Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Is the rostro-caudal axis of the frontal lobe hierarchical?

Key Points

  • Recent studies have reported rostro-caudal distinctions in frontal cortex activity based on the level of abstractness of action representations. Moreover, some have proposed that these differences reflect a hierarchical organization, whereby anterior frontal regions influence processing by posterior frontal regions during the realization of abstract action goals as motor acts. However, if such a processing hierarchy indeed exists, systematic rostro-caudal patterns should be evident in the anatomy and function of the frontal cortex.

  • Evidence from single-unit recording and lesion studies of behavioural rule learning, conditional action selection and response sequencing in non-human primates suggest that prefrontal cortex neurons code for more abstract rules and categories of responses than do premotor neurons, which are located in the more-caudal frontal cortex.

  • Studies using functional MRI of humans have consistently shown systematic within-subject differences in activation from premotor cortex (caudal) to the frontal pole (rostral) based on the degree of abstraction entailed by an action selection problem.

  • Data from effective connectivity analysis of functional MRI data in humans suggests a rostral-to-caudal flow of influence, which is indirectly consistent with a rostro-caudal hierarchy of processing. Recent, preliminary evidence from lesion studies provides the first direct support for such a hierarchy by showing deficits in more-abstract action selection after caudal frontal lesions but no deficits in more-concrete action selection after rostral frontal lesions.

  • There is a gradient of laminar organization within the frontal cortex from the most anterior (least differentiated) to posterior portions. In this scheme, less differentiated areas, such as those in rostral prefrontal cortex (PFC; areas 10, 9 and 46), have more diffuse projections and are thus well situated to be at the top of a hierarchy. In contrast, more differentiated areas, such as those in caudal PFC (areas 9/46 and 8), have more intrinsic connections and are well situated to be lower in a hierarchy.

  • Afferent and efferent projections within the frontal cortex follow a principle of contiguity along the rostro-caudal dimension, such that each region projects to immediately adjacent regions that are rostral and caudal to it. Thus, area 9/46d projects to area 10 and area 6. However, the frontal cortex is not fully connected. For example, no direct connections are found between 9/46d and 9/46v, even though they are adjacent to one another.

  • Non-adjacent regions follow an asymmetry principle from rostral to caudal within the frontal cortex. Thus, area 10 projects to area 6 but there are no projections from area 6 to area 10.

  • The most rostrally localized area 10 does not project directly to parietal, temporal and occipital areas, but more-caudal frontal regions (areas 9/46 and 6) do have massive bidirectional connections with these areas.

  • During development, separate regions along the rostro-caudal axis of the frontal cortex mature at different rates. Although the premotor cortex matures the earliest, development does not progress uniformly back to front. Rather, the most caudal and rostral portions of the frontal cortex mature first, followed by the interposed lateral frontal regions.

Abstract

The frontal lobes in the brain are a component of the cerebral system that supports goal-directed behaviour. However, their functional organization remains controversial. Recent studies have reported rostro-caudal distinctions in frontal cortex activity based on the abstractness of action representations. In addition, some have proposed that these differences reflect a hierarchical organization, whereby anterior frontal regions influence processing by posterior frontal regions during the realization of abstract action goals as motor acts. However, few have considered whether the anatomy and physiology of the frontal lobes support such a scheme. To address this gap, this Review surveys anatomical, neuroimaging, electrophysiological and developmental findings, and considers the question: could the organization of the frontal cortex be hierarchical?

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytoarchitectonic divisions of the human and monkey frontal lobe.
Figure 2: Functional gradients along the rostro-caudal axis.
Figure 3: Architectonic stages of the prefrontal cortex.
Figure 4: Rostro-caudal connectivity of the frontal cortex.

References

  1. Badre, D. & Wagner, A. D. Selection, integration, and conflict monitoring; assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron 41, 473–487 (2004).

    CAS  PubMed  Google Scholar 

  2. Bunge, S. A. How we use rules to select actions: a review of evidence from cognitive neuroscience. Cogn. Affect. Behav. Neurosci. 4, 564–579 (2004).

    PubMed  Google Scholar 

  3. Carter, C. S. et al. Anterior cingulate cortex, error detection, and the on-line monitoring of performance. Science 280, 747–749 (1998).

    CAS  PubMed  Google Scholar 

  4. D'Esposito, M. et al. The neural basis of the central executive system of working memory. Nature 378, 279–281 (1995).

    CAS  PubMed  Google Scholar 

  5. Duncan, J. An adaptive coding model of neural function in prefrontal cortex. Nature Rev. Neurosci. 2, 820–829 (2001).

    CAS  Google Scholar 

  6. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001). This authoritative review provides a fundamental background on the cognitive control function of the PFC. It focuses on the theory that action goals are maintained as distributed patterns of activity in PFC, as a consequence of which other neural systems are biased to perform in goal-relevant ways.

    CAS  PubMed  Google Scholar 

  7. O'Reilly, R. C. & Frank, M. J. Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput. 18, 283–328 (2006).

    PubMed  Google Scholar 

  8. Passingham, R. E. & Rowe, J. B. in Principles of Frontal Lobe Function (eds Stuss, D. T. & Knight, R. T.) 221–232 (Oxford University Press, New York, 2002).

    Google Scholar 

  9. Petrides, M. Lateral prefrontal cortex: architectonic and functional organization. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 781–795 (2005).

    PubMed  PubMed Central  Google Scholar 

  10. Petrides, M. & Pandya, D. N. Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur. J. Neurosci. 16, 291–310 (2002).

    CAS  PubMed  Google Scholar 

  11. Petrides, M. & Pandya, D. N. in Principles of Frontal Lobe Function (eds Stuss, D. T. & Knight, R. T.) 31–50 (Oxford University Press, New York, 2002).

    Google Scholar 

  12. Stuss, D. T. & Alexander, M. P. Is there a dysexecutive syndrome? Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 901–915 (2007).

    PubMed  PubMed Central  Google Scholar 

  13. Sirigu, A. et al. Distinct frontal regions for processing sentence syntax and story grammar. Cortex 34, 771–778 (1998).

    CAS  PubMed  Google Scholar 

  14. Duncan, J. & Owen, A. M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483 (2000).

    CAS  PubMed  Google Scholar 

  15. Freedman, D. J., Reisenhuber, M., Poggio, T. & Miller, E. K. Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291, 312–316 (2001).

    CAS  PubMed  Google Scholar 

  16. Badre, D. & D'Esposito, M. Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. J. Cogn. Neurosci. 19, 2082–2099 (2007).

    PubMed  Google Scholar 

  17. Badre, D., Hoffman, J., Cooney, J. W. & D'Esposito, M. Hierarchical cognitive control deficits following damage to the human frontal lobe. Nature Neurosci. 12, 515–522 (2009). This study provides evidence that in patients with damage due to stroke the impairment at tasks requiring cognitive control at a level of abstraction depended on how far rostrally their lesion is located. This is also the first study to directly demonstrate rostral-to-caudal dependencies in processing, a necessary component of hierarchy in the frontal cortex.

    CAS  PubMed  Google Scholar 

  18. Koechlin, E. & Jubault, T. Broca's area and the hierarchical organization of human behavior. Neuron 50, 963–974 (2006).

    CAS  PubMed  Google Scholar 

  19. Koechlin, E., Ody, C. & Kouneiher, F. The architecture of cognitive control in the human prefrontal cortex. Science 302, 1181–1185 (2003). This paper reports the first neuroimaging experiment showing a rostro-caudal gradient of activity in frontal cortex based on a systematic manipulation of abstraction across conditions.

    CAS  PubMed  Google Scholar 

  20. Lashley, K. S. in Cerebral Mechanisms in Behavior (ed. Jeffress, L. A.) 112–136 (Wiley, New York, 1951).

    Google Scholar 

  21. Miller, G. A., Galanter, E. & Pribram, K. H. Plans and the Structure of Behavior (Holt, Rinehart and Winston, Inc., New York, 1960).

    Google Scholar 

  22. Newell, A. Unified Theories of Cognition (Harvard University Press, Cambridge, Massachusetts, 1990).

    Google Scholar 

  23. Rumelhart, D. E. & Norman, D. A. Simulating a skilled typist: a study of skillled cognitive-motor performance. Cogn. Sci. 6, 1–36 (1982).

    Google Scholar 

  24. Schank, R. C. & Abelson, R. Scripts, plans, goals, and understanding (Lawrence Erlbaum Associates, Ltd, Hove, UK, 1977).

    Google Scholar 

  25. Badre, D. Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends Cogn. Sci. 12, 193–200 (2008). This review discusses the various forms of abstraction that have been proposed to account for functional differences along the rostro-caudal axis of the frontal cortex, considering their common and potentially distinguishing characteristics.

    PubMed  Google Scholar 

  26. Botvinick, M. M. Multilevel structure in behaviour and in the brain: a model of Fuster's hierarchy. Philos. Trans. R. Soc. Lond. B Biol. Sci. (2007).

  27. Botvinick, M. M. Hierarchical models of behavior and prefrontal function. Trends Cogn. Sci. 12, 201–208 (2008). This paper reviews computational accounts of hierarchical control of behaviour and their relationship to frontal lobe function.

    PubMed  PubMed Central  Google Scholar 

  28. Buckner, R. L. Functional-anatomic correlates of control processes in memory. J. Neurosci. 23, 3999–4004 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bunge, S. A. & Zelazo, P. D. A brain-based account of the development of rule use in childhood. Curr. Dir. Psychol. Sci. 15, 118–121 (2006).

    Google Scholar 

  30. Christoff, K. & Gabrieli, J. D. E. The frontopolar cortex and human cognition: evidence for a rostrocaudal hierarchal organization within the human prefrontal cortex. Psychobiology 28, 168–186 (2000).

    Google Scholar 

  31. Christoff, K. & Keramatian, K. in Perspectives on Rule-Guided Behavior (eds Bunge, S. A. & Wallis, J. D.) (Oxford University Press, New York, 2007).

    Google Scholar 

  32. Courtney, S. M. Attention and cognitive control as emergent properties of information representation in working memory. Cogn. Affect Behav. Neurosci. 4, 501–516 (2004).

    PubMed  Google Scholar 

  33. Courtney, S. M., Roth, J. K. & Sala, J. B. in The Cognitive Neuroscience of Working Memory (eds Osaka, N., Logie, R. & D'Esposito, M.) 369–383 (Oxford University Press, Oxford, 2007).

    Google Scholar 

  34. Dias, R., Robbins, T. W. & Roberts, A. C. Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: restriction to novel situations and independence from “on-line” processing. J. Neurosci. 17, 9285–9297 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Fuster, J. M. The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe (Lippincott-Raven Publishers, Philadelphia, PA, 1997). This book provides an authoritative review of frontal lobe anatomy and function and articulates one of the first proposals of a hierarchical architecture of frontal lobe organization, termed the 'perception-action cycle'.

  36. Fuster, J. M. The prefrontal cortex—an update: time is of the essence. Neuron 30, 319–333 (2001).

    CAS  PubMed  Google Scholar 

  37. Fuster, J. M. Upper processing stages of the perception-action cycle. Trends Cogn. Sci. 8, 143–145 (2004).

    PubMed  Google Scholar 

  38. Hazy, T. E., Frank, M. J. & O'Reilly, R. C. Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 1601–1613 (2007).

    PubMed  PubMed Central  Google Scholar 

  39. Koechlin, E. & Hyafil, A. Anterior prefrontal function and the limits of human decision-making. Science 318, 594–598 (2007).

    CAS  PubMed  Google Scholar 

  40. Koechlin, E. & Summerfield, C. An information theoretical approach to prefrontal executive function. Trends Cogn. Sci. 11, 229–235 (2007).

    PubMed  Google Scholar 

  41. O'Reilly, R. C., Noelle, D. C., Braver, T. S. & Cohen, J. D. Prefrontal cortex and dynamic categorization tasks: representational organization and neuromodulatory control. Cereb Cortex 12, 246–257 (2002).

    PubMed  Google Scholar 

  42. Petrides, M. in From Monkey Brain to Human Brain: A Fyssen Foundation Symposium (eds Dehaene, S., Duhamel, J.-R., Hauser, M. D. & Rizzolatti, G.) 293–314 (The MIT Press, Cambridge, Massachusetts 2006).

    Google Scholar 

  43. Ramnani, N. & Owen, A. M. Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nature Rev. Neurosci. 5, 184–194 (2004).

    CAS  Google Scholar 

  44. Miller, B. T. & D'Esposito, M. Searching for “the top” in top-down control. Neuron 48, 535–538 (2005).

    CAS  PubMed  Google Scholar 

  45. Fuster, J. M., Bodner, M. & Kroger, J. Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405, 347–351 (2000).

    CAS  PubMed  Google Scholar 

  46. Rao, S. C., Rainer, G. & Miller, E. K. Integration of what and where in the primate prefrontal cortex. Science 276 (1997).

  47. Miller, E. K., Erickson, C. A. & Desimone, R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16, 5154–5167 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Asaad, W. F., Rainer, G. & Miller, E. K. Neural activity in the primate prefrontal cortex during associative learning. Neuron 21, 1399–1407 (1998).

    CAS  PubMed  Google Scholar 

  49. Passingham, R. E. The Frontal Lobes and Voluntary Action (Oxford University Press, Oxford, 1993).

    Google Scholar 

  50. Christoff, K. et al. Rostrolateral prefrontal cortex involvement in relational integration during reasoning. Neuroimage 14, 1136–1149 (2001).

    CAS  PubMed  Google Scholar 

  51. Petrides, M. in The frontal lobes revisited (ed. Perecman, E.) 91–108 (IRBN Press, New York, 1987).

    Google Scholar 

  52. Brasted, P. J. & Wise, S. P. Comparison of learning-related neuronal activity in the dorsal premotor cortex and striatum. Eur. J. Neurosci. 19, 721–740 (2004).

    PubMed  Google Scholar 

  53. di Pellegrino, G. & Wise, S. P. Visuospatial versus visuomotor activity in the premotor and prefrontal cortex of a primate. J. Neurosci. 13, 1227–1243 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hadj-Bouziane, F., Meunier, M. & Boussaoud, D. Conditional visuo-motor learning in primates: a key role for the basal ganglia. J. Physiol. Paris 97, 567–579 (2003).

    PubMed  Google Scholar 

  55. Lucchetti, C. & Bon, L. Time-modulated neuronal activity in the premotor cortex of macaque monkeys. Exp. Brain Res. 141, 254–260 (2001).

    CAS  PubMed  Google Scholar 

  56. Mitz, A. R., Godschalk, M. & Wise, S. P. Learning-dependent neuronal activity in the premotor cortex: activity during the acquisition of conditional motor associations. J. Neurosci. 11, 1855–1872 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hoshi, E. & Tanji, J. Differential involvement of neurons in the dorsal and ventral premotor cortex during processing of visual signals for action planning. J. Neurophysiol. 95, 3596–3616 (2006).

    PubMed  Google Scholar 

  58. Hoshi, E. & Tanji, J. Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Curr. Opin. Neurobiol. 17, 234–242 (2007).

    CAS  PubMed  Google Scholar 

  59. Passingham, R. E. Premotor cortex and preparation for movement. Exp. Brain Res. 70, 590–596 (1988).

    CAS  PubMed  Google Scholar 

  60. Passingham, R. E. Premotor cortex and the retrieval of movement. Brain Behav. Evol. 33, 189–192 (1989).

    CAS  PubMed  Google Scholar 

  61. Petrides, M. Deficits in non-spatial conditional associative learning after periarcuate lesions in the monkey. Behav. Brain Res. 16, 95–101 (1985).

    CAS  PubMed  Google Scholar 

  62. Petrides, M. Deficits on conditional associative-learning tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia 23, 601–614 (1985).

    CAS  PubMed  Google Scholar 

  63. Amemori, K. & Sawaguchi, T. Rule-dependent shifting of sensorimotor representation in the primate prefrontal cortex. Eur. J. Neurosci. 23, 1895–1909 (2006).

    PubMed  Google Scholar 

  64. Asaad, W. F., Rainer, G. & Miller, E. K. Task-specific neural activity in the primate prefrontal cortex. J. Neurophysiol. 84, 451–459 (2000).

    CAS  PubMed  Google Scholar 

  65. Everling, S. & DeSouza, J. F. Rule-dependent activity for prosaccades and antisaccades in the primate prefrontal cortex. J. Cogn. Neurosci. 17, 1483–1496 (2005).

    PubMed  Google Scholar 

  66. Muhammad, R., Wallis, J. D. & Miller, E. K. A comparison of abstract rules in the prefrontal cortex, premotor cortex, inferior temporal cortex, and striatum. J. Cogn. Neurosci. 18, 974–989 (2006).

    PubMed  Google Scholar 

  67. White, I. M. & Wise, S. P. Rule-dependent neuronal activity in the prefrontal cortex. Exp. Brain Res. 126, 315–335 (1999).

    CAS  PubMed  Google Scholar 

  68. Wallis, J. D., Anderson, K. C. & Miller, E. K. Single neurons in prefrontal cortex encode abstract rules. Nature 411, 953–956 (2001).

    CAS  PubMed  Google Scholar 

  69. Wallis, J. D. & Miller, E. K. From rule to response: neuronal processes in the premotor and prefrontal cortex. J. Neurophysiol. 90, 1790–1806 (2003).

    PubMed  Google Scholar 

  70. Bussey, T. J., Wise, S. P. & Murray, E. A. The role of ventral and orbital prefrontal cortex in conditional visuomotor learning and strategy use in rhesus monkeys (Macaca mulatta). Behav. Neurosci. 115, 971–982 (2001).

    CAS  PubMed  Google Scholar 

  71. Boettiger, C. A. & D'Esposito, M. Frontal networks for learning and executing arbitrary stimulus-response associations. J. Neurosci. 25, 2723–2732 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Toni, I., Krams, M., Turner, R. & Passingham, R. E. The time course of changes during motor sequence learning: a whole-brain fMRI study. Neuroimage 8, 50–61 (1998).

    CAS  PubMed  Google Scholar 

  73. Genovesio, A., Brasted, P. J., Mitz, A. R. & Wise, S. P. Prefrontal cortex activity related to abstract response strategies. Neuron 47, 307–320 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Boussaoud, D. Attention versus intention in the primate premotor cortex. Neuroimage 14, S40–45 (2001).

    CAS  PubMed  Google Scholar 

  75. Averbeck, B. B. & Lee, D. Prefrontal neural correlates of memory for sequences. J. Neurosci. 27, 2204–2211 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ohbayashi, M., Ohki, K. & Miyashita, Y. Conversion of working memory to motor sequence in the monkey premotor cortex. Science 301, 233–236 (2003).

    CAS  PubMed  Google Scholar 

  77. Shima, K., Isoda, M., Mushiake, H. & Tanji, J. Categorization of behavioural sequences in the prefrontal cortex. Nature 445, 315–318 (2007). This papers reports an elegant experiment showing that single-unit recording in monkeys provides evidence that neurons in prefrontal cortex are tuned to abstract categories of response sequences that generalize across the specific responses that form these sequences.

    CAS  PubMed  Google Scholar 

  78. Tanji, J. & Hoshi, E. Role of the lateral prefrontal cortex in executive behavioral control. Physiol. Rev. 88, 37–57 (2008).

    PubMed  Google Scholar 

  79. Wallis, J. D. in Neuroscience of Rule-Guided Behavior (eds Bunge, S. A. & Wallis, J. D.) (Oxford University Press, New York, 2008).

    Google Scholar 

  80. Kurata, K., Tsuji, T., Naraki, S., Seino, M. & Abe, Y. Activation of the dorsal premotor cortex and pre-supplementary motor area of humans during an auditory conditional motor task. J. Neurophysiol. 84, 1667–1672 (2000).

    CAS  PubMed  Google Scholar 

  81. Moore, C. I. et al. Segregation of somatosensory activation in the human rolandic cortex using fMRI. J. Neurophysiol. 84, 558–569 (2000).

    CAS  PubMed  Google Scholar 

  82. Picard, N. & Strick, P. L. Imaging the premotor areas. Curr. Opin. Neurobiol. 11, 663–672 (2001).

    CAS  PubMed  Google Scholar 

  83. Pochon, J. B. et al. The role of dorsolateral prefrontal cortex in the preparation of forthcoming actions: an fMRI study. Cereb Cortex 11, 260–266 (2001).

    CAS  PubMed  Google Scholar 

  84. Schumacher, E. H. & D'Esposito, M. Neural implementation of response selection in humans as revealed by localizing effects of stimulus-response compatibility on brain activation. Hum. Brain Mapp. 17, 193–201 (2002).

    PubMed  PubMed Central  Google Scholar 

  85. Schumacher, E. H., Elston, P. A. & D'Esposito, M. Neural evidence for representation-specific response selection. J. Cogn. Neurosci. 15, 1111–1121 (2003).

    PubMed  Google Scholar 

  86. Kennerley, S. W., Sakai, K. & Rushworth, M. F. Organization of action sequences and the role of the pre-SMA. J. Neurophysiol. 91, 978–993 (2004).

    PubMed  Google Scholar 

  87. Badre, D. & Wagner, A. D. Computational and neurobiological mechanisms underlying cognitive flexibility. Proc. Natl Acad. Sci. USA 103, 7186–7191 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Brass, M. & von Cramon, D. Y. The role of the frontal cortex in task preparation. Cereb Cortex 12, 908–914 (2002).

    PubMed  Google Scholar 

  89. Dove, A., Pollmann, S., Schubert, T., Wiggins, C. J. & von Cramon, D. Y. Prefrontal cortex activation in task switching: an event-related fMRI study. Brain Res. Cogn. Brain Res. 9, 103–109 (2000).

    CAS  PubMed  Google Scholar 

  90. Sohn, M. H., Ursu, S., Anderson, J. R., Stenger, V. A. & Carter, C. S. Inaugural article: the role of prefrontal cortex and posterior parietal cortex in task switching. Proc. Natl Acad. Sci. USA 97, 13448–13453 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bunge, S. A., Kahn, I., Wallis, J. D., Miller, E. K. & Wagner, A. D. Neural circuits subserving the retrieval and maintenance of abstract rules. J. Neurophysiol. 90, 3419–3428 (2003).

    PubMed  Google Scholar 

  92. Gilbert, S. J. et al. Functional specialization within rostral prefrontal cortex (area 10): a meta-analysis. J. Cogn. Neurosci. 18, 932–948 (2006).

    PubMed  Google Scholar 

  93. Braver, T. S. & Bongiolatti, S. R. The role of frontopolar cortex in subgoal processing during working memory. Neuroimage 15, 523–536 (2002).

    PubMed  Google Scholar 

  94. Koechlin, E., Basso, G., Pietrini, P., Panzer, S. & Grafman, J. The role of the anterior prefrontal cortex in human cognition. Nature 399, 148–151 (1999).

    CAS  PubMed  Google Scholar 

  95. Bunge, S. A., Wendelken, C., Badre, D. & Wagner, A. D. Analogical reasoning and prefrontal cortex: evidence for separable retrieval and integration mechanisms. Cereb Cortex 15, 239–249 (2005).

    PubMed  Google Scholar 

  96. Christoff, K., Ream, J. M., Geddes, L. P. T. & Gabrieli, J. D. E. Evaluating self-generated information: Anterior prefrontal contributions to human cognition. Behav. Neurosci. 117, 1161–1168 (2003).

    PubMed  Google Scholar 

  97. Kroger, J. K. et al. Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cereb Cortex 12, 477–485 (2002).

    PubMed  Google Scholar 

  98. Ranganath, C., Johnson, M. K. & D'Esposito, M. Left anterior prefrontal activation increases with demands to recall specific perceptual information. J. Neurosci. 20, RC108 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ranganath, C. & Paller, K. A. Neural correlates of memory retrieval and evaluation. Brain Res. Cogn. Brain Res. 9, 209–222 (2000).

    CAS  PubMed  Google Scholar 

  100. Velanova, K. et al. Functional-anatomic correlates of sustained and transient processing components engaged during controlled retrieval. J. Neurosci. 23, 8460–8470 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Burgess, P. W., Dumontheil, I. & Gilbert, S. J. The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends Cogn. Sci. 11, 290–298 (2007).

    PubMed  Google Scholar 

  102. Braver, T. S., Reynolds, J. R. & Donaldson, D. I. Neural mechanisms of transient and sustained cognitive control during task switching. Neuron 39, 713–726 (2003).

    CAS  PubMed  Google Scholar 

  103. Donaldson, D. I., Petersen, S. E., Ollinger, J. M. & Buckner, R. L. Dissociating state and item components of recognition memory using fMRI. Neuroimage 13, 129–142 (2001).

    CAS  PubMed  Google Scholar 

  104. Kouneiher, F., Charron, S. & Koechlin, E. Motivation and cognitive control in the human prefrontal cortex. Nature Neurosci. 12, 939–945 (2009).

    CAS  PubMed  Google Scholar 

  105. Badre, D. & Wagner, A. D. Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia 45, 2883–2901 (2007).

    PubMed  Google Scholar 

  106. Gold, B. T., Balota, D. A., Kirchhoff, B. A. & Buckner, R. L. Common and Dissociable Activation Patterns Associated with Controlled Semantic and Phonological Processing: Evidence from fMRI Adaptation. Cereb. Cortex 15, 1438–1450 (2005).

    PubMed  Google Scholar 

  107. Gold, B. T. & Buckner, R. L. Common prefrontal regions coactivate with dissociable posterior regions during controlled semantic and phonological tasks. Neuron 35, 803–812 (2002).

    CAS  PubMed  Google Scholar 

  108. Gough, P. M., Nobre, A. C. & Devlin, J. T. Dissociating linguistic processes in the left inferior frontal cortex with transcranial magnetic stimulation. J. Neurosci. 25, 8010–8016 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Poldrack, R. A. & Wagner, A. D. What can neuroimaging tell us about the mind? Insights from prefrontal cortex. Curr. Direct. Psychol. Sci. 13, 177–181 (2004).

    Google Scholar 

  110. Poldrack, R. A. et al. Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage 10, 15–35 (1999).

    CAS  PubMed  Google Scholar 

  111. Badre, D., Poldrack, R. A., Pare-Blagoev, E. J., Insler, R. Z. & Wagner, A. D. Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron 47, 907–918 (2005).

    CAS  PubMed  Google Scholar 

  112. Gold, B. T. et al. Dissociation of automatic and strategic lexical-semantics: functional magnetic resonance imaging evidence for differing roles of multiple frontotemporal regions. J. Neurosci. 26, 6523–6532 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Race, E. A., Shanker, S. & Wagner, A. D. Neural Priming in Human Frontal Cortex: Multiple Forms of Learning Reduce Demands on the Prefrontal Executive System. J. Cogn. Neurosci. 21, 1766–1781 (2009). This fMRI study of repetition priming provides within-subject evidence for a rostro-caudal functional gradient along the ventrolateral PFC.

    Google Scholar 

  114. Blumenfeld, R. S. & Ranganath, C. Prefrontal cortex and long-term memory encoding: an integrative review of findings from neuropsychology and neuroimaging. Neuroscientist 13, 280–291 (2007).

    PubMed  Google Scholar 

  115. D'Esposito, M., Postle, B. R., Ballard, D. & Lease, J. Maintenance versus manipulation of information held in working memory: an event-related fMRI study. Brain Cogn. 41, 66–86 (1999).

    CAS  PubMed  Google Scholar 

  116. Hampshire, A., Duncan, J. & Owen, A. M. Selective tuning of the blood oxygenation level-dependent response during simple target detection dissociates human frontoparietal subregions. J. Neurosci. 27, 6219–6223 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Sakai, K. & Passingham, R. E. Prefrontal interactions reflect future task operations. Nature Neurosci. 6, 75–81 (2003).

    CAS  PubMed  Google Scholar 

  118. Sakai, K. & Passingham, R. E. Prefrontal set activity predicts rule-specific neural processing during subsequent cognitive performance. J. Neurosci. 26, 1211–1218 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Rowe, J. B. et al. Is the prefrontal cortex necessary for establishing cognitive sets? J. Neurosci. 27, 13303–13310 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Petrides, M. & Pandya, D. N. in Handbook of Neuropsychology (eds Boller, F. & Grafman, J.) 17–58 (Elsevier, Amsterdam, 1994). In this chapter, anatomists Petrides and Pandya report an extensive comparison of the architecture of the frontal cortex between monkeys and humans.

    Google Scholar 

  121. Petrides, M. & Pandya, D. N. Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur. J. Neurosci. 11, 1011–1036 (1999).

    CAS  PubMed  Google Scholar 

  122. Barbas, H. & Pandya, D. N. in Frontal lobe function and dysfunction (eds Levin, H. S., Eisenberg, H. & Benton, A. L.) 35–58 (Oxford University Press, Oxford, 1991).

    Google Scholar 

  123. Sanides, F. in The Structure and Function of the Nervous System (ed. Bourne, G. H.) 329–453 (Academic Press, New York, 1972).

    Google Scholar 

  124. Barbas, H. & Pandya, D. N. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 286, 353–375 (1989). In this study, anatomists Barbas and Pandya present data from rhesus monkeys demonstrating that there is a gradient of laminar organization within the frontal cortex from the most anterior (least differentiated) to posterior portions.

    CAS  PubMed  Google Scholar 

  125. Barbas, H. Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J. Comp. Neurol. 276, 313–342 (1988).

    CAS  PubMed  Google Scholar 

  126. Petrides, M. & Pandya, D. N. Efferent association pathways from the rostral prefrontal cortex in the macaque monkey. J. Neurosci. 27, 11573–11586 (2007). Using the autoradiographic method, this study reports the course and terminations of the efferent cortico–cortical connections of the rostral prefrontal region (area 10) in macaque monkeys.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Schmahmann, J. D.h. Fiber pathways of the brain (Oxford University Press, Oxford, 2006).

    Google Scholar 

  128. Barbas, H. & Pandya, D. N. Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. J. Comp. Neurol. 256, 211–228 (1987).

    CAS  PubMed  Google Scholar 

  129. Botvinick, M. & Plaut, D. C. Doing without schema hierarchies: a recurrent connectionist approach to normal and impaired routine sequential action. Psychol. Rev. 111, 395–429 (2004).

    PubMed  Google Scholar 

  130. Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E. & Buckner, R. L. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J. Neurophysiol. 100, 3328–3342 (2008). This study applied functional connectivity analysis to resting state fMRI data and characterized a specific fronto-parietal network that was coherent with the frontal pole (approximately area 10). In the frontal cortex, this analysis identified a dorsal rostro-caudal network that closely corresponds to the gradient of rostro-caudal regions identified in association with hierarchical control.

    PubMed  PubMed Central  Google Scholar 

  131. Buckner, R. L. & Vincent, J. L. Unrest at rest: default activity and spontaneous network correlations. Neuroimage 37, 1091–1096; discussion 1097–9 (2007).

    PubMed  Google Scholar 

  132. Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Kahn, I., Andrews-Hanna, J. R., Vincent, J. L., Snyder, A. Z. & Buckner, R. L. Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J. Neurophysiol. 100, 129–139 (2008).

    PubMed  PubMed Central  Google Scholar 

  134. Vincent, J. L. et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447, 83–86 (2007).

    CAS  PubMed  Google Scholar 

  135. Halford, G. S. Children's Understanding: The Development of Mental Models (Erlbaum, Hillsdale, NJ, 1993).

    Google Scholar 

  136. Robin, N. & Holyoak, K. J. in The Cognitive Neurosciences (ed. Gazzaniga, M. S.) 987–997 (MIT Press, Cambridge, MA, 1995).

    Google Scholar 

  137. Daw, N. D., Niv, Y. & Dayan, P. in Recent Breakthroughs in Basal Ganglia Research (ed. Bezard, E.) (Nova Science, Inc., New York, 2006).

    Google Scholar 

  138. Dayan, P. Bilinearity, rules, and prefrontal cortex. Front. Comput. Neurosci. 1, 1–14 (2007).

    PubMed  PubMed Central  Google Scholar 

  139. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  140. Lenroot, R. K. & Giedd, J. N. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci. Biobehav Rev. 30, 718–729 (2006).

    PubMed  Google Scholar 

  141. Inder, T. E. & Huppi, P. S. In vivo studies of brain development by magnetic resonance techniques. Ment Retard Dev. Disabil Res. Rev. 6, 59–67 (2000).

    CAS  PubMed  Google Scholar 

  142. Toga, A. W., Thompson, P. M. & Sowell, E. R. Mapping brain maturation. Trends Neurosci. 29, 148–159 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Shaw, P. et al. Neurodevelopmental trajectories of the human cerebral cortex. J. Neurosci. 28, 3586–3594 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Giedd, J. N. et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neurosci. 2, 861–863 (1999).

    CAS  PubMed  Google Scholar 

  145. Jernigan, T. L., Trauner, D. A., Hesselink, J. R. & Tallal, P. A. Maturation of human cerebrum observed in vivo during adolescence. Brain 114, 2037–2049 (1991).

    PubMed  Google Scholar 

  146. Solomon, M., Ozonoff, S. J., Cummings, N. & Carter, C. S. Cognitive control in autism spectrum disorders. Int. J. Dev. Neurosci. 26, 239–247 (2008).

    PubMed  Google Scholar 

  147. Sowell, E. R., Thompson, P. M., Tessner, K. D. & Toga, A. W. Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation. J. Neurosci. 21, 8819–8829 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Sowell, E. R. et al. Longitudinal mapping of cortical thickness and brain growth in normal children. J. Neurosci. 24, 8223–8231 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Gogtay, N. et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl Acad. Sci. USA 101, 8174–8179 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Hazy, T. E., Frank, M. J. & O'Reilly, R. C. Banishing the homunculus: making working memory work. Neuroscience 139, 105–118 (2006).

    CAS  PubMed  Google Scholar 

  151. Brodmann, K. Beiträge zur histologischen Lokalisation der Grosshirnrinde. VI. Mitteilung. Die Cortexgliederung des Menschen. J. Psychol. Neurol. (Lzp.) 10, 231–246 (1908) (in German).

    Google Scholar 

  152. Brodmann, K. Beiträge zur histologischen Lokalisation der Grosshirnrinde. III. Mitteilung. Die Rindenfelder der niederen Affen. J. Psychol. Neurol. (Lzp.) 4, 177–226 (1905) (in German).

    Google Scholar 

  153. Walker, A. E. A cytoarchitectural study of the prefrontal area of the macaque monkey. J. Comp. Neurol. 73, 59–86 (1940).

    Google Scholar 

Download references

Acknowledgements

Supported by the National Institutes of Health (MH63901 and NS40813) and the Veterans Administration Research Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Badre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Domain generality along rostro-caudal frontal cortex (PDF 271 kb)

Related links

Related links

FURTHER INFORMATION

D. Badre's homepage

M. D'Esposito's homepage

Glossary

Cognitive control

Also termed executive function, cognitive control allows flexible behaviour by guiding thought and action based on goals, plans and intentions.

Double dissociation

When two experimental manipulations have different effects on two dependent variables (for example, on the left and right hemisphere or on the medial and lateral prefrontal cortex).

Domain (stimulus/input domains)

A type of information, such as spatial versus verbal versus object-related information. Domains are often associated with independent or modular input systems.

Action rule

A type of knowledge that specifies how to behave given a particular state. A stimulus-to-response mapping is a simple rule.

Semantic

Conceptual knowledge, beliefs and facts about the world. In the verbal domain, semantic refers to word meanings.

Phonology (phonological)

The sound structure of a word in terms of the smallest sound units that distinguish different words in a language.

Repetition priming

Facilitated processing of a stimulus upon repetition, which happens even following an extended delay.

Structural equation modelling

A statistical approach for testing proposed causal relationships between variables.

Seeding

A step in functional connectivity analysis whereby a region of interest is defined to which connectivity of all other regions is estimated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badre, D., D'Esposito, M. Is the rostro-caudal axis of the frontal lobe hierarchical?. Nat Rev Neurosci 10, 659–669 (2009). https://doi.org/10.1038/nrn2667

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2667

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing