Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Branching out: mechanisms of dendritic arborization

A Corrigendum to this article was published on 01 June 2010

This article has been updated

Key Points

  • Mechanisms such as differential reliance on the secretory pathway contribute to the differentiation of axons and dendrites.

  • A number of transcription factors confer neurons with distinctive dendrite morphologies.

  • Down syndrome cell adhesion molecule (DSCAM) has an evolutionarily conserved role in mediating self-avoidance of dendrites such that the dendrites of each neuron can spread out.

  • Certain types of neurons exhibit homotypic repulsion of their dendrites to allow tiling of their dendritic fields for maximal coverage without ambiguity.

  • Tiling and dendrite maintenance can be differentially regulated by the NDR (nuclear DBF2-related) kinase family members Tricornered and Warts, respectively. They in turn are regulated by the tumour suppressor Hippo.

  • In Drosophila melanogaster, dendrite expansion in sensory neurons is scaled to precisely match the growing epidermis. This is controlled by the microRNA bantam in epithelial cells, which signals to adjacent neurons.

  • Defects in dendrite morphogenesis might contribute to mental disorders such as schizophrenia and autism.

Abstract

Type-specific dendrite morphology is a hallmark of the neuron and has important functional implications in determining what signals a neuron receives and how these signals are integrated. During the past two decades, studies on dendritic arborization neurons in Drosophila melanogaster have started to identify mechanisms of dendrite morphogenesis that may have broad applicability to vertebrate species. Transcription factors, receptor–ligand interactions, various signalling pathways, local translational machinery, cytoskeletal elements, Golgi outposts and endosomes have been identified as contributors to the organization of dendrites of individual neurons and the placement of these dendrites in the neuronal circuitry. Further insight into these mechanisms will improve our understanding of how the nervous system functions and might help to identify the underlying causes of some neurological and neurodevelopmental disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms regulating the formation and organization of dendritic arbors of dendritic arborization neurons in Drosophila melanogaster.
Figure 2: The Hippo pathway coordinates the tiling and maintenance of dendritic fields of Drosophila melanogaster class IV dendritic arborization neurons.

Change history

  • 30 April 2010

    On page 317 in box 1 of the above article, we wrote that: "For example, the ubiquitin ligase anaphase-promoting complex specifically regulates axon or dendrite morphogenesis in murine cerebellar granule cells depending on whether it recruits the co-activator cadherin 1 or CDC20 to the complex152,153." This should have read: "For example, the ubiquitin ligase anaphase-promoting complex specifically regulates axon or dendrite morphogenesis in murine cerebellar granule cells depending on whether it recruits the co-activator fizzy-related protein homologue or CDC20 to the complex152,153." The authors apologize for this error.

References

  1. Ramon y Cayal, S. Histology of the Nervous System of Man and Vertebrate. (trans. N. Swanson & L. W. Swanson) (OxfordUniversityPress,NewYork, 1995).

    Google Scholar 

  2. Kaufmann, W. E. & Moser, H. W. Dendritic anomalies in disorders associated with mental retardation. Cereb. Cortex 10, 981–991 (2000).

    CAS  PubMed  Google Scholar 

  3. Pardo, C. A. & Eberhart, C. G. The neurobiology of autism. Brain Pathol. 17, 434–447 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Walsh, C. A., Morrow, E. M. & Rubenstein, J. L. Autism and brain development. Cell 135, 396–400 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kelleher, R. J. III & Bear, M. F. The autistic neuron: troubled translation? Cell 135, 401–406 (2008).

    CAS  PubMed  Google Scholar 

  6. Bagni, C. & Greenough, W. T. From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nature Rev. Neurosci. 6, 376–387 (2005).

    CAS  Google Scholar 

  7. Ramocki, M. B. & Zoghbi, H. Y. Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature 455, 912–918 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dindot, S. V., Antalffy, B. A., Bhattacharjee, M. B. & Beaudet, A. L. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum. Mol. Genet. 17, 111–118 (2008).

    CAS  PubMed  Google Scholar 

  9. Garey, L. J. et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J. Neurol. Neurosurg. Psychiatr. 65, 446–453 (1998).

    CAS  Google Scholar 

  10. Bourgeron, T. A synaptic trek to autism. Curr. Opin. Neurobiol. 19, 231–234 (2009).

    CAS  PubMed  Google Scholar 

  11. Wong, R. O. & Ghosh, A. Activity-dependent regulation of dendritic growth and patterning. Nature Rev. Neurosci. 3, 803–812 (2002).

    CAS  Google Scholar 

  12. Bestman, J., Silva, J. S. D. & Cline, H. T. in Dendrites (Eds G. Stuart, N. Spruston & M. Häusser) 69–94 (Oxford University Press, Oxford, 2008).

    Google Scholar 

  13. Polleux, F. & Ghosh, A. in Dendrites (Eds G. Stuart, N. Spruston & M. Häusser) 95–115 (Oxford University Press, Oxford, 2008).

    Google Scholar 

  14. Wen, Q. & Chklovskii, D. B. A cost-benefit analysis of neuronal morphology. J. Neurophysiol. 99, 2320–2328 (2008).

    PubMed  Google Scholar 

  15. Shepherd, G. M., Stepanyants, A., Bureau, I., Chklovskii, D. & Svoboda, K. Geometric and functional organization of cortical circuits. Nature Neurosci. 8, 782–790 (2005).

    CAS  PubMed  Google Scholar 

  16. Wassle, H. & Boycott, B. B. Functional architecture of the mammalian retina. Physiol. Rev. 71, 447–480 (1991).

    CAS  PubMed  Google Scholar 

  17. MacNeil, M. A. & Masland, R. H. Extreme diversity among amacrine cells: implications for function. Neuron 20, 971–982 (1998).

    CAS  PubMed  Google Scholar 

  18. Losonczy, A., Makara, J. K. & Magee, J. C. Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452, 436–441 (2008).

    CAS  PubMed  Google Scholar 

  19. Spruston, N. Pyramidal neurons: dendritic structure and synaptic integration. Nature Rev. Neurosci. 9, 206–221 (2008).

    CAS  Google Scholar 

  20. Hu, X., Viesselmann, C., Nam, S., Merriam, E. & Dent, E. W. Activity-dependent dynamic microtubule invasion of dendritic spines. J. Neurosci. 28, 13094–13105 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jaworski, J. et al. Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 61, 85–100 (2009).

    CAS  PubMed  Google Scholar 

  22. Espinosa, J. S., Wheeler, D. G., Tsien, R. W. & Luo, L. Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B. Neuron 62, 205–217 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nature Rev. Neurosci. 10, 647–658 (2009).

    CAS  Google Scholar 

  24. Corty, M. M., Matthews, B. J. & Grueber, W. B. Molecules and mechanisms of dendrite development in Drosophila. Development 136, 1049–1061 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Parrish, J. Z., Emoto, K., Kim, M. D. & Jan, Y. N. Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. Annu. Rev. Neurosci. 30, 399–423 (2007).

    CAS  PubMed  Google Scholar 

  26. Grueber, W. B., Jan, L. Y. & Jan, Y. N. Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development 129, 2867–2878 (2002).

    CAS  PubMed  Google Scholar 

  27. Grueber, W. B., Jan, L. Y. & Jan, Y. N. Different levels of the homeodomain protein cut regulate distinct dendrite branching patterns of Drosophila multidendritic neurons. Cell 112, 805–818 (2003). This study showed that each of the four levels of CUT expression confers a distinct dendritic branching pattern in D. melanogaster dendritic arborization neurons.

    CAS  PubMed  Google Scholar 

  28. Sugimura, K., Satoh, D., Estes, P., Crews, S. & Uemura, T. Development of morphological diversity of dendrites in Drosophila by the BTB-zinc finger protein abrupt. Neuron 43, 809–822 (2004).

    CAS  PubMed  Google Scholar 

  29. Li, W., Wang, F., Menut, L. & Gao, F. B. BTB/POZ-zinc finger protein abrupt suppresses dendritic branching in a neuronal subtype-specific and dosage-dependent manner. Neuron 43, 823–834 (2004).

    CAS  PubMed  Google Scholar 

  30. Jinushi-Nakao, S. et al. Knot/Collier and cut control different aspects of dendrite cytoskeleton and synergize to define final arbor shape. Neuron 56, 963–978 (2007).

    CAS  PubMed  Google Scholar 

  31. Hattori, Y., Sugimura, K. & Uemura, T. Selective expression of Knot/Collier, a transcriptional regulator of the EBF/Olf-1 family, endows the Drosophila sensory system with neuronal class-specific elaborated dendritic patterns. Genes Cells 12, 1011–1022 (2007).

    CAS  PubMed  Google Scholar 

  32. Crozatier, M. & Vincent, A. Control of multidendritic neuron differentiation in Drosophila: the role of Collier. Dev. Biol. 315, 232–242 (2008).

    CAS  PubMed  Google Scholar 

  33. Parrish, J. Z., Kim, M. D., Jan, L. Y. & Jan, Y. N. Genome-wide analyses identify transcription factors required for proper morphogenesis of Drosophila sensory neuron dendrites. Genes Dev. 20, 820–835 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Williams, D. W. & Truman, J. W. Remodeling dendrites during insect metamorphosis. J. Neurobiol. 64, 24–33 (2005).

    CAS  PubMed  Google Scholar 

  35. Komiyama, T. & Luo, L. Intrinsic control of precise dendritic targeting by an ensemble of transcription factors. Curr. Biol. 17, 278–285 (2007).

    CAS  PubMed  Google Scholar 

  36. Kim, M. D., Jan, L. Y. & Jan, Y. N. The bHLH-PAS protein Spineless is necessary for the diversification of dendrite morphology of Drosophila dendritic arborization neurons. Genes Dev. 20, 2806–2819 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wernet, M. F. et al. Stochastic spineless expression creates the retinal mosaic for colour vision. Nature 440, 174–180 (2006).

    CAS  PubMed  Google Scholar 

  38. Huang, X., Powell-Coffman, J. A. & Jin, Y. The AHR-1 aryl hydrocarbon receptor and its co-factor the AHA-1 aryl hydrocarbon receptor nuclear translocator specify GABAergic neuron cell fate in C. elegans. Development 131, 819–828 (2004).

    CAS  PubMed  Google Scholar 

  39. Komiyama, T., Johnson, W. A., Luo, L. & Jefferis, G. S. From lineage to wiring specificity. POU domain transcription factors control precise connections of Drosophila olfactory projection neurons. Cell 112, 157–167 (2003).

    CAS  PubMed  Google Scholar 

  40. Hand, R. et al. Phosphorylation of Neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex. Neuron 48, 45–62 (2005).

    CAS  PubMed  Google Scholar 

  41. Gaudilliere, B., Konishi, Y., de la Iglesia, N., Yao, G. & Bonni, A. A CaMKII-NeuroD signaling pathway specifies dendritic morphogenesis. Neuron 41, 229–241 (2004).

    CAS  PubMed  Google Scholar 

  42. Aizawa, H. et al. Dendrite development regulated by CREST, a calcium-regulated transcriptional activator. Science 303, 197–202 (2004). This paper documents the identification of CREST as a key mediator of activity-dependent dendritic growth.

    CAS  PubMed  Google Scholar 

  43. Wayman, G. A. et al. Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 50, 897–909 (2006).

    CAS  PubMed  Google Scholar 

  44. Redmond, L., Kashani, A. H. & Ghosh, A. Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron 34, 999–1010 (2002).

    CAS  PubMed  Google Scholar 

  45. Wu, J. I. et al. Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56, 94–108 (2007). A demonstration of the essential role of the neuron-specific chromatin remodelling complex in activity-dependent dendritic development.

    CAS  PubMed  Google Scholar 

  46. Furrer, M. P., Vasenkova, I., Kamiyama, D., Rosado, Y. & Chiba, A. Slit and Robo control the development of dendrites in Drosophila CNS. Development 134, 3795–3804 (2007).

    CAS  PubMed  Google Scholar 

  47. Dimitrova, S., Reissaus, A. & Tavosanis, G. Slit and Robo regulate dendrite branching and elongation of space-filling neurons in Drosophila. Dev. Biol. 324, 18–30 (2008).

    CAS  PubMed  Google Scholar 

  48. Komiyama, T., Sweeney, L. B., Schuldiner, O., Garcia, K. C. & Luo, L. Graded expression of semaphorin-1a cell-autonomously directs dendritic targeting of olfactory projection neurons. Cell 128, 399–410 (2007).

    CAS  PubMed  Google Scholar 

  49. Luo, L. & Flanagan, J. G. Development of continuous and discrete neural maps. Neuron 56, 284–300 (2007).

    CAS  PubMed  Google Scholar 

  50. Sweeney, L. B. et al. Temporal target restriction of olfactory receptor neurons by Semaphorin-1a/PlexinA-mediated axon-axon interactions. Neuron 53, 185–200 (2007).

    CAS  PubMed  Google Scholar 

  51. Nishiyama, M. et al. Cyclic AMP/GMP-dependent modulation of Ca2+ channels sets the polarity of nerve growth-cone turning. Nature 423, 990–995 (2003).

    CAS  PubMed  Google Scholar 

  52. Morita, A. et al. Regulation of dendritic branching and spine maturation by semaphorin3A-Fyn signaling. J. Neurosci. 26, 2971–2980 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Weiss, L. A., Arking, D. E., Gene Discovery Project of Johns Hopkins and the Autism Consortium, Daly, M. J. & Chakravarti, A. A genome-wide linkage and association scan reveals novel loci for autism. Nature 461, 802–808 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. McAllister, A. K., Lo, D. C. & Katz, L. C. Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15, 791–803 (1995).

    CAS  PubMed  Google Scholar 

  55. McAllister, A. K., Katz, L. C. & Lo, D. C. Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 18, 767–778 (1997).

    CAS  PubMed  Google Scholar 

  56. Lein, P., Johnson, M., Guo, X., Rueger, D. & Higgins, D. Osteogenic protein-1 induces dendritic growth in rat sympathetic neurons. Neuron 15, 597–605 (1995).

    CAS  PubMed  Google Scholar 

  57. Zheng, Y. et al. Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nature Cell Biol. 10, 1172–1180 (2008).

    CAS  PubMed  Google Scholar 

  58. Satoh, D. et al. Spatial control of branching within dendritic arbors by dynein-dependent transport of Rab5-endosomes. Nature Cell Biol. 10, 1164–1171 (2008).

    CAS  PubMed  Google Scholar 

  59. Newey, S. E., Velamoor, V., Govek, E. E. & Van Aelst, L. Rho GTPases, dendritic structure, and mental retardation. J. Neurobiol. 64, 58–74 (2005).

    CAS  PubMed  Google Scholar 

  60. Chen, H. & Firestein, B. L. RhoA regulates dendrite branching in hippocampal neurons by decreasing cypin protein levels. J. Neurosci. 27, 8378–8386 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sfakianos, M. K. et al. Inhibition of Rho via Arg and p190RhoGAP in the postnatal mouse hippocampus regulates dendritic spine maturation, synapse and dendrite stability, and behavior. J. Neurosci. 27, 10982–10992 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Leemhuis, J. et al. Rho GTPases and phosphoinositide 3-kinase organize formation of branched dendrites. J. Biol. Chem. 279, 585–596 (2004).

    CAS  PubMed  Google Scholar 

  63. Luo, L. Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu. Rev. Cell Dev. Biol. 18, 601–635 (2002).

    CAS  PubMed  Google Scholar 

  64. Tada, T. & Sheng, M. Molecular mechanisms of dendritic spine morphogenesis. Curr. Opin. Neurobiol. 16, 95–101 (2006).

    CAS  PubMed  Google Scholar 

  65. Chhabra, E. S. & Higgs, H. N. The many faces of actin: matching assembly factors with cellular structures. Nature Cell Biol. 9, 1110–1121 (2007).

    CAS  PubMed  Google Scholar 

  66. Jaffe, A. B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247–269 (2005).

    CAS  PubMed  Google Scholar 

  67. Lee, T., Winter, C., Marticke, S. S., Lee, A. & Luo, L. Essential roles of Drosophila RhoA in the regulation of neuroblast proliferation and dendritic but not axonal morphogenesis. Neuron 25, 307–316 (2000).

    CAS  PubMed  Google Scholar 

  68. Ng, J. et al. Rac GTPases control axon growth, guidance and branching. Nature 416, 442–447 (2002).

    CAS  PubMed  Google Scholar 

  69. Lee, A. et al. Control of dendritic development by the Drosophila fragile X-related gene involves the small GTPase Rac1. Development 130, 5543–5552 (2003).

    CAS  PubMed  Google Scholar 

  70. Li, W. & Gao, F. B. Actin filament-stabilizing protein tropomyosin regulates the size of dendritic fields. J. Neurosci. 23, 6171–6175 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Scott, E. K., Reuter, J. E. & Luo, L. Small GTPase Cdc42 is required for multiple aspects of dendritic morphogenesis. J. Neurosci. 23, 3118–3123 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Rosso, S. B., Sussman, D., Wynshaw-Boris, A. & Salinas, P. C. Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nature Neurosci. 8, 34–42 (2005).

    CAS  PubMed  Google Scholar 

  73. Schubert, V. & Dotti, C. G. Transmitting on actin: synaptic control of dendritic architecture. J. Cell Sci. 120, 205–212 (2007).

    CAS  PubMed  Google Scholar 

  74. Penzes, P., Cahill, M. E., Jones, K. A. & Srivastava, D. P. Convergent CaMK and RacGEF signals control dendritic structure and function. Trends Cell Biol. 18, 405–413 (2008).

    CAS  PubMed  Google Scholar 

  75. Konur, S. & Ghosh, A. Calcium signaling and the control of dendritic development. Neuron 46, 401–405 (2005).

    CAS  PubMed  Google Scholar 

  76. Yoshihara, Y., De Roo, M. & Muller, D. Dendritic spine formation and stabilization. Curr. Opin. Neurobiol. 19, 146–153 (2009).

    CAS  PubMed  Google Scholar 

  77. Yu, X. & Malenka, R. C. β-catenin is critical for dendritic morphogenesis. Nature Neurosci. 6, 1169–1177 (2003).

    CAS  PubMed  Google Scholar 

  78. Peng, Y. R. et al. Coordinated changes in dendritic arborization and synaptic strength during neural circuit development. Neuron 61, 71–84 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Quitsch, A., Berhorster, K., Liew, C. W., Richter, D. & Kreienkamp, H. J. Postsynaptic shank antagonizes dendrite branching induced by the leucine-rich repeat protein Densin-180. J. Neurosci. 25, 479–487 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Huang, Z., Zang, K. & Reichardt, L. F. The origin recognition core complex regulates dendrite and spine development in postmitotic neurons. J. Cell Biol. 170, 527–535 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Olson, E. C., Kim, S. & Walsh, C. A. Impaired neuronal positioning and dendritogenesis in the neocortex after cell-autonomous Dab1 suppression. J. Neurosci. 26, 1767–1775 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ye, B. et al. Growing dendrites and axons differ in their reliance on the secretory pathway. Cell 130, 717–729 (2007). The authors identified the dar genes and Golgi outposts as key factors that are required for dendritic but not axonal growth.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sweeney, N. T., Brenman, J. E., Jan, Y. N. & Gao, F. B. The coiled-coil protein shrub controls neuronal morphogenesis in Drosophila. Curr. Biol. 16, 1006–1011 (2006).

    CAS  PubMed  Google Scholar 

  84. Horton, A. C. et al. Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48, 757–771 (2005). This study showed the important role of Golgi outposts in the dendritic development of cultured hippocampal neurons.

    CAS  PubMed  Google Scholar 

  85. Reuter, J. E. et al. A mosaic genetic screen for genes necessary for Drosophila mushroom body neuronal morphogenesis. Development 130, 1203–1213 (2003).

    CAS  PubMed  Google Scholar 

  86. Liu, Z., Steward, R. & Luo, L. Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport. Nature Cell Biol. 2, 776–783 (2000).

    CAS  PubMed  Google Scholar 

  87. Wynshaw-Boris, A. Lissencephaly and LIS1: insights into the molecular mechanisms of neuronal migration and development. Clin. Genet. 72, 296–304 (2007).

    CAS  PubMed  Google Scholar 

  88. Vallee, R. B., Faulkner, N. E. & Tai, C. Y. The role of cytoplasmic dynein in the human brain developmental disease lissencephaly. Biochim. Biophys. Acta 1496, 89–98 (2000).

    CAS  PubMed  Google Scholar 

  89. Fleck, M. W. et al. Hippocampal abnormalities and enhanced excitability in a murine model of human lissencephaly. J. Neurosci. 20, 2439–2450 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Charych, E. I. et al. Activity-independent regulation of dendrite patterning by postsynaptic density protein PSD-95. J. Neurosci. 26, 10164–10176 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hoogenraad, C. C., Milstein, A. D., Ethell, I. M., Henkemeyer, M. & Sheng, M. GRIP1 controls dendrite morphogenesis by regulating EphB receptor trafficking. Nature Neurosci. 8, 906–915 (2005).

    CAS  PubMed  Google Scholar 

  92. Horton, A. C. & Ehlers, M. D. Secretory trafficking in neuronal dendrites. Nature Cell Biol. 6, 585–591 (2004).

    CAS  PubMed  Google Scholar 

  93. Pfenninger, K. H. Plasma membrane expansion: a neuron's Herculean task. Nature Rev. Neurosci. 10, 251–261 (2009).

    CAS  Google Scholar 

  94. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    CAS  PubMed  Google Scholar 

  95. Lee, M. C., Miller, E. A., Goldberg, J., Orci, L. & Schekman, R. Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol. 20, 87–123 (2004).

    CAS  PubMed  Google Scholar 

  96. Grueber, W. B., Ye, B., Moore, A. W., Jan, L. Y. & Jan, Y. N. Dendrites of distinct classes of Drosophila sensory neurons show different capacities for homotypic repulsion. Curr. Biol. 13, 618–626 (2003).

    CAS  PubMed  Google Scholar 

  97. Sugimura, K. et al. Distinct developmental modes and lesion-induced reactions of dendrites of two classes of Drosophila sensory neurons. J. Neurosci. 23, 3752–3760 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Fuerst, P. G., Koizumi, A., Masland, R. H. & Burgess, R. W. Neurite arborization and mosaic spacing in the mouse retina require DSCAM. Nature 451, 470–474 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Schmucker, D. et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671–684 (2000).

    CAS  PubMed  Google Scholar 

  100. Wojtowicz, W. M., Flanagan, J. J., Millard, S. S., Zipursky, S. L. & Clemens, J. C. Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell 118, 619–633 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hughes, M. E. et al. Homophilic Dscam interactions control complex dendrite morphogenesis. Neuron 54, 417–427 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Matthews, B. J. et al. Dendrite self-avoidance is controlled by Dscam. Cell 129, 593–604 (2007).

    CAS  PubMed  Google Scholar 

  103. Soba, P. et al. Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization. Neuron 54, 403–416 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, J., Zugates, C. T., Liang, I. H., Lee, C. H. & Lee, T. Drosophila Dscam is required for divergent segregation of sister branches and suppresses ectopic bifurcation of axons. Neuron 33, 559–571 (2002).

    CAS  PubMed  Google Scholar 

  105. Zhu, H. et al. Dendritic patterning by Dscam and synaptic partner matching in the Drosophila antennal lobe. Nature Neurosci. 9, 349–355 (2006). References 103–105 elucidate the roles of DSCAM in mediating dendritic self-avoidance and coexistence.

    CAS  PubMed  Google Scholar 

  106. Hattori, D., Millard, S. S., Wojtowicz, W. M. & Zipursky, S. L. Dscam-mediated cell recognition regulates neural circuit formation. Annu. Rev. Cell Dev. Biol. 24, 597–620 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Schmucker, D. & Chen, B. Dscam and DSCAM: complex genes in simple animals, complex animals yet simple genes. Genes Dev. 23, 147–156 (2009).

    CAS  PubMed  Google Scholar 

  108. Fuerst, P. G. & Burgess, R. W. Adhesion molecules in establishing retinal circuitry. Curr. Opin. Neurobiol. 19, 389–394 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Fuerst, P. G. et al. DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the developing mouse retina. Neuron 64, 484–497 (2009). This paper demonstrates the role of DSCAM and DSCAML1 in dendritic self-avoidance in the mouse retina and illustrates the similarity and difference in the function of DSCAM in the mouse and the fly.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Yamagata, M. & Sanes, J. R. Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature 451, 465–469 (2008).

    CAS  PubMed  Google Scholar 

  111. Li, H. L. et al. Dscam mediates remodeling of glutamate receptors in Aplysia during de novo and learning-related synapse formation. Neuron 61, 527–540 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Andrews, G. L. et al. Dscam guides embryonic axons by Netrin-dependent and -independent functions. Development 135, 3839–3848 (2008).

    CAS  PubMed  Google Scholar 

  113. Liu, G. et al. DSCAM functions as a netrin receptor in commissural axon pathfinding. Proc. Natl Acad. Sci. USA 106, 2951–2956 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ly, A. et al. DSCAM is a netrin receptor that collaborates with DCC in mediating turning responses to netrin-1. Cell 133, 1241–1254 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Wassle, H., Peichl, L. & Boycott, B. B. Dendritic territories of cat retinal ganglion cells. Nature 292, 344–345 (1981). This paper documents the initial discovery of the tiling phenomenon in the mammalian retina.

    CAS  PubMed  Google Scholar 

  116. Gan, W. B. & Macagno, E. R. Interactions between segmental homologs and between isoneuronal branches guide the formation of sensory terminal fields. J. Neurosci. 15, 3243–3253 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Landgraf, M., Jeffrey, V., Fujioka, M., Jaynes, J. B. & Bate, M. Embryonic origins of a motor system: motor dendrites form a myotopic map in Drosophila. PLoS Biol. 1, E41 (2003).

    PubMed  PubMed Central  Google Scholar 

  118. Sagasti, A., Guido, M. R., Raible, D. W. & Schier, A. F. Repulsive interactions shape the morphologies and functional arrangement of zebrafish peripheral sensory arbors. Curr. Biol. 15, 804–814 (2005).

    CAS  PubMed  Google Scholar 

  119. Millard, S. S., Flanagan, J. J., Pappu, K. S., Wu, W. & Zipursky, S. L. Dscam2 mediates axonal tiling in the Drosophila visual system. Nature 447, 720–724 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Masland, R. H. Neuronal diversity in the retina. Curr. Opin. Neurobiol. 11, 431–436 (2001).

    CAS  PubMed  Google Scholar 

  121. Perry, V. H. & Linden, R. Evidence for dendritic competition in the developing retina. Nature 297, 683–685 (1982).

    CAS  PubMed  Google Scholar 

  122. Kitson, D. L. & Roberts, A. Competition during innervation of embryonic amphibian head skin. Proc. R. Soc. Lond. B Biol. Sci. 218, 49–59 (1983).

    CAS  PubMed  Google Scholar 

  123. Emoto, K. et al. Control of dendritic branching and tiling by the Tricornered-kinase/Furry signaling pathway in Drosophila sensory neurons. Cell 119, 245–256 (2004). This study identified the first two genes that are required for tiling of dendritic arborization neurons in D. melanogaster.

    CAS  PubMed  Google Scholar 

  124. Koike-Kumagai, M., Yasunaga, K., Morikawa, R., Kanamori, T. & Emoto, K. The target of rapamycin complex 2 controls dendritic tiling of Drosophila sensory neurons through the Tricornered kinase signalling pathway. EMBO J. 28, 3879–3892 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Gallegos, M. E. & Bargmann, C. I. Mechanosensory neurite termination and tiling depend on SAX-2 and the SAX-1 kinase. Neuron 44, 239–249 (2004).

    CAS  PubMed  Google Scholar 

  126. Kim, M. D., Wen, Y. & Jan, Y. N. Patterning and organization of motor neuron dendrites in the Drosophila larva. Dev. Biol. 336, 213–221 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Brierley, D. J., Blanc, E., Reddy, O. V., Vijayraghavan, K. & Williams, D. W. Dendritic targeting in the leg neuropil of Drosophila: the role of midline signalling molecules in generating a myotopic map. PLoS Biol. 7, e1000199 (2009).

    PubMed  PubMed Central  Google Scholar 

  128. Mauss, A., Tripodi, M., Evers, J. F. & Landgraf, M. Midline signalling systems direct the formation of a neural map by dendritic targeting in the Drosophila motor system. PLoS Biol. 7, e1000200 (2009).

    PubMed  PubMed Central  Google Scholar 

  129. Lin, B., Wang, S. W. & Masland, R. H. Retinal ganglion cell type, size, and spacing can be specified independent of homotypic dendritic contacts. Neuron 43, 475–485 (2004).

    CAS  PubMed  Google Scholar 

  130. Huckfeldt, R. M. et al. Transient neurites of retinal horizontal cells exhibit columnar tiling via homotypic interactions. Nature Neurosci. 12, 35–43 (2009).

    CAS  PubMed  Google Scholar 

  131. Parrish, J. Z., Xu, P., Kim, C. C., Jan, L. Y. & Jan, Y. N. The microRNA bantam functions in epithelial cells to regulate scaling growth of dendrite arbors in Drosophila sensory neurons. Neuron 63, 788–802 (2009). A report of the first genes found to be required for dendritic scaling.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Lee, S. & Stevens, C. F. General design principle for scalable neural circuits in a vertebrate retina. Proc. Natl Acad. Sci. USA 104, 12931–12935 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Kumar, V., Zhang, M. X., Swank, M. W., Kunz, J. & Wu, G. Y. Regulation of dendritic morphogenesis by Ras–PI3K–Akt–mTOR and Ras–MAPK signaling pathways. J. Neurosci. 25, 11288–11299 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Jaworski, J., Spangler, S., Seeburg, D. P., Hoogenraad, C. C. & Sheng, M. Control of dendritic arborization by the phosphoinositide-3′-kinase–Akt–mammalian target of rapamycin pathway. J. Neurosci. 25, 11300–11312 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Dijkhuizen, P. A. & Ghosh, A. BDNF regulates primary dendrite formation in cortical neurons via the PI3-kinase and MAP kinase signaling pathways. J. Neurobiol. 62, 278–288 (2005).

    CAS  PubMed  Google Scholar 

  136. Jossin, Y. & Goffinet, A. M. Reelin signals through phosphatidylinositol 3-kinase and Akt to control cortical development and through mTOR to regulate dendritic growth. Mol. Cell. Biol. 27, 7113–7124 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Ye, B. et al. Nanos and Pumilio are essential for dendrite morphogenesis in Drosophila peripheral neurons. Curr. Biol. 14, 314–321 (2004).

    CAS  PubMed  Google Scholar 

  138. Brechbiel, J. L. & Gavis, E. R. Spatial regulation of nanos is required for its function in dendrite morphogenesis. Curr. Biol. 18, 745–750 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Vessey, J. P. et al. A loss of function allele for murine Staufen1 leads to impairment of dendritic Staufen1-RNP delivery and dendritic spine morphogenesis. Proc. Natl Acad. Sci. USA 105, 16374–16379 (2008).

    PubMed  PubMed Central  Google Scholar 

  140. Chihara, T., Luginbuhl, D. & Luo, L. Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization. Nature Neurosci. 10, 828–837 (2007).

    CAS  PubMed  Google Scholar 

  141. Bestman, J. E. & Cline, H. T. The RNA binding protein CPEB regulates dendrite morphogenesis and neuronal circuit assembly in vivo. Proc. Natl Acad. Sci. USA 105, 20494–20499 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Mizrahi, A. & Katz, L. C. Dendritic stability in the adult olfactory bulb. Nature Neurosci. 6, 1201–1207 (2003).

    CAS  PubMed  Google Scholar 

  143. Xu, H. T., Pan, F., Yang, G. & Gan, W. B. Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nature Neurosci. 10, 549–551 (2007).

    CAS  PubMed  Google Scholar 

  144. Grutzendler, J., Kasthuri, N. & Gan, W. B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).

    CAS  PubMed  Google Scholar 

  145. Pan, D. Hippo signaling in organ size control. Genes Dev. 21, 886–897 (2007).

    CAS  PubMed  Google Scholar 

  146. Parrish, J. Z., Emoto, K., Jan, L. Y. & Jan, Y. N. Polycomb genes interact with the tumor suppressor genes hippo and warts in the maintenance of Drosophila sensory neuron dendrites. Genes Dev. 21, 956–972 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Emoto, K., Parrish, J. Z., Jan, L. Y. & Jan, Y. N. The tumour suppressor Hippo acts with the NDR kinases in dendritic tiling and maintenance. Nature 443, 210–213 (2006). This paper describes the elucidation of the role of the Hippo signalling pathway in dendritic tiling and maintenance.

    CAS  PubMed  Google Scholar 

  148. Craig, A. M. & Banker, G. Neuronal polarity. Annu. Rev. Neurosci. 17, 267–310 (1994).

    CAS  PubMed  Google Scholar 

  149. Baas, P. W., Deitch, J. S., Black, M. M. & Banker, G. A. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl Acad. Sci. USA 85, 8335–8339 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Rolls, M. M. et al. Polarity and intracellular compartmentalization of Drosophila neurons. Neural Dev. 2, 7 (2007).

    PubMed  PubMed Central  Google Scholar 

  151. Goldberg, J. L. Intrinsic neuronal regulation of axon and dendrite growth. Curr. Opin. Neurobiol. 14, 551–557 (2004).

    CAS  PubMed  Google Scholar 

  152. Konishi, Y., Stegmuller, J., Matsuda, T., Bonni, S. & Bonni, A. Cdh1-APC controls axonal growth and patterning in the mammalian brain. Science 303, 1026–1030 (2004).

    CAS  PubMed  Google Scholar 

  153. Kim, A. H. et al. A centrosomal Cdc20-APC pathway controls dendrite morphogenesis in postmitotic neurons. Cell 136, 322–336 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Millard, S. S. & Zipursky, S. L. Dscam-mediated repulsion controls tiling and self-avoidance. Curr. Opin. Neurobiol. 18, 84–89 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Rakic, P. Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nature Rev. Neurosci. 3, 65–71 (2002).

    CAS  Google Scholar 

  156. Petanjek, Z., Judas, M., Kostovic, I. & Uylings, H. B. Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: a layer-specific pattern. Cereb. Cortex 18, 915–929 (2008).

    PubMed  Google Scholar 

  157. Shaw, P. et al. Intellectual ability and cortical development in children and adolescents. Nature 440, 676–679 (2006).

    CAS  PubMed  Google Scholar 

  158. Abrahams, B. S. & Geschwind, D. H. Advances in autism genetics: on the threshold of a new neurobiology. Nature Rev. Genet. 9, 341–355 (2008).

    CAS  PubMed  Google Scholar 

  159. Karlsgodt, K. H. et al. Developmental disruptions in neural connectivity in the pathophysiology of schizophrenia. Dev. Psychopathol. 20, 1297–1327 (2008).

    PubMed  Google Scholar 

  160. Cardno, A. G. & Gottesman, II. Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am. J. Med. Genet. 97, 12–17 (2000).

    CAS  PubMed  Google Scholar 

  161. Brans, R. G. et al. Heritability of changes in brain volume over time in twin pairs discordant for schizophrenia. Arch. Gen. Psychiatry 65, 1259–1268 (2008).

    PubMed  Google Scholar 

  162. Mei, L. & Xiong, W. C. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nature Rev. Neurosci. 9, 437–452 (2008).

    CAS  Google Scholar 

  163. Hyman, S. E. A glimmer of light for neuropsychiatric disorders. Nature 455, 890–893 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are Howard Hughes Medical Institute investigators and our research is supported by grants from the National Institute of Mental Health and the National Institute of Neurological Disorders and Stroke, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuh-Nung Jan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Angelman's syndrome

autism

Down's syndrome

fragile X syndrome

Rett's syndrome

schizophrenia

FURTHER INFORMATION

Lily and Yuh-Nung Jan's homepage

Glossary

Dendritic field

The region occupied by the dendrites of a neuron that determines the extent of sensory or synaptic inputs to the neuron.

Plus-end capture

Stabilization of rapidly growing microtubules through interaction with their plus end.

Origin recognition complex

A molecular switch that controls the replication initiation machinery to ensure genome duplication during cell division.

Golgi outposts

Golgi cisternae that often reside in the dendrites.

Lissencephaly

Human neuron migration disorders that primarily affect the development of the cerebral cortex.

MARCM

(Mosaic analysis with a repressible cell marker). A sophisticated genetic technique using GAL80 that allows single (wild-type or mutant) neurons to be labelled.

Instar

A developmental stage of the larva

Trans-heterozygous

Describes an animal that harbours one mutant allele of gene A and one mutant allele of gene B.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jan, YN., Jan, L. Branching out: mechanisms of dendritic arborization. Nat Rev Neurosci 11, 316–328 (2010). https://doi.org/10.1038/nrn2836

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2836

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing