–141 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Kukar, T. et al. Diverse compounds mimic Alzheimer disease-causing mutations by augmenting Aβ42 production. Nature Med. 11, 545–550 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Caccamo, A., Oddo, S., Tran, L. X. & LaFerla, F. M. Lithium reduces tau phosphorylation but not Aβ or working memory deficits in a transgenic model with both plaques and tangles. Am. J. Pathol. 170, 1669–1675 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Rockenstein, E. et al. Neuroprotective effects of regulators of the glycogen synthase kinase-3β signaling pathway in a transgenic model of Alzheimer's disease are associated with reduced amyloid precursor protein phosphorylation. J. Neurosci. 27, 1981–1991 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Glenner, G. G. & Wong, C. W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984).

    Article  CAS  PubMed  Google Scholar 

  156. Masters, C. L. et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl Acad. Sci. USA 82, 4245–4249 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. McGowan, E. et al. Aβ42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 47, 191–199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yan, Y. & Wang, C. Aβ40 protects non-toxic Aβ42 monomer from aggregation. J. Mol. Biol. 369, 909–916 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Vassar, R. et al. β-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. Edbauer, D. et al. Reconstitution of γ-secretase activity. Nature Cell Biol. 5, 486–488 (2003).

    Article  CAS  PubMed  Google Scholar 

  161. Goedert, M., Wischik, C. M., Crowther, R. A., Walker, J. E. & Klug, A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc. Natl Acad. Sci. USA 85, 4051–4055 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Myers, A. J. et al. The H1c haplotype at the MAPT locus is associated with Alzheimer's disease. Hum. Mol. Genet. 14, 2399–2404 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Meyer-Luehmann, M. et al. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science 313, 1781–1784 (2006). This study shows shared properties between prions and Aβ with regards to host and agent dictating pathology.

    Article  CAS  PubMed  Google Scholar 

  164. Lesne, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Cleary, J. P. et al. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nature Neurosci. 8, 79–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. Cheng, I. H. et al. Accelerating amyloid-β fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J. Biol. Chem. 282, 23818–23828 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Willem, M. et al. Control of peripheral nerve myelination by the β-secretase BACE1. Science 314, 664–666 (2006). This study identifies a role for the β-secretase BACE in processing neuregulin.

    Article  CAS  PubMed  Google Scholar 

  168. McIntosh, A. M. et al. The effects of a neuregulin 1 variant on white matter density and integrity. Mol. Psychiatry 9 Oct 2007 (doi: 10.1038/sj.mp.4002103).

    Article  CAS  PubMed  Google Scholar 

  169. Schubert, C. Alzheimer disease: BACE1 branches out. Nature Med. 12, 1123 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to those whose work has not been cited due to space limitations. J.G. is a Medical Foundation Fellow. This work has been supported by the University of Sydney, the National Health & Medical Research Council (NHMRC), the Australian Research Council (ARC), the New South Wales Government through the Ministry for Science and Medical Research (BioFirst Program), the Nerve Research Foundation, the Medical Foundation (University of Sydney) and the Judith Jane Mason & Harold Stannett Williams Memorial Foundation to J.G. and the ARC, NHMRC and Deutsche Forschungsgesellschaft (DFG) to L.M.I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Götz.

Supplementary information

Supplementary information S1 (table)

Transgenic mouse models discussed in this review (PDF 129 kb)

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

amyotrophic lateral sclerosis

frontotemporal dementia

FURTHER INFORMATION

Jürgen Götz's homepage

Alzforum index of drugs in clinical trials

Glossary

Nucleus basalis of Meynert

A group of cholinergic nerve cells in the basal forebrain, with numerous projections to the cortex.

Disinhibition

A reduced capacity to control and coordinate the immediate impulsive response to a distinct situation.

Autosomal dominance

An inheritance pattern in which an abnormal copy of a gene from one parent gives rise to the trait, even though the copy inherited from the other parent is normal.

ER-associated degradation

(ERAD). Pathway which targets misfolded proteins from the endoplasmic reticulum for degradation by the proteasome.

Pre-tangle

A somatic accumulation of hyperphosphorylated tau without fibrillar deposition. Pre-tangles represent early stages of NFT formation.

Drosophila melanogaster

Often simply termed Drosophila, belongs to the family of fruit-flies and is widely used as a genetic model organism.

Hirano body

Intraneuronal, often rod-like aggregate of actin and associated proteins found in certain neurodegenerative disorders, such as Alzheimer's disease and Creutzfeldt-Jakob disease.

Rational mutagenesis

Targeted mutation of a gene of interest based on previous analysis (for example, sequence alignment or functional domains/motifs), often using site-directed mutagenesis.

Caenorhabditis elegans

A roundworm (nematode) that has become a major model organism for molecular and developmental biology.

Modifier screen

Screen in which random mutations are introduced into an organism with a pre-existing phenotype, using a mutagen such as N-ethyl-N-nitrosourea (ENU). Mutants that modify (enhance or suppress) the pre-existing phenotype are then isolated.

RNA interference

(RNAi). A method by which double-stranded RNA is used to cause rapid degradation of endogenous RNA thereby precluding translation. This provides a simple way of studying the effects of the absence of a gene product.

Forward genetic screen

A genetic analysis that proceeds from phenotype to genotype by positional cloning or candidate-gene analysis

Suppressor screen

A system used to identify genes that, when overexpressed, lead to the suppression of a mutant phenotype.

Transcriptomics

Large-scale studies of the expression of genes at the mRNA level, typically carried out using microarray technology.

Proteomics

Large-scale studies of the proteome, which comprises all proteins produced by an organism or system. This might also include the analysis of protein function, structures and secondary modifications, using techniques such as mass-spectrometry.

Mass-spectrometric analysis

A technique used to identify and measure biological and chemical compounds. It involves ionization, followed by the use of a magnetic or electrical field. Applications include the identification of proteins and sequencing of oligosaccharides.

State 3 respiration

Active respiration after adding a limited amount of ADP. The rate after all the ADP has been phosphorylated to ATP is termed state 4 respiration.

Uncoupled respiration

Respiration upon adding a reagent such as oligomycin (complex V inhibitor) that uncouples from ATPase.

Positron emission tomography

(PET). In vivo imaging technique used for diagnostic examination that involves the acquisition of physiological images based on the detection of positrons, which are emitted from a radioactive substance previously administered to the patient.

Computed tomography

Imaging technique that exploits the differences in absorption of X-rays by different tissues to give high-contrast images of anatomical structures. Computed tomography has relatively poor soft-tissue contrast, so iodinated contrast agents, which perfuse different tissue types at different rates, are commonly used to delineate tumours.

Magnetic resonance imaging

A non-invasive method used to obtain images of living tissue. It uses radio-frequency pulses and magnetic field gradients; the principle of nuclear magnetic resonance is used to reconstruct images of tissue characteristics (for example, proton density or water diffusion parameters).

Multiphoton imaging

A non-invasive form of microscopy in which a fluorochrome that would normally be excited by a single photon is stimulated quasisimultaneously by several photons of lower energy. Under these conditions, fluorescence increases as a function of the square of the light intensity, and decreases approximately as the square of the distance from the focus. Because of this behaviour, only fluorochrome molecules near the plane of focus are excited, greatly reducing light scattering and photodamage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Götz, J., Ittner, L. Animal models of Alzheimer's disease and frontotemporal dementia. Nat Rev Neurosci 9, 532–544 (2008). https://doi.org/10.1038/nrn2420

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2420

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing