Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microtubule assembly, organization and dynamics in axons and dendrites

Key Points

  • One of the key questions of neurobiology is how neurons polarize to acquire two molecularly and functionally distinct compartments that emerge from the cell body: a single axon and multiple dendrites, which provide the basis for unidirectional signal transmission in the mature nervous system.

  • Cultures of hippocampal pyramidal neurons have been used as a model system to analyse the cellular and molecular mechanisms that underlie the development and maintenance of neuronal polarity.

  • Phosphoinositide 3-kinase (PI3K) signalling, local actin instability in growth cones and the selective stabilization of microtubules in a particular neurite have emerged as crucial events triggering axon specification.

  • Neuronal microtubules are regulated by many proteins, including assembly promoting factors, such as collapsin response mediator protein 2 (CRMP2); stabilizers, such as structural or classical microtubule-associated proteins (MAPs); destabilizing factors, such as stathmin; microtubule severing proteins, such as katanin; plus end tracking proteins, such as adenomatous polyposis coli and end-binding protein 1 (also known as MAPRE1); microtubule-based motors of the kinesin and dynein superfamilies; and multiple kinases, such as glycogen synthase kinase 3, LKB1 (also known as STK11) and LKB1's interacting partner STRAD.

  • Stable microtubules provide nucleation seeds for microtubule assembly and protrusion, as well as tracks for the preferential binding of microtubule-based motors that transport membrane-bound organelles and regulatory macromolecular complexes during axon formation.

  • Dynamic microtubules in growth cones act as sensors of cellular conditions by extending in various directions in the peripheral actin-rich domain. Some of them interact with components of the cell cortex to activate signalling pathways required for regulating actin dynamics and axonal growth.

  • The plus ends of microtubules have a central role in the interactions that occur between microtubules and the actin cytoskeleton, which are required for neuronal polarization. Plus end tracking proteins associate and specifically accumulate at the plus ends of microtubules, and control microtubule dynamics, growth directionality and interactions with components of the cell cortex.

  • Positive and negative feedback loops mediated by small Rho GTPases, guanine nucleotide exchange factors, GTPase activating proteins and their downstream effectors also regulate the crosstalk between microtubules and actin filaments that is required for axon and dendrite formation.

  • Differences in the orientation of microtubules distinguish axons from dendrites, and the minus end-based motor dynein has a crucial role in organizing dendritic arbors and the uniform orientation of axonal microtubules.

  • Microtubules have also been implicated in regulating the conversion of a motile growth cone into a synaptic terminal. Recently, dynamic microtubules have been implicated in spine development.

Abstract

During the past decade enormous advances have been made in our understanding of the basic molecular machinery that is involved in the development of neuronal polarity. Far from being mere structural elements, microtubules are emerging as key determinants of neuronal polarity. Here we review the current understanding of the regulation of microtubule assembly, organization and dynamics in axons and dendrites. These studies provide new insight into microtubules' function in neuronal development and their potential contribution to plasticity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microtubule organization and organelle distribution in axons and dendrites.
Figure 2: Microtubule organization in developing axons.
Figure 3: Microtubule–actin interactions in axonal growth cones.
Figure 4: Regulation of the synaptic microtubule cytoskeleton.

References

  1. Craig, A. M. & Banker, G. Neuronal polarity. Annu. Rev. Neurosci. 17, 267–310 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Sosa, L. et al. IGF-1 receptor is essential for the establishment of hippocampal neuronal polarity. Nature Neurosci. 9, 993–995 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Arimura, N. & Kaibuchi, K. Neuronal polarity: from extracellular signals to intracellular mechanisms. Nature Rev. Neurosci. 8, 194–205 (2007).

    Article  CAS  Google Scholar 

  4. Barnes, A. P., Solecki, D. & Polleux, F. New insights into the molecular mechanisms specifying neuronal polarity in vivo. Curr. Opin. Neurobiol. 18, 44–52 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Luo, L. Rho GTPases in neuronal morphogenesis. Nature Rev. Neurosci. 1, 173–179 (2000).

    Article  CAS  Google Scholar 

  6. Da Silva, J. S. & Dotti, C. G. Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nature Rev. Neurosci. 3, 694–704 (2002).

    Article  CAS  Google Scholar 

  7. Jan, Y. N. & Jan, L. Y. The control of dendritic development. Neuron 40, 229–242 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Govek, E. E., Newey, S. E. & Van Aelst, L. The role of Rho GTPases in neuronal development. Genes Dev. 19, 1–49 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Wiggin, G. R., Fawcett, J. P. & Pawson, T. Polarity proteins in axon specification and synaptogenesis. Dev. Cell 8, 803–816 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Baas, P. W. Neuronal polarity: microtubules strike back. Nature Cell Biol. 4, 194–195 (2002). An excellent short review that shifted attention to microtubules as key regulators of neuronal polarization.

    Article  CAS  Google Scholar 

  11. Dent, E. W. & Gentler, F. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40, 209–227 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Witte, H. & Bradke, F. The role of the cytoskeleton during neuronal polarization. Curr. Opin. Neurobiol. 18, 1–9 (2008).

    Article  CAS  Google Scholar 

  13. Desai, A. & Mitchison, T. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Nogales, E. Structural insights into microtubule function. Annu. Rev. Biophys. Biomol. Struct. 30, 397–420 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Burbank, K. S. & Mitchison, T. Microtubule dynamic instability. Curr. Biol. 25, R516–R517 (2006).

    Article  CAS  Google Scholar 

  16. Kirschner, M. & Mitchison, T. Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329–342 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Inoue, S. & Salmon, E. D. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6, 1619–1640 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gundersen, G. G. & Bretscher, A. Microtubule asymmetry. Science 300, 2040–2041 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Gundersen, G. G. Evolutionary conservation of microtubule-capture mechanisms. Nature Rev. Mol. Cell Biol. 3, 296–304 (2002).

    Article  CAS  Google Scholar 

  20. Gundersen, G. G., Gomes, E. R. & Wen, Y. Cortical control of microtubule stability and polarization. Curr. Opin. Cell Biol. 16, 106–112 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Siegrist, S. E. & Doe, C. Q. Microtubule-induced cortical cell polarity. Genes Dev. 21, 483–496 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Yamada, K. M., Spooner, B. S. & Wessells, N. K. Ultrastructure and function of growth cones and axons of cultured nerve cells. J. Cell Biol. 49, 614–635 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamada, K. M., Spooner, B. S. & Wessells, N. K. Axon growth: role of microfilaments and microtubules. Proc. Natl Acad. Sci. USA 66, 1206–1212 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Daniels, M. P. Fine structural changes in neurons associated with colchicine inhibition of nerve fiber formation in vitro. J. Cell Biol. 58, 463–470 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Drubin, D., Feinstein, S. C., Shooter, E. M. & Kirschner, M. Nerve growth factor induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors. J. Cell Biol. 101, 1790–1807 (1985).

    Article  Google Scholar 

  26. Ferreira, A., Busciglio, J. & Caceres, A. Microtubule formation and neurite outgrowth in cerebellar macroneurons that develop in vitro: evidence for the involvement of the microtubule-associated proteins MAP1a, HMW-MAP2 and tau. Dev. Brain Res. 49, 215–228 (1989).

    Article  CAS  Google Scholar 

  27. Yu, W., Centonze, V. E., Ahmad, F. J. & Baas, P. W. Microtubule nucleation and release from the neuronal centrosomes. J. Cell Biol. 122, 349–359 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Ahmad, F. J., Yu, W., McNally, F. J. & Baas, P. W. An essential role for katanin in severing microtubules in the neuron. J. Cell Biol. 145, 305–315 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karabay, A., Yu, W., Solowska, J. M., Baird, D. & Baas, P. W. Axonal growth is sensitive to the levels of katanin, a protein that severs microtubules. J. Neurosci. 24, 5778–5788 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu, W. et al. Regulation of microtubule severing by katanin subunits during neuronal development. J. Neurosci. 25, 5573–5583 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vale, R. D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Hirokawa, N. & Noda, Y. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function and dynamics. Physiol. Rev. 88, 1089–1118 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Baas, P. W. & Buster, D. W. Slow axonal transport and the genesis of neuronal morphology. J. Neurobiol. 58, 3–17 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Ahmad, F. J., Joshi, H. C., Centonze, V. E. & Baas, P. W. Inhibition of microtubule nucleation at the neuronal centrosome compromises axon growth. Neuron 12, 271–280 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Baird, D. H., Myers, K. A., Mogensen, M., Moss, D. & Baas, P. W. Distribution of the microtubule-related protein ninein in developing neurons. Neuropharmacology 47, 677–683 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Baas, P. W., Karabay, A. & Qiang, L. Microtubules cut and run. Trends Cell Biol. 15, 518–524 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Terada, S., Kinjo, M. & Hirokawa, N. Oligomeric tubulin in large transporting complex is transported via kinesin in squid giant axons. Cell 103, 141–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Kimura, T., Watanabe, H., Iwamatsu, A. & Kaibuchi, K. Tubulin and CRMP-2 complex is transported via kinesin-1. J. Neurochem. 93, 1371–8213 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Baas, P. W. & Black, M. Individual microtubules in the axon consist of domains that differ in both composition and stability. J. Cell Biol. 111, 495–509 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Brown, A., Li, Y., Slaughter, T. & Black, M. Composite microtubules of the axon: quantitative analysis of tyrosinated and acetylated tubulin along individual axonal microtubules. J. Cell Sci. 104, 339–352 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Brown, A., Slaughter, T. & Black, M. Newly assembled microtubules are concentrated in the proximal and distal regions of growing axons. J. Cell Biol. 119, 867–882 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Baas, P. W., Ahmad, F., Pienkowski, T., Brown, A. & Black, M. Sites of microtubule stabilization for the axon. J. Neurosci. 13, 2177–2185 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, Y. & Black, M. Microtubule assembly and turnover in growing axons. J. Neurosci. 16, 531–544 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dotti, C. G., Sullivan, C. A. & Banker, G. A. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454–1468 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ferreira, A. & Cáceres, A. The expression of acetylated microtubules during axonal and dendritic growth in cerebellar macroneurons, which develop in vitro. Dev. Brain Res. 49, 205–213 (1989).

    Article  CAS  Google Scholar 

  46. Arregui, C., Busciglio, J., Cáceres, A. & Barra, H. Tyrosinated and detyrosinated microtubules in axonal processes of cerebellar macroneurons grown in culture. J. Neurosci. Res. 28, 171–181 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Dotti, C. G. & Banker, G. Intracellular organization of hippocampal neurons during the development of neuronal polarity. J. Cell Sci. Suppl. 15, 75–84 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. Witte, H., Neurkirchen, D. & Bradke, F. Microtubule stabilization specifies initial neuronal polarization. J. Cell Biol. 180, 619–632 (2008). A key paper that described how local microtubule stabilization in one neurite is a crucial event in specifying neuronal polarization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gonzalez-Billault, C., Avila, J. & Caceres, A. Evidence for a role of MAP1B in axon formation. Mol. Biol. Cell 12, 2087–2098 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bradke, F. & Dotti, C. G. Vectorial cytoplasmic flow precedes axon formation. Neuron 19, 1175–1186 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Bradke, F. & Dotti, C. G. The role of local actin instability in axon formation. Science 283, 1931–1934 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Kunda, P., Paglini, G., Quiroga, S., Kosik, K. & Caceres, A. Evidence for the involvement of Tiam1 in axon formation. J. Neurosci. 21, 2361–2372 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Goldberg, D. J. & Burmeister, D. W. Stages in axon formation: observations of growth of Aplysia axons in culture using video-enhanced contrast-differential interference contrast. J. Cell Biol. 103, 1921–1931 (1986).

    Article  CAS  PubMed  Google Scholar 

  54. Liao, G. & Gundersen, G. G. Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J. Biol. Chem. 273, 9797–9803 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Nakata, T. & Hirokawa, N. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J. Cell Biol. 162, 1045–1055 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reed, N. A. et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr. Biol. 16, 2166–2172 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Jacobson, C. B., Schnapp, B. & Banker, G. A. A change in the selective translocation of the kinesin-1 motor domain marks the initial specification of the axon. Neuron 49, 797–804 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Inagaki, N. et al. CRMP-2 induces axons in cultured hippocampal neurons. Nature Neurosci. 4, 781–782 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Fukata, Y. et al. CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nature Cell Biol. 4, 583–591 (2003).

    Article  CAS  Google Scholar 

  60. Shi, S. H., Cheng, T., Jan, L. Y. & Jan, Y. N. Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 112, 63–75 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Menager, C., Arimura, N., Fukata, Y. & Kaibuchi, K. PIP3 is involved in neuronal polarization and axon formation. J. Neurochem. 89, 109–118 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Horiguchi, K., Hanada, T., Fukui, Y. & Chishti, A. H. Transport of PIP3 by GAKIN, a kinesin 3 family protein, regulates neuronal cell polarity. J. Cell Biol. 174, 425–436 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gomis-Ruth, S., Wierenga, C. J., Bradke, F. Plasticity of polarization: changing dendrites into axons in neurons integrated in neuronal circuits. Curr. Biol. 18, 992–1000 (2008).

    Article  PubMed  CAS  Google Scholar 

  64. Tanaka, E. & Kirschner, M. W. Microtubule behavior in the growth cones of living neurons during axonal elongation. J. Cell Biol. 115, 345–363 (1991).

    Article  CAS  PubMed  Google Scholar 

  65. Tanaka, E., Ho, T. & Kirschner, M. W. The role of microtubule dynamics in growth cone motility and axonal growth. J. Cell Biol. 128, 139–155 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Etienne-Manneville, S. Cdc42-the centre of polarity. J. Cell Sci. 117, 1291–1300 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Manneville, J.-P. & Etienne-Manneville, S. Positioning centrosomes and spindle poles: looking at the periphery to find the cell centre. Biol. Cell 98, 557–565 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Zolessi, F. R., Poggi, L., Wilkinson, C. J., Chine, C. B. & Harris, W. A. Polarization and orientation of retinal ganglion cells in vivo. Neural Dev. 1, 2 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zmuda, J. F. & Rivas, R. J. The Golgi apparatus and centrosome are localized to the sites of newly emerging axons in cerebellar granule neurons in vitro. Cell Motil. Cytoskeleton 41, 18–38 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Lefcort, F. & Bentley, D. Organization of cytoskeletal elements and organelles preceding growth cone emergence from an identified neuron in situ. J. Cell Biol. 108, 1737–1749 (1989).

    Article  CAS  PubMed  Google Scholar 

  71. De Anda, F. C. et al. Centrosome localization determines neuronal polarity. Nature 436, 704–708 (2005).

    Article  PubMed  CAS  Google Scholar 

  72. Goslin, K. & Banker, G. Rapid changes in the distribution of GAP-43 correlate with the expression of neuronal polarity during normal development and under experimental conditions. J. Cell Biol. 110, 1319–1331 (1999).

    Article  Google Scholar 

  73. Akhmanova, A. & Steinmetz, M. O. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nature Rev. Mol. Cell Biol. 9, 309–322 (2008).

    Article  CAS  Google Scholar 

  74. Jaworski, J., Hoogenraad, C. C. & Akhmanova, A. Microtubule plus-end tracking proteins in differentiated mammalian cells. Int. J. Biochem. Cell Biol. 40, 619–637 (2007).

    Article  PubMed  CAS  Google Scholar 

  75. Galjart, N. Clips and clasps and cellular dynamics. Nature Rev. Mol. Cell Biol. 6, 487–498 (2006).

    Article  CAS  Google Scholar 

  76. Barth, A. I., Caro-Gonzalez, H. Y. & Nelson, W. J. Role of adenomatous polyposis coli (APC) and microtubules in directional cell migration and neuronal polarization. Semin. Cell Dev. Biol. 19, 245–251 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nakamura, M., Zhou, X. Z. & Lu, P. K. Critical role for EB1 and APC interaction in the regulation of microtubule polymerization. Curr. Biol. 11, 1062–1067 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Zunbrunn, J., Kinoshita, K., Hyman, A. A. & Nathke, I. S. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3β phosphorylation. Curr. Biol. 11, 44–49 (2001).

    Article  Google Scholar 

  79. Akhmanova, A. et al. Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell 104, 923–935 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Mimori-Kiyosue, Y. et al. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J. Cell Biol. 168, 141–153 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sapir, T., Elbaum, M. & Reiner, O. Reduction of microtubule catastrophe events by LIS1, platelet-activating factor acetylhydrolase subunit. EMBO J. 16, 6977–6984 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Coquelle, F. M. et al. LIS1, CLIP-170's key to the dynein/dynactin pathway. Mol. Cell. Biol. 22, 3089–3102 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fukata, M. et al. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109, 873–885 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Watanabe, T. et al. Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Dev. Cell 7, 871–883 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Wen, Y. et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nature Cell Biol. 6, 820–830 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Votin, V., Nelson, J. W. & Barth, A. I. Neurite outgrowth involves adenomatous polyposis coli protein and β-catenin. J. Cell Sci. 118, 5699–5708 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Shi, S. H., Cheng, T., Jan, L. Y. & Jan, Y. N. APC and GSK3β are involved in mPar3 targeting to the nascent axon and the establishment of neuronal polarity. Curr. Biol. 14, 2025–2032 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Zhou, F.-Q., Zhou, J., Dedhar, S., Wu, Y. & Snider, W. D. NGF-induced axon growth is mediated by localized inactivation of GSK3β and functions on the microtubule plus end binding protein APC. Neuron 42, 897–912 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Purro, S. A. et al. Wnt regulates axon behavior through changes in microtubule growth directionality: a new role for adenomatous polyposis coli. J. Neurosci. 28, 8644–8654 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rusan, N. M., Akong, K. & Peifer, M. Putting the model to the test: are APC proteins essential for neuronal polarity, axon outgrowth, and axon targeting? J. Cell Biol. 183, 203–212 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Morrison, E. E., Moncur, P. M. & Askam, J. M. EB1 identifies sites of microtubule polymerization during neurite development. Mol. Brain Res. 98, 145–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Jimenez, M., Paglini, E. M., Gonzalez-Billault, C., Caceres, A. & Avila, J. End-binding protein1 (EB1) complements microtubule-associated protein 1B during axogenesis. J. Neurosci. Res. 80, 350–359 (2004).

    Article  CAS  Google Scholar 

  93. Geraldo, S., Khanzada, U. K., Parsons, M., Chilton, J. & Gordon-Weeks, P. Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis. Nature Cell Biol. 10, 1181–1189 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Ayala, R., Shu, T. & Tsai, L. H. Trekking across the brain: the journey of neuronal migration. Cell 128, 29–43 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Tsai, J.-W., Chen, Y., Kriegstein, A. R. & Valle, R. B. LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J. Cell Biol. 170, 935–945 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Grabham, P. W., Seale, G. E., Bennecib, M., Goldberg, D. & Vallee, R. B. Cytoplasmic dynein and LIS1 are required for microtubule advance during growth cone remodeling and fast axonal growth. J. Neurosci. 27, 5823–5834 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Friocourt, G. et al. Doublecortin functions at the extremities of growing neuronal processes. Cereb. Cortex 13, 620–626 (2003).

    Article  PubMed  Google Scholar 

  98. Kappeler, C. et al. Branching and nucleokinesis defects in migrating interneurons derived from doublecortin knockout mice. Hum. Mol. Genet. 15, 1387–1400 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Koizumi, H., Tanaka, T. & Gleeson, J. G. Doublecortin maintains bipolar shape and nuclear translocation during migration in the adult forebrain. Nature Neurosci. 9, 779–786 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Bielas, S. L. et al. Spinophilin facilitates dephosphorylation of doublecortin by PP1 to mediate microtubule bundling at the axonal wrist. Cell 129, 579–591 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dent, E. W., Callaway, J. L., Szebenyi, G., Baas, P. W. & Kalil, K. Reorganization and movement of microtubules in growth cones and developing interstitial branches. J. Neurosci. 9, 8894–8904 (1999).

    Article  Google Scholar 

  102. Yu, W., Ahmad, F. J. & Baas, P. W. Microtubule fragmentation and partitioning during axon collateral branch formation. J. Neurosci. 14, 5872–5884 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hazan, J. et al. Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nature Genet. 23, 296–303 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Errico, A., Claudiani, P., D'Addio, M. & Rugarli, E. L. Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Hum. Mol. Genet. 13, 2121–2132 (2002).

    Article  Google Scholar 

  105. Roll-Mecak, A. & Vale, R. D. Making more microtubules by severing: a common theme of noncentrosomal microtubule arrays? J. Cell Biol. 175, 849–851 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yu, W. et al. The microtubule-severing proteins spastin and katanin participate differently in the formation of axon branches. Mol. Biol. Cell 19, 1485–1498 (2008). This study described different mechanisms used by microtubule severing proteins for regulating axon growth and collateral branching.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Qiang, L., Yu, W., Andreadis, A., Luo, M. & Baas, P. W. Tau protects microtubules in the axon from severing by katanin. J. Neurosci. 26, 3120–3129 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Grenningloh, G., Soehrman, S., Bondallaz, P., Ruchti, E. & Cadas, H. Role of the microtubule destabilizing proteins SCG10 and stathmin in neuronal growth. J. Neurobiol. 58, 60–69 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Charbaut, E., Chauvin, S., Enslen, H., Zamaroczy, S. & Sobel, A. Two separate motifs cooperate to target stathmin-related proteins to the Golgi complex. J. Cell Sci. 118, 2313–2323 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Manna, T., Grenningloh, G., Miller, H. P. & Wilson, L. Stathmin family protein SCG10 differentially regulates the plus and minus end dynamics of microtubules at steady state in vitro; implications for its role in neurite outgrowth. Biochemistry 46, 3543–3542 (2008).

    Article  CAS  Google Scholar 

  111. Morii, H., Shiraishi-Yamaguchi, Y. & Mori, N. SCG10, a microtubule destabilizing factor, stimulates the neurite outgrowth by modulating microtubule dynamics in rat hippocampal primary cultured neurons. J. Neurobiol. 66, 1101–1114 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Poulain, F. E. & Sobel, A. The “SCG10-like protein” CLIP is a novel regulator of axonal branching in hippocampal neurons, unlike SCG10. Mol. Cell. Neurosci. 34, 137–146 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Homma, N. et al. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114, 229–239 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Dehmelt, L. & Halpain, S. The MAP2/Tau family of microtubule-associated proteins. Genome Biol. 6, 204 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Halpain, S. & Dehmelt, L. The MAP1 family of microtubule-associated proteins. Genome Biol. 7, 224 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Cáceres, A. & Kosik, K. Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature 343, 461–463 (1990).

    Article  PubMed  Google Scholar 

  117. Cáceres, A., Mautino, J. & Kosik, K. Suppression of MAP-2 in cultured cerebellar macroneurons inhibits minor neurite formation. Neuron 9, 607–618 (1992).

    Article  PubMed  Google Scholar 

  118. Harada, A. et al. Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 369, 488–491 (1994).

    Article  CAS  PubMed  Google Scholar 

  119. Takei, Y. et al. Delayed development of nervous system in mice homozygous for disrupted microtubule-associated protein 1B (MAP1B) gene. J. Cell Biol. 137, 1615–1626 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dawson, H. N. et al. Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J. Cell Sci. 114, 1179–1187 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Meixner, A. et al. MAP1B is required for axon guidance and is involved in the development of the central and peripheral nervous system. J. Cell Biol. 151, 1169–1178 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. DiTella, M., Feiguin, F., Carri, N. & Cáceres, A. MAP-1b/Tau functional redundancy during laminin-enhanced axonal growth. J. Cell Sci. 109, 467–477 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Takei, Y., Teng, J., Harada, A. & Hirokawa, N. Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. J. Cell Biol. 150, 989–1000 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sharma, V. M., Litersky, J. M., Bhaskar, K. & Lee, G. Tau impacts on growth-factor-stimulated actin remodeling. J. Cell Sci. 120, 748–757 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Utreras, E. et al. Microtubule-associated protein 1B interaction with tubulin tyrosine ligase contributes to the control of microtubule tyrosination. Dev. Neurosci. 30, 200–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Gonzalez-Billault, C. et al. Microtubule-associated protein 1B function during normal development, regeneration, and pathological conditions in the nervous system. J. Neurobiol. 58, 48–59 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Lucas, F. R., Goold, R. G., Gordon-Weeks, P. & Salinas, P. C. Inhibition of GSK3β leading to the loss of phosphorylated MAP-1B is an early event in axonal remodeling induced by WNT-7a or lithium. J. Cell Sci. 111, 1351–1361 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Goold, R. G. & Gordon-Weeks, P. The MAP kinase pathway is upstream of the activation of GSK3β that enables it to phosphorylate MAP1B and contributes to the stimulation of axon growth. Mol. Cell. Neurosci. 28, 524–534 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Zhou, F. Q. & Snider, W. D. Cell biology: GSK3-3β and microtubule assembly in axons. Science 308, 211–214 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Jiang, H., Guo, W., Liang, X. & Rao, Y. Both the establishment and maintenance of neuronal polarity require active mechanisms: critical roles of GSK3β and its upstream regulators. Cell 120, 123–135 (2005).

    CAS  PubMed  Google Scholar 

  131. Yoshimura, T. et al. GSK3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120, 137–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Gartner, A. & Hall, A. Neuronal polarity is regulated by glycogen synthase kinase-3 (GSK3β) independently of Akt/PKB serine phosphorylation. J. Cell Sci. 119, 3927–3934 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Kim, W.-Y. et al. Essential roles for GSK3s and GSK3-primed substrates in neurotrophin-induced and hippocampal axon growth. Neuron 52, 981–996 (2006). An excellent study of GSK3 function in axon formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Garrido, J. J., Simon, D., Varea, O. & Wandosell, F. GSK3α and GSK3β are necessary for axon formation. FEBS Lett. 581, 1579–1586 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Morfini, G., Szebenyi, G., Eluru, R., Ratner, N. & Brady, S. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 21, 281–293 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Shelly, M., Cancedda, L., Heilshorm, S., Sumbre, G. & Poo, M. LKB1/STRAD promotes axon initiation during neuronal polarization. Cell 129, 565–577 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Barnes, A. P. et al. LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell 129, 549–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Kishi, M., Pan, Y. A., Crump, J. G. & Sanes, J. Mammalian SAD kinases are required for neuronal polarization. Science 307, 929–932 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Biernat, J. et al. Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. Mol. Biol. Cell 13, 4013–4028 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chen, Y. M. et al. Microtubule affinity-regulating kinase 2 functions downstream of the PAR3/PAR6/atypical PKC complex in regulating hippocampal neuronal polarity. Proc. Natl Acad. Sci. USA 103, 8534–8539 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chang, L., Jones, Y., Ellisman, M., Goldstein, L. S. B. & Karin, M. JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev. Cell 4, 521–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Tarauk, T. et al. JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length. J. Cell Biol. 173, 265–277 (2006).

    Article  CAS  Google Scholar 

  143. Schaefer, A. W. et al. Coordination of actin filament and microtubule dynamics during neurite outgrowth. Dev. Cell 15, 146–162 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Burnette, D. et al. Myosin II activity facilitates microtubule bundling in the neuronal growth cone neck. Dev. Cell 15, 163–169 (2008). This work, together with that of reference 143, provided detailed evidence regarding the relationship between microtubules and actin filaments during neurite extension.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhang, X. F., Schaefer, A. W., Burnette, D. T., Schoonderwoert, V. & Forscher, P. Rho-dependent contractile responses in the neuronal growth cone are independent of classical peripheral retrograde actin flow. Neuron 40, 931–944 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Da Silva, J. S. et al. RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability. J. Cell Biol. 162, 1267–1279 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nishimura, T. et al. PAR-6-PAR-3 mediates Cdc42-induced rac activation through the rac GEFs STEF/Tiam1. Nature Cell Biol. 7, 270–277 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Takefuji, M. et al. Rho-kinase modulates the function of STEF, a Rac GEF, through its phosphorylation. Biochem. Biophys. Res. Commun. 355, 788–794 (2008).

    Article  CAS  Google Scholar 

  149. Nakayama, M. et al. Rho-kinase phosphorylates Par-3 and disrupts Par complex formation. Dev. Cell 14, 205–215 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Birkenfeld, J., Nalbant, P., Yoon, S.-H. & Bokoch, G. M. Cellular functions of GEF-H1, a microtubule regulated Rho-GEF: is altered GEF-H1 activity a crucial determinant of disease pathogenesis? Trends Cell Biol. 18, 210–219 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Watabe-Uchida, M., John, K. A., Janas, J. A., Newey, S. A. & Van Aelst, L. The Rac activator DOCK7 regulates neuronal polarity through local phosphorylation of stathmin/Op18. Neuron 51, 727–739 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Choi, Y.-J. et al. Tuberous sclerosis complex proteins control axon formation. Genes Dev. 22, 2485–2495 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Chuang, J. et al. The dynein light chain Tctex-1 has a dynein-independent role in actin remodeling during neurite outgrowth. Dev. Cell 9, 75–86 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Sharp, D. J. et al. Identification of a microtubule-associated motor protein essential for dendritic differentiation. J. Cell Biol. 138, 833–843 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yu, W. et al. Depletion of a microtubule-associated motor protein induces the loss of dendritic identity. J. Neurosci. 20, 5782–5790 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zheng, Y. et al. Dynein is required for polarized dendritic transport and uniform polarity orientation in axons. Nature Cell Biol. 10, 1172–1180 (2008). This study described the role of dynein in establishing microtubule orientation and organelle distribution in axons and dendrites of D. melanogaster da neurons.

    Article  CAS  PubMed  Google Scholar 

  157. Farah, C. A. & Leclerc, N. HMWMAP2: new perspectives on a pathway to dendritic identity. Cell Motil. Cytoskeleton 65, 515–527 (2008).

    Article  PubMed  CAS  Google Scholar 

  158. Harada, A., Teng, J., Takei, Y., Oguchi, K. & Hirokawa, N. MAP2 is required for dendritic elongation, PKA anchoring in dendrites, and proper PKA signal transduction. J. Cell Biol. 158, 541–549 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Khuchua, Z. et al. Deletion of the N-terminus of murine map2 by gene targeting disrupts hippocampal ca1 neuron architecture and alters contextual memory. Neuroscience 119, 101–111 (2003).

    Article  CAS  PubMed  Google Scholar 

  160. Teng, J. et al. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth and microtubule organization. J. Cell Biol. 155, 65–76 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Farah, C. A. et al. Interaction of microtubule-associated protein-2 and p63: a new link between microtubules and rough endoplasmic reticulum membranes in neurons. J. Biol. Chem. 280, 9439–9449 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Szebenyi, G. et al. Activity-driven dendritic remodeling requires microtubule-associated protein 1A. Curr. Biol. 15, 1820–1826 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Ohkawa, N., Fujitani, K., Tokunaga, E., Furuya, S. & Inokuchi, K. The microtubule-destabilizer stathmin mediates the development of dendritic arbors in neuronal cells. J. Cell Sci. 120, 1447–1456 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Vaillant, A. R. et al. Signaling mechanisms underlying reversible, activity-dependent dendrite formation. Neuron 34, 985–998 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Roos, J., Hummel, T., Ng, N., Klambt, C. & Davis, G. M. Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth. Neuron 26, 371–382 (2000).

    Article  CAS  PubMed  Google Scholar 

  166. Hummel, T., Krukkert, K. Roos, J., Davis, G. & Klambt, C. Drosophila Futsch/22C10 is a MAP21B-like protein required for dendritic and axonal development. Neuron 26, 357–370 (2000).

    Article  CAS  PubMed  Google Scholar 

  167. Ruiz-Canada, C. et al. New synaptic bouton formation is disrupted by misregulation of microtubule stability in aPKC mutants. Neuron 42, 567–580 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Packard, M. et al. The Drosophila Wnt, wingless, provides an essential signal for pre- and postsynaptic differentiation. Cell 111, 319–330 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Franco, B. et al. Shaggy, the homolog of glycogen synthase kinase 3, controls neuromuscular junction growth in Drosophila. J. Neurosci. 27, 5315–5325 (2004).

    Google Scholar 

  170. Salinas, P. C. & Zou, Y. Wnt signaling in neural circuit assembly. Annu. Rev. Neurosci. 31, 339–358 (2008).

    Article  CAS  PubMed  Google Scholar 

  171. Trotta, N., Orso, G., Rossetto, M. G., Draga, A. & Broasle, K. The hereditary spastic paraplegia gene, spastin, regulates microtubule stability to modulate synaptic structure and function. Neuron 14, 1135–1147 (2004).

    CAS  Google Scholar 

  172. Kaech, S., Parmar, H., Roelandse, M., Bornmann, C. & Matus, A. Cytoskeletal microdifferentiation: a mechanism for organizing morphological plasticity in dendrites. Proc. Natl Acad. Sci. USA 98, 7086–7092 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Halpain, S., Spencer, K. & Graber, S. Dynamics and pathology of dendritic spines. Prog. Brain Res. 147, 29–37 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Westrum, L. E., Jones, D. H., Gray, E. G. & Barron, J. Microtubules, dendritic spines, and spines apparatuses. Cell Tissue Res. 208, 171–181 (1980).

    Article  CAS  PubMed  Google Scholar 

  175. Westrum, L. E., Jones, D. H., Burgoyne, R. D. & Barron, J. Synaptic development and microtubule organization. Cell Tissue Res. 231, 93–102 (1983).

    Article  CAS  PubMed  Google Scholar 

  176. Gray, E. G., Westrum, L. E., Burgoyne, R. D. & Barron, J. Synaptic organization and neuron microtubule distribution. Cell Tissue Res. 226, 579–588 (1982).

    Article  CAS  PubMed  Google Scholar 

  177. Caceres, A., Payne, M. R., Binder, L. I. & Steward, O. Immunocytochemical localization of actin and microtubule-associated protein MAP2 in dendritic spines. Proc. Natl Acad. Sci. USA 80, 1738–1742 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gu, J., Firestein, B. L. & Zheng, J. Q. Microtubules in dendritic spine development. J. Neurosci. 28, 12120–12124 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hu, X., Viesselmann, C., Nam, S., Merriam, E. & Dent, E. W. Activity-dependent dynamic microtubule invasion of dendritic spines. J. Neurosci. 28, 13094–13105 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Jaworski, J. et al. Dynamic microtubules regulate spine morphology and synaptic plasticity. Neuron 61, 85–100 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Penzes, P., Srivastava, D. P. & Woolfrey, K. V. Not just actin? A role for dynamic microtubules in dendritic spines. Neuron 61, 3–5 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Pfenninger, K. H. et al. Regulation of membrane expansion at the nerve growth cone. J. Cell Sci. 116, 1209–1217 (2003).

    Article  CAS  PubMed  Google Scholar 

  183. Laurino, L. et al. PI3K activation by IGF-1 is essential for the regulation of membrane expansion at the nerve growth cone. J. Cell Sci. 118, 3653–3662 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Calderon de Anda, F., Gärtner, A., Tsai, L. H. & Dotti, C. G. Pyramidal neuron polarity axis is defined at the bipolar stage. J. Cell Sci. 121, 178–185 (2008).

    Article  CAS  PubMed  Google Scholar 

  185. Portera-Cailliau, C., Weimer, R. M., De Paola, V., Caroni, P. & Svoboda, K. Diverse modes of axon elaboration in the developing neocortex. PloS Biol. 3, e272 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Nogales, E., Wolf, S. & Downing, K. H. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199–203 (1998).

    Article  CAS  PubMed  Google Scholar 

  187. Lowe, J., Li, H. & Nogales, E. Refined structure of a β-tubulin at 3.5 Å resolution. J. Mol. Biol. 313, 1045–1057 (2001).

    Article  CAS  PubMed  Google Scholar 

  188. Tuszynski, J. A. et al. The evolution of the structure of tubulin and its potential consequences for the role and function of microtubules in cells and embryos. Int. J. Dev. Biol. 50, 341–358 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Erikson, H. P. γ-tubulin nucleation: template or protofilament? Nature Cell Biol. 2, E93–E96 (2000).

    Article  Google Scholar 

  190. Inclan, Y. F. & Nogales, E. Structural models for the self-assembly and microtubule interactions of γ-, δ- and ɛ-tubulin. J. Cell Sci. 114, 413–422 (2001).

    Article  CAS  PubMed  Google Scholar 

  191. Ludueña, R. F. Multiple forms of tubulin: different gene products and covalent modifications. Int. Rev. Cytol. 178, 207–275 (1998).

    Article  PubMed  Google Scholar 

  192. Barra, H. S., Arce, C. & Argaraña, C. E. Posttranslational tyrosination/detyrosination of tubulin. Mol. Neurobiol. 2, 133–153 (1988).

    Article  CAS  PubMed  Google Scholar 

  193. Verhey, K. J. & Gaertig, J. The tubulin code. Cell Cycle 6, 2152–2160 (2007).

    Article  CAS  PubMed  Google Scholar 

  194. Hammond, J. C., Cai, D. & Verhey, K. J. Tubulin modifications and their cellular functions. Curr. Opin. Cell Biol. 20, 71–76 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bulinski, J. C. & Gundersen, G. G. Stabilization of post-translational modifications of microtubules during cellular morphogenesis. Bioessays 13, 285–293 (1991).

    Article  CAS  PubMed  Google Scholar 

  196. Palazzo, A., Ackerman, B. & Gundersen, G. G. Cell biology: tubulin acetylation and cell motility. Nature 421, 230 (2003).

    Article  CAS  PubMed  Google Scholar 

  197. Waterman-Storer, C. & Salmon, E. D. Fluorescent speckle microscopy of microtubules: how long can you go? FASEB J. 13, S225–S230 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Research Council of Argentina (CONICET) and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT). We also thank members of our laboratory for helpful discussions about neuronal polarity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Cáceres.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Alfredo Caceres's website

Glossary

Cell cortex

The region of a cell that lies beneath the plasma membrane and contains a network of actin filaments and associated proteins.

Microtubule capture

The interaction between microtubules and components of the cell cortex that results in stabilization of the microtubules.

Microtubule severing

A process through which enzymes break the lattice of the microtubule to generate multiple short microtubules that have the potential to move and reconfigure.

Nucleation

The formation of new microtubules from α-and β-tubulin heterodimers. It requires γ-tubulin protein complexes.

Taxol

A microtubule stabilizing agent and mitotic inhibitor used in cancer therapy.

Lamellipodial veil

A flattened and highly dynamic cell expansion that contains abundant branched and cross-linked actin filaments. It is particularly prominent at the leading edge of migrating cells and growth cones.

Actin ribs

Short actin filament bundles that are radially oriented and abundant in small growth cones.

Vinblastine

A natural alkaloid that binds to tubulin and inhibits microtubule formation.

Cytochalasin D

A cell-permeable and potent inhibitor of actin polymerization.

Retrograde actin flow

Myosin-driven, retrograde (relative to the substratum) movement of actin filaments in lamellipodia; it has a role in cell motility and growth cone advance.

Actin arcs

Arc-shaped actin filament bundles that are found at the transition zone between the central and peripheral domains of growth cones. Actin arcs undergo myosin II-driven contraction to compress and bundle microtubules in the growth cone central domain.

Hairpin microtubule loop

A looped portion of microtubule in a stable synaptic bouton. Disassembly of hairpin microtubule loops is associated with boutons undergoing division or with sites of sprouting.

Synaptic bouton

A button-like terminal enlargement of an axon that contains synaptic vesicles filled with neurotransmitters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conde, C., Cáceres, A. Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10, 319–332 (2009). https://doi.org/10.1038/nrn2631

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2631

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing