Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The parietal cortex and episodic memory: an attentional account

Key Points

  • The contribution of the parietal cortex to episodic memory is a fascinating scientific puzzle: although parietal lesions do not normally yield severe episodic-memory deficits, parietal activations are seen frequently in functional-neuroimaging studies of episodic-memory retrieval.

  • Although parietal lesions do not impair standard cued recall and recognition tests, recent studies have demonstrated that when patients with parietal lesions try to remember complex events, the events' contextual details do not spring to mind automatically and do not trigger vivid remembering states.

  • In some functional-neuroimaging studies, parietal activations have been associated with successful retrieval and vivid remembering, whereas in other studies they have been associated with 'old responses' or source-memory tasks, regardless of the accuracy with which the information was recalled. These activations have been attributed to working-memory maintenance of retrieved information, to the accumulation of an oldness signal, and to attention to internal representations, but none of these hypotheses accounts for all of the available evidence.

  • A meta-analysis of event-related functional MRI studies shows that activations that are associated with familiarity and low-confidence recognition are more frequent in the dorsal parietal cortex (DPC; including the intraparietal sulcus, the superior parietal lobule and the precuneus (roughly, Brodmann area 7)). Recollection and high-confidence activations, on the other hand, are more frequent in the ventral parietal cortex (VPC; including the supramarginal and angular gyri (roughly, Brodmann areas 39 and 40).

  • Extending to the episodic-memory domain a distinction that has been made in the attention literature, we propose that the DPC mediates attention that is guided by retrieval goals (top-down attention), whereas the VPC mediates attention that is captured by relevant memory cues and/or recovered memories (bottom-up attention). This attention to memory (AtoM) model provides a good account for functional-neuroimaging data and suggests that parietal lesions do not impair memory recovery, but rather the capacity of attending to recovered memories (memory neglect). This idea provides a potential solution to the aforementioned scientific puzzle.

Abstract

The contribution of the parietal cortex to episodic memory is a fascinating scientific puzzle. On the one hand, parietal lesions do not normally yield severe episodic-memory deficits; on the other hand, parietal activations are seen frequently in functional-neuroimaging studies of episodic memory. A review of these two categories of evidence suggests that the answer to the puzzle requires us to distinguish between the contributions of dorsal and ventral parietal regions and between the influence of top-down and bottom-up attention on memory.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subdivisions and connectivity of the posterior parietal cortex.
Figure 2: Parietal lesions and episodic memory.
Figure 3: Parietal activation patterns during episodic-memory tasks.
Figure 4: Ventral–dorsal dissociations in activity.
Figure 5: A simple graphical description of the attention to memory (AtoM) model.

References

  1. Rugg, M. D. in The Cognitive Neurosciences (ed. Gazzaniga, M. S.) 789–801 (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  2. Cabeza, R. & Nyberg, L. Imaging cognition II: an empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12, 1–47 (2000).

    CAS  PubMed  Google Scholar 

  3. Cabeza, R. Role of posterior parietal regions in episodic memory retrieval: the dual attentional processes hypothesis. Neuropsychologia 46, 1813–1827 (2008).

    PubMed  PubMed Central  Google Scholar 

  4. Ciaramelli, E., Grady, C. L. & Moscovitch, M. Top-down and bottom-up attention to memory: a hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia 46, 1828–1851 (2008).

    PubMed  Google Scholar 

  5. Rudge, P. & Warrington, E. K. Selective impairment of memory and visual perception in splenial tumours. Brain 114, 349–360 (1991).

    PubMed  Google Scholar 

  6. Valenstein, E. et al. Retrosplenial amnesia. Brain 110, 1631–1646 (1987).

    PubMed  Google Scholar 

  7. von Cramon, D. Y. & Schuri, U. The septo-hippocampal pathways and their relevance to human memory: a case report. Cortex 28, 411–422 (1992).

    CAS  PubMed  Google Scholar 

  8. Cavada, C. & Goldman-Rakic, P. S. Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol. 287, 422–445 (1989).

    CAS  PubMed  Google Scholar 

  9. Lewis, J. W. & van Essen, D. C. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428, 112–137 (2000).

    CAS  PubMed  Google Scholar 

  10. Petrides, M. & Pandya, D. N. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J. Comp. Neurol. 228, 105–116 (1984).

    CAS  PubMed  Google Scholar 

  11. Petrides, M. & Pandya, D. N. Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur. J. Neurosci. 11, 1011–1036 (1999).

    CAS  PubMed  Google Scholar 

  12. Schmahmann, J. D. et al. Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130, 630–653 (2007).

    Google Scholar 

  13. Kobayashi, Y. & Amaral, D. G. Macaque monkey retrosplenial cortex: II. Cortical afferents. J. Comp. Neurol. 466, 48–79 (2003).

    PubMed  Google Scholar 

  14. Morris, R., Pandya, D. N. & Petrides, M. Fiber system linking the mid-dorsolateral frontal cortex with the retrosplenial/presubicular region in the rhesus monkey. J. Comp. Neurol. 407, 183–192 (1999).

    CAS  PubMed  Google Scholar 

  15. Blatt, G. J., Pandya, D. N. & Rosene, D. L. Parcellation of cortical afferents to three distinct sectors in the parahippocampal gyrus of the rhesus monkey: an anatomical and neurophysiological study. J. Comp. Neurol. 466, 161–179 (2003).

    PubMed  Google Scholar 

  16. Clower, D. M., West, R. A., Lynch, J. C. & Strick, P. L. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J. Neurosci. 21, 6283–6291 (2001).

    CAS  PubMed  Google Scholar 

  17. Insausti, R. & Munoz, M. Cortical projections of the non-entorhinal hippocampal formation in the cynomolgus monkey (Macaca fascicularis). Eur. J. Neurosci. 14, 435–451 (2001).

    CAS  PubMed  Google Scholar 

  18. Lavenex, P., Suzuki, W. A. & Amaral, D. G. Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex. J. Comp. Neurol. 447, 394–420 (2002).

    PubMed  Google Scholar 

  19. Munoz, M. & Insausti, R. Cortical efferents of the entorhinal cortex and the adjacent parahippocampal region in the monkey (Macaca fascicularis). Eur. J. Neurosci. 22, 1368–1388 (2005).

    PubMed  Google Scholar 

  20. Rockland, K. S. & Van Hoesen, G. W. Some temporal and parietal cortical connections converge in CA1 of the primate hippocampus. Cereb. Cortex 9, 232–237 (1999).

    CAS  PubMed  Google Scholar 

  21. Suzuki, W. A. & Amaral, D. G. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J. Comp. Neurol. 350, 497–533 (1994).

    CAS  PubMed  Google Scholar 

  22. Vincent, J. L. et al. Coherent spontaneous activity identifies a hippocampal-parietal memory network. J. Neurophysiol. 96, 3517–3531 (2006).

    PubMed  Google Scholar 

  23. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nature Rev. Neurosci. 3, 201–215 (2002). This article introduces an influential cognitive-neuroscience model of attention that distinguishes between a dorsal frontoparietal system that mediates top-down attention and a ventral frontoparietal system that mediates bottom-up attention. The AtoM model proposed in this article extends the dorsal–ventral distinction in the parietal cortex to the episodic retrieval domain.

    CAS  Google Scholar 

  24. Milner, A. D. & Goodale, M. A. The visual brain in action (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  25. Mishkin, M., Ungerleider, L. G. & Macko, K. A. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 6, 414–417 (1983).

    Google Scholar 

  26. Posner, M. I. & Petersen, S. E. The attention system of the human brain. Annu. Rev. Neurosci. 13, 25–42 (1990).

    CAS  PubMed  Google Scholar 

  27. Bisiach, E. & Luzzatti, C. Unilateral neglect of representational space. Cortex 14, 129–133 (1978).

    CAS  PubMed  Google Scholar 

  28. Danckert, J. & Ferber, S. Revisiting unilateral neglect. Neuropsychologia 44, 987–1006 (2006).

    PubMed  Google Scholar 

  29. Driver, J. & Vuilleumier, P. Perceptual awareness and its loss in unilateral neglect and extinction. Cognition 79, 39–88 (2001).

    CAS  PubMed  Google Scholar 

  30. Vallar, G. Spatial hemineglect in humans. Trends Cogn. Sci. 2, 87–97 (1998).

    CAS  PubMed  Google Scholar 

  31. Pavani, F., Ladavas, E. & Driver, J. Auditory and multisensory aspects of visuospatial neglect. Trends Cogn. Sci. 7, 407–414 (2003).

    PubMed  Google Scholar 

  32. Driver, J. & Mattingley, J. B. Parietal neglect and visual awareness. Nature Neurosci. 1, 17–22 (1998).

    CAS  PubMed  Google Scholar 

  33. Critchley, M. The Parietal lobes (Arnold, London, 1953).

    Google Scholar 

  34. Berryhill, M. E., Phuong, L., Picasso, L., Cabeza, R. & Olson, I. R. Parietal lobe and episodic memory: bilateral damage causes impaired free recall of autobiographical memory. J. Neurosci. 27, 14415–14423 (2007). This study reported the first evidence of significant deficits in episodic-memory retrieval following parietal lesions. Consistent with the AtoM model, patients with bilateral ventral parietal lesions showed a deficit in spontaneously reporting details in their autobiographical memories but could provide these details when probed.

    CAS  PubMed  Google Scholar 

  35. Davidson, P. S. R. et al. Does lateral parietal cortex support episodic memory? Evidence from focal lesion patients. Neuropsychologia 46, 1743–1755 (2008). This study demonstrated that patients with unilateral parietal lesions show deficits in experiencing recollection, even when they show normal source-memory performance when tested with specific probes. This pattern is consistent with the AtoM model.

    PubMed  PubMed Central  Google Scholar 

  36. Yonelinas, A. P. The nature of recollection and familiarity: a review of 30 years of research. J. Mem. Lang. 46, 441–517 (2002).

    Google Scholar 

  37. Simons, J. S. et al. Is the parietal lobe necessary for recollection in humans? Neuropsychologia 46, 1185–1191 (2008). This study showed that unilateral parietal lesions, which overlap with regions that are activated during source-memory tasks, do not significantly impair source-memory performance.

    PubMed  Google Scholar 

  38. Haramati, S., Soroker, N., Dudai, Y. & Levy, D. A. The posterior parietal cortex in recognition memory: a neuropsychological study. Neuropsychologia 46, 1756–1766 (2008). This study investigated patients with lesions that included the parietal cortex. Patients with left-hemisphere lesions were not impaired in recognition memory for words, pictures and sounds.

    PubMed  Google Scholar 

  39. Rossi, S. et al. Prefrontal and parietal cortex in human episodic memory: an interference study by repetitive transcranial magnetic stimulation. Eur. J. Neurosci. 23, 793–800 (2006). This study did not find a significant effect of TMS stimulation on episodic-retrieval performance.

    PubMed  Google Scholar 

  40. Kapur, S. et al. Functional role of the prefrontal cortex in retrieval of memories: a PET study. Neuroreport 6, 1880–1884 (1995).

    CAS  PubMed  Google Scholar 

  41. Tulving, E. et al. Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition. Proc. Natl Acad. Sci. USA 91, 2012–2015 (1994).

    CAS  PubMed  Google Scholar 

  42. Schacter, D. L., Alpert, N. M., Savage, C. R., Rauch, S. L. & Albert, M. S. Conscious recollection and the human hippocampal formation: evidence from positron emission tomography. Proc. Natl Acad. Sci. USA 93, 321–325 (1996).

    CAS  PubMed  Google Scholar 

  43. Fletcher, P. C. et al. The mind's eye—precuneus activation in memory related imagery. Neuroimage 2, 195–200 (1995).

    CAS  PubMed  Google Scholar 

  44. Buckner, R. L., Raichle, M. E., Miezin, F. M. & Petersen, S. E. PET studies of the recall of pictures and words from memory. Abstr. Soc. Neurosci. 21, 1441 (1995).

    Google Scholar 

  45. Moscovitch, M., Kapur, S., Köhler, S. & Houle, S. Distinct neural correlates of visual long-term memory for spatial location and object identity: a positron emission tomography (PET) study in humans. Proc. Natl Acad. Sci. USA 92, 3721–3725 (1995).

    CAS  PubMed  Google Scholar 

  46. Cabeza, R. et al. Brain regions differentially involved in remembering what and when: a PET study. Neuron 19, 863–870 (1997).

    CAS  PubMed  Google Scholar 

  47. Buckner, R. L. et al. Functional-anatomic study of episodic retrieval. II. Selective averaging of event-related fMRI trials to test the retrieval success hypothesis. Neuroimage 7, 163–175 (1998).

    CAS  PubMed  Google Scholar 

  48. Konishi, S., Wheeler, M. E., Donaldson, D. I. & Buckner, R. L. Neural correlates of episodic retrieval success. Neuroimage 12, 276–286 (2000).

    CAS  PubMed  Google Scholar 

  49. Rugg, M. D. & Henson, R. N. A. in The Cognitive Neuroscience of Memory Encoding and Retrieval (eds Parker, A. E., Wilding, E. L. & Bussey, T.) 3–37 (Psychology Press, Hove, 2002).

    Google Scholar 

  50. Eldridge, L. L., Knowlton, B. J., Furmanski, C. S., Bookheimer, S. Y. & Engle, S. A. Remembering episodes: a selective role for the hippocampus during retrieval. Nature Neurosci. 3, 1149–1152 (2000).

    CAS  PubMed  Google Scholar 

  51. Henson, R. N. A., Rugg, M. D., Shallice, T., Josephs, O. & Dolan, R. J. Recollection and familiarity in recognition memory: an event-related functional magnetic resonance imaging study. J. Neurosci. 19, 3962–3972 (1999).

    CAS  PubMed  Google Scholar 

  52. Wheeler, M. A. & Buckner, R. L. Functional dissociation among components of remembering: control, perceived oldness, and content. J. Neurosci. 23, 3869–3880 (2003). This article introduced the perceived-oldness hypothesis of parietal contributions to episodic retrieval.

    CAS  PubMed  Google Scholar 

  53. Kahn, I., Davachi, L. & Wagner, A. D. Functional-neuroanatomic correlates of recollection: implications for models of recognition memory. J. Neurosci. 24, 4172–4180 (2004).

    CAS  PubMed  Google Scholar 

  54. Dobbins, I. G., Foley, H., Schacter, D. L. & Wagner, A. D. Executive control during episodic retrieval: multiple prefrontal processes subserve source memory. Neuron 35, 989–996 (2002).

    CAS  PubMed  Google Scholar 

  55. Dobbins, I. G., Rice, H. J., Wagner, A. D. & Schacter, D. L. Memory orientation and success: separable neurocognitive components underlying episodic recognition. Neuropsychologia 41, 318–333 (2003).

    PubMed  Google Scholar 

  56. Dobbins, I. G. & Wagner, A. D. Domain-general and domain-sensitive prefrontal mechanisms for recollecting events and detecting novelty. Cereb. Cortex 15, 1768–1778 (2005).

    PubMed  Google Scholar 

  57. Wagner, A., Shannon, B., Kahn, I. & Buckner, R. Parietal lobe contributions to episodic memory retrieval. Trends Cogn. Sci. 9, 445–453 (2005). This article reviews fMRI evidence of and theoretical accounts about the role of the parietal cortex in episodic retrieval.

    PubMed  Google Scholar 

  58. Baddeley, A. Working memory: looking back and looking forward. Nature Rev. Neurosci. 4, 829–839 (2003).

    CAS  Google Scholar 

  59. Vilberg, K. L. & Rugg, M. D. Memory retrieval and the parietal cortex: a review of evidence from event-related fMRI. Neuropsychologia 46, 1787–1799 (2008). This article includes a meta-analysis of fMRI activations during episodic retrieval and attributes the role of the ventral parietal cortex to a working-memory module known as the episodic buffer.

    PubMed  PubMed Central  Google Scholar 

  60. Wheeler, M. E. & Buckner, R. L. Functional-anatomic correlates of remembering and knowing. Neuroimage 21, 1337–1349 (2004). Using the remember–know paradigm, this fMRI study demonstrated that recollection engages ventral parietal regions, whereas familiarity engages more dorsal parietal regions.

    PubMed  Google Scholar 

  61. Yonelinas, A. P., Otten, L. J., Shaw, K. N. & Rugg, M. D. Separating the brain regions involved in recollection and familiarity in recognition memory. J. Neurosci. 25, 3002–3008 (2005).

    CAS  PubMed  Google Scholar 

  62. Daselaar, S. M., Fleck, M. S. & Cabeza, R. E. Triple dissociation in the medial temporal lobes: recollection, familiarity, and novelty. J. Neurophysiol. 96, 1902–1911 (2006).

    CAS  PubMed  Google Scholar 

  63. Kim, H. & Cabeza, R. Trusting our memories: dissociating the neural correlates of confidence in veridical vs. illusory memories. J. Neurosci. 27, 12190–12197 (2007).

    CAS  PubMed  Google Scholar 

  64. Moritz, S., Glascher, J., Sommer, T., Buchel, C. & Braus, D. F. Neural correlates of memory confidence. Neuroimage 33, 1188–1193 (2006).

    PubMed  Google Scholar 

  65. Skinner, E. L. & Fernandes, M. A. Neural correlates of recollection and familiarity: a review of neuroimaging and patient data. Neuropsychologia 45, 2163–2179 (2007).

    PubMed  Google Scholar 

  66. Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P. & Shulman, G. L. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neurosci. 3, 292–297 (2000).

    CAS  PubMed  Google Scholar 

  67. Clark, V. P., Fannon, S., Lai, S., Benson, R. & Bauer, L. Responses to rare visual target and distractor stimuli using event-related fMRI. J. Neurophysiol. 83, 3133–3139 (2000).

    CAS  PubMed  Google Scholar 

  68. Downar, J., Crawley, A. P., Mikulis, D. J. & Davis, K. D. A multimodal cortical network for the detection of changes in the sensory environment. Nature Neurosci. 3, 277–283 (2000).

    CAS  PubMed  Google Scholar 

  69. Downar, J., Crawley, A. P., Mikulis, D. J. & Davis, K. D. The effect of task relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study. Neuroimage 14, 1256–1267 (2001).

    CAS  PubMed  Google Scholar 

  70. Kiehl, K. A., Laurens, K. R., Duty, T. L., Forster, B. B. & Liddle, P. F. Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study. Psychophysiology 38, 133–142 (2001).

    CAS  PubMed  Google Scholar 

  71. Marois, R., Leung, H. C. & Gore, J. C. A stimulus-driven approach to object identity and location processing in the human brain. Neuron 25, 717–728 (2000).

    CAS  PubMed  Google Scholar 

  72. Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L. & Snyder, A. Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cereb. Cortex 11, 825–836 (2001).

    CAS  PubMed  Google Scholar 

  73. Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Cabeza, R. et al. Attention-related activity during episodic memory retrieval: a cross-function fMRI study. Neuropsychologia 41, 390–399 (2003).

    PubMed  Google Scholar 

  75. Serences, J. T. et al. Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychol. Sci. 16, 114–122 (2005).

    PubMed  Google Scholar 

  76. Shulman, G. L., Ollinger, J. M., Linenweber, M., Petersen, S. E. & Corbetta, M. Multiple neural correlates of detection in the human brain. Proc. Natl Acad. Sci. USA 98, 313–318 (2001).

    CAS  PubMed  Google Scholar 

  77. Milner, B. Interhemispheric differences in the localization of psychological processes in man. Br. Med. Bull. 27, 272–277 (1971).

    CAS  PubMed  Google Scholar 

  78. Arrington, C. M., Carr, T. H., Mayer, A. R. & Rao, S. M. Neural mechanisms of visual attention: object-based selection of a region in space. J. Cogn. Neurosci. 12, 106–117 (2000).

    PubMed  Google Scholar 

  79. Kincade, J. M., Abrams, R. A., Astafiev, S. V., Shulman, G. L. & Corbetta, M. An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. J. Neurosci. 25, 4593–4604 (2005).

    CAS  PubMed  Google Scholar 

  80. Henson, R. N. A., Rugg, M. D., Shallice, T. & Dolan, R. J. Confidence in recognition memory for words: dissociating right prefrontal roles in episodic retrieval. J. Cogn. Neurosci. 12, 913–923 (2000).

    CAS  PubMed  Google Scholar 

  81. Fleck, M. S., Daselaar, S. M., Dobbins, I. G. & Cabeza, R. Role of prefrontal and anterior cingulate regions in decision-making processes shared by memory and nonmemory tasks. Cereb. Cortex 16, 1623–1630 (2006).

    PubMed  Google Scholar 

  82. Prince, S. E., Tsukiura, T., Daselaar, S. M. & Cabeza, R. Distinguishing the neural correlates of episodic memory encoding and semantic memory retrieval. Psychol. Sci. 18, 144–151 (2007).

    PubMed  Google Scholar 

  83. Thompson-Schill, S. L., D'Esposito, M., Aguirre, G. K. & Farah, M. J. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc. Natl Acad. Sci. USA 94, 14792–14797 (1997).

    CAS  PubMed  Google Scholar 

  84. Baddeley, A. The episodic buffer: a new component of working memory? Trends Cogn. Sci. 4, 417–423 (2000).

    CAS  PubMed  Google Scholar 

  85. Rotello, C. M. & Heit, E. Two-process models of recognition memory: evidence for recall-to-reject? J. Mem. Lang. 40, 432–453 (1999).

    Google Scholar 

  86. Moscovitch, M. Memory and working-with-memory: a component process model based on modules and central systems. J. Cogn. Neurosci. 4, 257–267 (1992).

    CAS  PubMed  Google Scholar 

  87. Moscovitch, M. in Memory Systems (eds Schacter, D. L. & Tulving, E.) 269–310 (MIT Press, Cambridge, Massachusetts, 1994).

    Google Scholar 

  88. Jacoby, L. L., Woloshyn, V. & Kelley, C. M. Becoming famous without being recognized: unconscious influences of memory produced by divided attention. J. Exp. Psychol. Gen. 118, 115–125 (1989).

    Google Scholar 

  89. Kane, M. J. & Engle, R. W. Working-memory capacity, proactive interference, and divided attention: limits on long-term memory retrieval. J. Exp. Psychol. Learn. Mem. Cogn. 26, 336–358 (2000).

    CAS  PubMed  Google Scholar 

  90. Moscovitch, M. Cognitive resources and dual-task interference effects at retrieval in normal people: the role of the frontal lobes and medial temporal cortex. Neuropsychology 8, 524–534 (1994).

    Google Scholar 

  91. Craik, F. I. M., Govoni, R., Naveh-Benjamin, M. & Anderson, N. D. The effects of divided attention on encoding and retrieval processes in human memory. J. Exp. Psychol. Gen. 125, 159–180 (1996).

    CAS  PubMed  Google Scholar 

  92. Fernandes, M. A. & Moscovitch, M. Divided attention and memory: evidence of substantial interference effects at retrieval and encoding. J. Exp. Psychol. Gen. 129, 155–176 (2000).

    CAS  PubMed  Google Scholar 

  93. Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L. & Raichle, M. E. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl Acad. Sci. USA 103, 10046–10051 (2006).

    CAS  PubMed  Google Scholar 

  94. Donaldson, D. I., Petersen, S. E. & Buckner, R. L. Dissociating memory retrieval processes using fMRI: evidence that priming does not support recognition memory. Neuron 31, 1047–1059 (2001).

    CAS  PubMed  Google Scholar 

  95. Donaldson, D. I., Petersen, S. E., Ollinger, J. M. & Buckner, R. L. Dissociating state and item components of recognition memory using fMRI. Neuroimage 13, 129–142 (2001).

    CAS  PubMed  Google Scholar 

  96. Henson, R. N., Hornberger, M. & Rugg, M. D. Further dissociating the processes involved in recognition memory: an fMRI study. J. Cogn. Neurosci. 17, 1058–1073 (2005).

    PubMed  Google Scholar 

  97. Herron, J. E., Henson, R. N. & Rugg, M. D. Probability effects on the neural correlates of retrieval success: an fMRI study. Neuroimage 21, 302–310 (2004).

    PubMed  Google Scholar 

  98. Maratos, E. J., Dolan, R. J., Morris, J. S., Henson, R. N. & Rugg, M. D. Neural activity associated with episodic memory for emotional context. Neuropsychologia 39, 910–920 (2001).

    CAS  PubMed  Google Scholar 

  99. McDermott, K. B., Jones, T. C., Petersen, S. E., Lageman, S. K. & Roediger, H. L. Retrieval success is accompanied by enhanced activation in anterior prefrontal cortex during recognition memory: an event-related fMRI study. J. Cogn. Neurosci. 12, 965–976 (2000).

    CAS  PubMed  Google Scholar 

  100. Ragland, J. D. et al. Event-related fMRI of frontotemporal activity during word encoding and recognition in schizophrenia. Am. J. Psychiatry 161, 1004–1015 (2004).

    PubMed  PubMed Central  Google Scholar 

  101. Ragland, J. D., Valdez, J. N., Loughead, J., Gur, R. C. & Gur, R. E. Functional magnetic resonance imaging of internal source monitoring in schizophrenia: recognition with and without recollection. Schizophr. Res. 87, 160–171 (2006).

    PubMed  PubMed Central  Google Scholar 

  102. Shannon, B. J. & Buckner, R. L. Functional-anatomical correlates of memory retrieval that suggest nontraditional processing roles for multiple distinct regions within posterior neocortex. J. Neurosci. 24, 10084–10092 (2004).

    CAS  PubMed  Google Scholar 

  103. Tsukiura, T., Mochizuki-Kawai, K. & Fujii, T. The effect of encoding strategies on medial temporal lobe activations during the recognition of words: an event-related fMRI study. Neuroimage 25, 452–461 (2005).

    PubMed  Google Scholar 

  104. von Zerssen, G. C., Mecklinger, A., Opitz, B. & von Cramon, D. J. Conscious recollection and illusory recognition: an event-related fMRI study. Eur. J. Neurosci. 13, 2148–2156 (2001).

    CAS  PubMed  Google Scholar 

  105. Leube, D. T., Erb, M., Grodd, W., Bartels, M. & Kircher, T. T. Successful episodic memory retrieval of newly learned faces activates a left fronto-parietal network. Cogn. Brain Res. 18, 97–101 (2003).

    Google Scholar 

  106. Leveroni, C. L. et al. Neural systems underlying the recognition of familiar and newly learned faces. J. Neurosci. 20, 878–886 (2000).

    CAS  PubMed  Google Scholar 

  107. Weis, S., Klaver, P., Reul, J., Elger, C. E. & Fernandez, G. Temporal and cerebellar brain regions that support both declarative memory formation and retrieval. Cereb. Cortex 14, 256–267 (2004).

    PubMed  Google Scholar 

  108. Tulving, E. Memory and consciousness. Can. Psychol. 25, 1–12 (1985).

    Google Scholar 

  109. Fenker, D. B., Schott, B. H., Richardson-Klavehn, A., Heinze, H. J. & Duzel, E. Recapitulating emotional context: activation of amygdala, hippocampus and fusiform cortex during recollection and familiarity. Eur. J. Neurosci. 21, 1993–1999 (2005).

    PubMed  Google Scholar 

  110. Montaldi, D., Spencer, T. J., Roberts, N. & Mayes, A. R. The neural system that mediates familiarity memory. Hippocampus 16, 504–520 (2006).

    PubMed  Google Scholar 

  111. Johnson, J. D. & Rugg, M. D. Recollection and the reinstatement of encoding-related cortical activity. Cereb. Cortex 17, 2507–2515 (2007).

    PubMed  Google Scholar 

  112. Vilberg, K. L. & Rugg, M. D. Dissociation of the neural correlates of recognition memory according to familiarity, recollection, and amount of recollected information. Neuropsychologia 45, 2216–2225 (2007).

    PubMed  PubMed Central  Google Scholar 

  113. Woodruff, C. C., Johnson, J. D., Uncapher, M. R. & Rugg, M. D. Content-specificity of the neural correlates of recollection. Neuropsychologia 43, 1022–1032 (2005).

    PubMed  Google Scholar 

  114. Sharot, T., Delgado, M. R. & Phelps, E. A. How emotion enhances the feeling of remembering. Nature Neurosci. 7, 1376–1380 (2004).

    CAS  PubMed  Google Scholar 

  115. Cansino, S., Marquet, P., Dolan, R. J. & Rugg, M. D. Brain activity underlying encoding and retrieval of source memory. Cereb. Cortex 12, 1048–1056 (2002).

    PubMed  Google Scholar 

  116. Kensinger, E. A. & Schacter, D. L. Neural processes underlying memory attribution on a reality-monitoring task. Cereb. Cortex 16, 1126–1133 (2006).

    PubMed  Google Scholar 

  117. Iidaka, T., Matsumoto, A., Nogawa, J., Yamamoto, Y. & Sadato, N. Frontoparietal network involved in successful retrieval from episodic memory. Spatial and temporal analyses using fMRI and ERP. Cereb. Cortex 16, 1349–1360 (2006).

    PubMed  Google Scholar 

  118. Daselaar, S. M., Fleck, M. S., Dobbins, I. G., Madden, D. J. & Cabeza, R. Effects of healthy aging on hippocampal and rhinal memory functions: an event-related fMRI study. Cereb. Cortex 16, 1771–1782 (2006).

    PubMed  PubMed Central  Google Scholar 

  119. Chua, E. F., Schacter, D. L., Rand-Giovannetti, E. & Sperling, R. A. Understanding metamemory: neural correlates of the cognitive process and subjective level of confidence in recognition memory. Neuroimage 29, 1150–1160 (2006).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) grants AG1971 and AG2770 to R.C., National Sciences and Engineering Council of Canada grant A8347 and Canadian Institutes of Health Research grant MGP 6694 to M.M., NIH grant MH071615 to I.O., and an EU Marie Curie individual fellowship to EC. We thank J. Kragel for help with image construction, and P. Davidson and B. Levine for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Cabeza.

Supplementary information

Supplementary information S1 (Table)

Activation peaks for retrieval success effects (PDF 183 kb)

Supplementary information S2 (Table)

Correlation between memory accuracy (d') and dorsal-ventral distribution of left parietal activations during episodic retrieval (PDF 167 kb)

Supplementary information S3 (Table)

Activation peaks for Bottom-up AtoM effects (PDF 188 kb)

Supplementary information S4 (Table)

Activation peaks for Top-down AtoM effects (PDF 172 kb)

Related links

Related links

FURTHER INFORMATION

Roberto Cabeza's homepage

Elisa Ciaramelli's homepage

Ingrid Olsen's homepage

Morris Moscovitch's homepage

Glossary

Episodic memory

Memory for personally experienced past events.

Medial temporal lobe

(MTL). A brain area that contains several structures that are critical for declarative-memory function, such as the hippocampus and the parahippocampal gyrus.

Event-related fMRI

A type of fMRI study in which neural activity during specific trial types is extracted and averaged to allow researchers to contrast trials associated with different behavioural responses, such as successful versus unsuccessful retrieval trials.

Hemispatial neglect

A lesion-induced neurological disorder that is characterized by impaired awareness of the contralesional side of the external world, one's own body and even internal representations.

Balint's syndrome

A neurological syndrome, caused by bilateral damage to the posterior parietal and lateral occipital cortices, that has three hallmark symptoms: simultanagnosia, optic ataxia and oculomotor apraxia.

Retrograde amnesia

The loss of or inability to remember information that was previously stored in long-term memory.

Anterograde amnesia

The inability to store new information in long-term memory.

Autobiographical memory

Memory for one's personal past, such as memory for one's birthday party.

Source memory

Memory for the context in which an item or event was previously encountered.

Item-recognition memory

Memory that allows us to decide whether an item (such as a word) was previously encountered.

Transcranial magnetic stimulation

(TMS). A technique in which a strong magnetic field is applied to the scalp to disrupt the function of a cortical area on the other side of the cranium. If ongoing cognitive performance is impaired, the affected cortical area can be assumed to be necessary for the task.

Mental imagery

The visualization of images 'in the mind's eye' in the absence of a stimulus.

Hits

Correctly recognized old items in a recognition-memory test.

Correct rejections

Correctly recognized new items in a recognition-memory test.

Signal-detection models of recognition memory

Models that assume that items in a recognition-memory test vary in memory strength (the degree of certainty that the items were previously encountered). Although memory strength is on average greater for old items than for new items, the two distributions overlap. When memory strength exceeds a certain criterion the item is classified as old; otherwise it is classified as new.

Top-down attention

Attention that is guided by goals.

Bottom-up attention

This term is usually used to describe attention that is guided by incoming sensory information. According to the AtoM model, attention can be driven by incoming information regardless of whether the information comes from the senses or from memory.

Visual search paradigm

An attention task that requires participants to find a target (such as the letter F) hidden among distractors (such as many instances of the letter E).

Memory neglect

A hypothetical syndrome in which sufferers have a deficient ability to spontaneously detect details in retrieved memories (impaired bottom-up attention) but a preserved ability to search and find these details when guided by specific goals (spared top-down attention).

Memory simultanagnosia

A hypothetical syndrome associated with a difficulty in retrieving multiple details of memory simultaneously.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabeza, R., Ciaramelli, E., Olson, I. et al. The parietal cortex and episodic memory: an attentional account. Nat Rev Neurosci 9, 613–625 (2008). https://doi.org/10.1038/nrn2459

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2459

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing