Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The log-dynamic brain: how skewed distributions affect network operations

Key Points

  • At many physiological and anatomical levels in the brain, the distribution of numerous parameters is strongly skewed with a heavy tail and typically follows a lognormal distribution.

  • The power and frequency relationship of brain oscillations is typically expressed in a log scale.

  • Network synchrony, measured as a fraction of spiking neurons in a given time window, shows lognormal distribution in all brain states.

  • Firing rates, spike bursts and synaptic weights follow a lognormal distribution. Importantly, these parameters remain correlated across brain states, environments and situations.

  • The log-dynamic patterns of networks may be supported by the lognormal distribution of corticocortical connections strengths and axon diameters.

  • A preconfigured, strongly connected minority of fast-firing neurons form the backbone of brain connectivity and serve as an ever-ready, fast-acting system. However, full performance of the brain also depends on the activity of very large numbers of weakly connected and slow-firing majority of neurons.

Abstract

We often assume that the variables of functional and structural brain parameters — such as synaptic weights, the firing rates of individual neurons, the synchronous discharge of neural populations, the number of synaptic contacts between neurons and the size of dendritic boutons — have a bell-shaped distribution. However, at many physiological and anatomical levels in the brain, the distribution of numerous parameters is in fact strongly skewed with a heavy tail, suggesting that skewed (typically lognormal) distributions are fundamental to structural and functional brain organization. This insight not only has implications for how we should collect and analyse data, it may also help us to understand how the different levels of skewed distributions — from synapses to cognition — are related to each other.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Logarithmic distributions at macroscales.
Figure 2: Skewed distribution of the magnitude of population synchrony.
Figure 3: Lognormal distribution of firing rates in the cortex.
Figure 4: Firing rates of principal neurons are preserved across brain states and environments.
Figure 5: Lognormal distribution of synaptic weights and spike transfer probability.
Figure 6: Skewed distribution of axon calibres.

Similar content being viewed by others

References

  1. Barabasi, A. L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Sporns, O. Networks of the Brain (MIT Press, 2010).

    Book  Google Scholar 

  3. Limpert, E., Stahel, W. A. & Abbt, M. Lognormal distributions across the sciences: keys and clues. Bioscience 51, 341–352 (2001).

    Article  Google Scholar 

  4. Weber, H. De Pulsa Resorptione Auditu et Tactu. Annotationes Anatomicae et Physiologicae (Koehler, 1834) (in German).

    Google Scholar 

  5. Fechner, G. T. Elemente der Psychophysik (Breitkopf und Härtel, 1860) (in German).

    Google Scholar 

  6. Gold, J. I. & Shadlen, M. N. Representation of a perceptual decision in developing oculomotor commands. Nature 404, 390–394 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Deco, G. & Rolls, E. T. Decision-making and Weber's law: a neurophysiological model. Eur. J. Neurosci. 24, 901–916 (2006).

    Article  PubMed  Google Scholar 

  8. Zipf, G. K. Selective Studies and the Principle of Relative Frequency in Language (Harvard Univ. Press, 1932).

    Book  Google Scholar 

  9. Sobkowicz, P., Thelwall, M., Buckley, K. Paltaglou, G. & Sobkowicz, A. Lognormal distributions of user post lengths in Internet discussions — a consequence of the Weber–Fechner law? EPJ Data Sci. 2, 2 (2013).

    Article  Google Scholar 

  10. Dehaene, S. The Number Sense (Oxford Univ. Press, 1999).

    Google Scholar 

  11. Buzsaki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nature Rev. Neurosci. 13, 407–420 (2012).

    Article  CAS  Google Scholar 

  12. Buzsaki, G. Rhythms of the Brain (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  13. Freeman, W. J., Rogers, L. J., Holmes, M. D. & Silbergeld, D. L. Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands. J. Neurosci. Methods 95, 111–121 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Bragin, A. et al. Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15, 47–60 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Schroeder, C. E. & Lakatos, P. Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci. 32, 9–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Buzsaki, G. & Watson, B. O. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin. Neurosci. 14, 345–367 (2012).

    PubMed  PubMed Central  Google Scholar 

  17. Thatcher, R. W., North, D. M. & Biver, C. J. Self-organized criticality and the development of EEG phase reset. Hum. Brain Mapp. 30, 553–574 (2009).

    Article  PubMed  Google Scholar 

  18. Buzsaki, G., Leung, L. W. & Vanderwolf, C. H. Cellular bases of hippocampal EEG in the behaving rat. Brain Res. 287, 139–171 (1983).

    Article  CAS  PubMed  Google Scholar 

  19. Mizuseki, K. & Buzsaki, G. Preconfigured, skewed distribution of firing rates in the hippocampus and entorhinal cortex. Cell Rep. 4, 1010–1021 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mizuseki, K. & Buzsaki, G. Theta oscillations decrease spike synchrony in the hippocampus and entorhinal cortex. Phil. Trans. R. Soc. B 369, 20120530 (2013).

    Article  PubMed  Google Scholar 

  21. Hirase, H., Leinekugel, X., Czurko, A., Csicsvari, J. & Buzsaki, G. Firing rates of hippocampal neurons are preserved during subsequent sleep episodes and modified by novel awake experience. Proc. Natl Acad. Sci. USA 98, 9386–9390 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Battaglia, F. P., Sutherland, G. R., Cowen, S. L., McNaughton, B. L. & Harris, K. D. Firing rate modulation: a simple statistical view of memory trace reactivation. Neural Netw. 18, 1280–1291 (2005).

    Article  PubMed  Google Scholar 

  23. Shafi, M. et al. Variability in neuronal activity in primate cortex during working memory tasks. Neuroscience 146, 1082–1108 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Hromadka, T., Deweese, M. R. & Zador, A. M. Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biol. 6, e16 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O'Connor, D. H., Peron, S. P., Huber, D. & Svoboda, K. Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron 67, 1048–1061 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Peyrache, A. et al. Spatiotemporal dynamics of neocortical excitation and inhibition during human sleep. Proc. Natl Acad. Sci. USA 109, 1731–1736 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Buzsaki, G. Large-scale recording of neuronal ensembles. Nature Neurosci. 7, 446–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Wilson, M. A. & McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Bartho, P. et al. Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. J. Neurophysiol. 92, 600–608 (2004).

    Article  PubMed  Google Scholar 

  30. Fujisawa, S., Amarasingham, A., Harrison, M. T. & Buzsaki, G. Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nature Neurosci. 11, 823–833 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Sirota, A. et al. Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 60, 683–697 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mizuseki, K., Sirota, A., Pastalkova, E. & Buzsaki, G. Theta oscillations provide temporal windows for local circuit computation in the entorhinal–hippocampal loop. Neuron 64, 267–280 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nature Neurosci. 15, 793–802 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Royer, S. et al. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nature Neurosci. 15, 769–775 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H. & Buzsaki, G. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 84, 401–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Barth, A. L. & Poulet, J. F. Experimental evidence for sparse firing in the neocortex. Trends Neurosci. 35, 345–355 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A. & Buzsaki, G. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J. Neurosci. 19, 274–287 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Sullivan, D., Mizuseki, K., Sorgi, A. & Buzsáki, G. Relationships between sleep spindles and theta oscillations in the hippocampus. J. Neurosci. 34, 662–674 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leutgeb, S. et al. Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science 309, 619–623 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Muller, R. U. & Kubie, J. L. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 7, 1951–1968 (1987).

    Article  CAS  PubMed  Google Scholar 

  41. McNaughton, B. L., Barnes, C. A. & O'Keefe, J. The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Exp. Brain Res. 52, 41–49 (1983).

    Article  CAS  PubMed  Google Scholar 

  42. Guzowski, J. F., McNaughton, B. L., Barnes, C. A. & Worley, P. F. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nature Neurosci. 2, 1120–1124 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Dragoi, G., Harris, K. D. & Buzsaki, G. Place representation within hippocampal networks is modified by long-term potentiation. Neuron 39, 843–853 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nature Rev. Neurosci. 10, 647–658 (2009).

    Article  CAS  Google Scholar 

  45. Dragoi, G. & Tonegawa, S. Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 469, 397–401 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Luczak, A., Bartho, P., Marguet, S. L., Buzsaki, G. & Harris, K. D. Sequential structure of neocortical spontaneous activity in vivo. Proc. Natl Acad. Sci. USA 104, 347–352 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Luczak, A., Bartho, P. & Harris, K. D. Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron 62, 413–425 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bermudez Contreras, E. J. et al. Formation and reverberation of sequential neural activity patterns evoked by sensory stimulation are enhanced during cortical desynchronization. Neuron 79, 555–566 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Vazdarjanova, A. & Guzowski, J. F. Differences in hippocampal neuronal population responses to modifications of an environmental context: evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. J. Neurosci. 24, 6489–6496 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leutgeb, S., Leutgeb, J. K., Treves, A., Moser, M. B. & Moser, E. I. Distinct ensemble codes in hippocampal areas CA3 and CA1. Science 305, 1295–1298 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Mizuseki, K., Royer, S., Diba, K. & Buzsaki, G. Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons. Hippocampus 22, 1659–1680 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Lever, C., Wills, T., Cacucci, F., Burgess, N. & O'Keefe, J. Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature 416, 90–94 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Makara, J. K., Losonczy, A., Wen, Q. & Magee, J. C. Experience-dependent compartmentalized dendritic plasticity in rat hippocampal CA1 pyramidal neurons. Nature Neurosci. 12, 1485–1487 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Rampon, C. & Tsien, J. Z. Genetic analysis of learning behavior-induced structural plasticity. Hippocampus 10, 605–609 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nature Neurosci. 16, 264–266 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Svoboda, K., Helmchen, F., Denk, W. & Tank, D. W. Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo. Nature Neurosci. 2, 65–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Losonczy, A., Makara, J. K. & Magee, J. C. Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452, 436–441 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Sagar, S. M., Sharp, F. R. & Curran, T. Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 240, 1328–1331 (1988).

    Article  CAS  PubMed  Google Scholar 

  60. Yassin, L. et al. An embedded subnetwork of highly active neurons in the neocortex. Neuron 68, 1043–1050 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mizuseki, K., Diba, K., Pastalkova, E. & Buzsaki, G. Hippocampal CA1 pyramidal cells form functionally distinct sublayers. Nature Neurosci. 14, 1174–1181 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Aimone, J. B., Deng, W. & Gage, F. H. Adult neurogenesis: integrating theories and separating functions. Trends Cogn. Sci. 14, 325–337 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724–1726 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Amit, D. J. & Brunel, N. Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7, 237–252 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Amit, D. J. & Mongillo, G. Spike-driven synaptic dynamics generating working memory states. Neural Comput. 15, 565–596 (2003).

    Article  PubMed  Google Scholar 

  66. Roudi, Y. & Latham, P. E. A balanced memory network. PLoS Comput. Biol. 3, 1679–1700 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Roxin, A., Brunel, N., Hansel, D., Mongillo, G., & van Vreeswijk, C. On the distribution of firing rates in networks of cortical neurons. J. Neurosci. 31, 16217–16226 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ikegaya, Y. et al. Interpyramid spike transmission stabilizes the sparseness of recurrent network activity. Cereb. Cortex 23, 293–304 (2013).

    Article  PubMed  Google Scholar 

  69. Manabe, T., Renner, P. & Nicoll, R. A. Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents. Nature 355, 50–55 (1992).

    Article  CAS  PubMed  Google Scholar 

  70. Sayer, R. J., Friedlander, M. J. & Redman, S. J. The time course and amplitude of EPSPs evoked at synapses between pairs of CA3/CA1 neurons in the hippocampal slice. J. Neurosci. 10, 826–836 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Feldmeyer, D., Lubke, J., Silver, R. A. & Sakmann, B. Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J. Physiol. 538, 803–822 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Song, S., Sjostrom, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e68 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Arellano, J. I., Benavides-Piccione, R., Defelipe, J. & Yuste, R. Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies. Front. Neurosci. 1, 131–143 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lefort, S., Tomm, C., Floyd Sarria, J. C. & Petersen, C. C. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61, 301–316 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Mitra, A., Mitra, S. S. & Tsien, R. W. Heterogeneous reallocation of presynaptic efficacy in recurrent excitatory circuits adapting to inactivity. Nature Neurosci. 15, 250–257 (2012).

    Article  CAS  Google Scholar 

  76. Koulakov, A. A., Hromadka, T. & Zador, A. M. Correlated connectivity and the distribution of firing rates in the neocortex. J. Neurosci. 29, 3685–3694 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Csicsvari, J., Hirase, H., Czurko, A. & Buzsaki, G. Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: an ensemble approach in the behaving rat. Neuron 21, 179–189 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Chen, X., Rochefort, N. L., Sakmann, B. & Konnerth, A. Reactivation of the same synapses during spontaneous up states and sensory stimuli. Cell Rep. 4, 31–39 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. MacLean, J. N., Watson, B. O., Aaron, G. B. & Yuste, R. Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48, 811–823 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A. & Arieli, A. Spontaneously emerging cortical representations of visual attributes. Nature 425, 954–956 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Han, F., Caporale, N. & Dan, Y. Reverberation of recent visual experience in spontaneous cortical waves. Neuron 60, 321–327 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rubin, J., Lee, D. D. & Sompolinsky, H. Equilibrium properties of temporally asymmetric Hebbian plasticity. Phys. Rev. Lett. 86, 364–367 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Gilson, M. & Fukai, T. Stability versus neuronal specialization for STDP: long-tail weight distributions solve the dilemma. PLoS ONE. 6, e25339 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nature Neurosci. 4, 1086–1092 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Markram, H., Lubke, J., Frotscher, M., Roth, A. & Sakmann, B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. 500, 409–440 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wittner, L., Henze, D. A., Zaborszky, L. & Buzsaki, G. Three-dimensional reconstruction of the axon arbor of a CA3 pyramidal cell recorded and filled in vivo. Brain Struct. Funct. 212, 75–83 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lisman, J. E. & Harris, K. M. Quantal analysis and synaptic anatomy—integrating two views of hippocampal plasticity. Trends Neurosci. 16, 141–147 (1993).

    Article  CAS  PubMed  Google Scholar 

  88. Harris, K. M. & Stevens, J. K. Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9, 2982–2997 (1989).

    Article  CAS  PubMed  Google Scholar 

  89. Asrican, B., Lisman, J. & Otmakhov, N. Synaptic strength of individual spines correlates with bound Ca2+-calmodulin-dependent kinase II. J. Neurosci. 27, 14007–14011 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bhatt, D. H., Zhang, S. & Gan, W. B. Dendritic spine dynamics. Annu. Rev. Physiol. 71, 261–282 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Loewenstein, Y., Kuras, A. & Rumpel, S. Multiplicative dynamics underlie the emergence of the log-normal distribution of spine sizes in the neocortex in vivo. J. Neurosci. 31, 9481–9488 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yasumatsu, N., Matsuzaki, M., Miyazaki, T., Noguchi, J. & Kasai, H. Principles of long-term dynamics of dendritic spines. J. Neurosci. 28, 13592–13608 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Betz, W. J., Caldwell, J. H. & Ribchester, R. R. The size of motor units during post-natal development of rat lumbrical muscle. J. Physiol. 297, 463–478 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Freund, T. F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Klausberger, T. & Somogyi, P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321, 53–57 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gold, C., Henze, D. A., Koch, C. & Buzsaki, G. On the origin of the extracellular action potential waveform: a modeling study. J. Neurophysiol. 95, 3113–3128 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Narayanan, R. & Johnston, D. Functional maps within a single neuron. J. Neurophysiol. 108, 2343–2351 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Harris, K. D., Hirase, H., Leinekugel, X., Henze, D. A. & Buzsaki, G. Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron 32, 141–149 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Jarsky, T., Mady, R., Kennedy, B. & Spruston, N. Distribution of bursting neurons in the CA1 region and the subiculum of the rat hippocampus. J. Comp. Neurol. 506, 535–547 (2008).

    Article  PubMed  Google Scholar 

  100. Markov, N. T. et al. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Wang, Q., Sporns, O. & Burkhalter, A. Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex. J. Neurosci. 32, 4386–4399 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature (in the press).

  103. Ercsey-Ravasz, M. et al. A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron 80, 184–197 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Buzsaki, G., Geisler, C., Henze, D. A. & Wang, X. J. Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci. 27, 186–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Pouget, A., Deneve, S. & Duhamel, J. R. A computational perspective on the neural basis of multisensory spatial representations. Nature Rev. Neurosci. 3, 741–747 (2002).

    Article  CAS  Google Scholar 

  106. Hursh, J. B. Conduction velocity and diameter of nerve fibers. Am. J. Physiol. 127, 131–139 (1939).

    Article  Google Scholar 

  107. Tasaki, I. The electro-saltatory transmission of the nerve impulse and the effect of narcosis upon the nerve fiber. Am. J. Physiol. 127, 211–227 (1939).

    Article  Google Scholar 

  108. Swadlow, H. A. in Time and the Brain (ed. Miller, R.) 151–179 (Harwood Academic, 2000).

    Google Scholar 

  109. Wang, S. S. et al. Functional trade-offs in white matter axonal scaling. J. Neurosci. 28, 4047–4056 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Aboitiz, F., Lopez, J. & Montiel, J. Long distance communication in the human brain: timing constraints for inter-hemispheric synchrony and the origin of brain lateralization. Biol. Res. 36, 89–99 (2003).

    Article  PubMed  Google Scholar 

  111. Innocenti, G. M., Vercelli, A. & Caminiti, R. The diameter of cortical axons depends both on the area of origin and target. Cereb. Cortex http://dx.doi.org/10.1093/cercor/bht070 (2013).

  112. Perge, J. A., Koch, K., Miller, R., Sterling, P. & Balasubramanian, V. How the optic nerve allocates space, energy capacity, and information. J. Neurosci. 29, 7917–7928 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Armstrong, D. M. & Drew, T. Discharges of pyramidal tract and other motor cortical neurones during locomotion in the cat. J. Physiol. 346, 471–495 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Penner, M. R. et al. Age-related changes in Arc transcription and DNA methylation within the hippocampus. Neurobiol. Aging 32, 2198–2210 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Beggs, J. M. & Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. van den Heuvel, M. P. & Sporns, O. Rich-club organization of the human connectome. J. Neurosci. 31, 15775–15786 (2011). This work discusses the importance of strong connections among 'hubs' in the brain. Hubs are connected not only to a large number of other nodes but even more so to each other; they thus form a rich-club organization in which hub members share the bulk of the critical information.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tononi, G. & Edelman, G. M. Consciousness and complexity. Science 282, 1846–1851 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Dehaene, S., Kerszberg, M. & Changeux, J. P. A neuronal model of a global workspace in effortful cognitive tasks. Proc. Natl Acad. Sci. USA 95, 14529–14534 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Samsonovich, A. & McNaughton, B. L. Path integration and cognitive mapping in a continuous attractor neural network model. J. Neurosci. 17, 5900–5920 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Buzsaki, G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pastalkova, E., Itskov, V., Amarasingham, A. & Buzsaki, G. Internally generated cell assembly sequences in the rat hippocampus. Science 321, 1322–1327 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C. & Fried, I. Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Niessing, J. & Friedrich, R. W. Olfactory pattern classification by discrete neuronal network states. Nature 465, 47–52 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Carmena, J. M. et al. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 1, E42 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hochberg, L. R. et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Teramae, J. N., Tsubo, Y. & Fukai, T. Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links. Sci. Rep. 2, 485 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Helbing, D. Globally networked risks and how to respond. Nature 497, 51–59 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Sarpeshkar, R. Ultra Low Power Bioelectronics: Fundamentals, Biomedical Applications, and Bio-inspired Systems (Cambridge Univ. Press, 2010).

    Book  Google Scholar 

  129. Daniel, R., Rubens, J. R., Sarpeshkar, R. & Lu, T. K. Synthetic analog computation in living cells. Nature 497, 619–623 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Buzsaki, G. Feed-forward inhibition in the hippocampal formation. Prog. Neurobiol. 22, 131–153 (1984).

    Article  CAS  PubMed  Google Scholar 

  131. Koch, C. & Poggio, T. in Single Neuron Computation (eds McKenna, T. M., Davis, J. L. & Zornetzer, S. F.) 315–345 (Academic, 1992).

    Book  Google Scholar 

  132. Pena, J. L. & Konishi, M. Auditory spatial receptive fields created by multiplication. Science 292, 249–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Gabbiani, F., Krapp, H. G., Koch, C. & Laurent, G. Multiplicative computation in a visual neuron sensitive to looming. Nature 420, 320–324 (2002). Along with reference 131, this work is among the first to show that neural circuits can use multiplication and division computation.

    Article  CAS  PubMed  Google Scholar 

  134. Silver, R. A. Neuronal arithmetic. Nature Rev. Neurosci. 11, 474–489 (2010).

    Article  CAS  Google Scholar 

  135. Wilson, N. R., Runyan, C. A., Wang, F. L. & Sur, M. Division and subtraction by distinct cortical inhibitory networks in vivo. Nature 488, 343–348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lee, S. H. et al. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488, 379–383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Llinas, R. I of the Vortex: From Neurons to Self (Bradford Books, 2002).

    Google Scholar 

  138. Tsodyks, M., Kenet, T., Grinvald, A. & Arieli, A. Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286, 1943–1946 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Berkes, P., Orban, G., Lengyel, M. & Fiser, J. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331, 83–87 (2011). This work suggests that neural activity in the visual system is the result of the interaction between an internal model of the environment (the prior) and the input from the environment (the posterior), and that the interaction follows a Bayesian rule.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article  CAS  PubMed  Google Scholar 

  141. Rabinovich, M. I. et al. Dynamical coding of sensory information with competitive networks. J. Physiol. Paris 94, 465–471 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Leppänen, J. M., Richmond, J., Vogel-Farley, V. K., Moulson, M. C. & Nelson, C. A. Categorical representation of facial expressions in the infant brain. Infancy 14, 346–362 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Wills, T. J., Cacucci, F., Burgess, N. & O'Keefe, J. Development of the hippocampal cognitive map in preweanling rats. Science 328, 1573–1576 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Langston, R. F. et al. Development of the spatial representation system in the rat. Science 328, 1576–1580 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Logothetis, N. K. & Pauls, J. Psychophysical and physiological evidence for viewer-centered object representations in the primate. Cereb. Cortex 5, 270–288 (1995).

    Article  CAS  PubMed  Google Scholar 

  146. Khazipov, R. et al. Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature 432, 758–761 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Tatsuno, M., Lipa, P. & McNaughton, B. L. Methodological considerations on the use of template matching to study long-lasting memory trace replay. J. Neurosci. 26, 10727–10742 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Buzsaki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Koch, A. L. The logarithm in biology. 1. Mechanisms generating the log-normal distribution exactly. J. Theor. Biol. 12, 276–290 (1966).

    Article  CAS  PubMed  Google Scholar 

  150. Mitzenmacher, M. A brief history of generative models for power law and lognormal distributions. Internet Math. 1, 226–251 (2003). An excellent discussion about the similarities and differences between lognormal, power law and double Pareto distributions and how these distributions may be linked naturally despite different appearances. It also demonstrates that ideas mature slowly over time and that nearly all discoveries have a history.

    Article  Google Scholar 

  151. Sirota, A., Csicsvari, J., Buhl, D. & Buzsaki, G. Communication between neocortex and hippocampus during sleep in rodents. Proc. Natl Acad. Sci. USA 100, 2065–2069 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Skaggs, W. E., McNaughton, B. L., Gothard, K. M. & Markus, E. J. in Advances in Neural Information Processing Systems Vol. 5 (eds Hanson, S. J., Cowan, J. D. & Giles, C. L.) 1030–1037 (Morgan Kaufmann, 1993).

    Google Scholar 

Download references

Acknowledgements

The authors thank A. Berardino, S. Burke, T. Fukai, A. Grosmark, K. Harris, Y. Ikegaya, M. Kahana, C. Koch, J. Magee, A. Maurer, A. Peyrache, A. Reyes, E. Schomburg, L. Sjulson, S. Song, R. Tsien and S. Wang for comments and discussions. The authors are supported by the US National Institutes of Health (NS034994, MH54671 and NS074015 (to G.B.)), National Science Foundation (0542013), the J.D. McDonnell Foundation, Human Frontiers Science Program (grant RGP0032/2011 (to G.B.)), Uehara Memorial Foundation (K.M.), Astellas Foundation for Research on Metabolic Disorders (K.M.) and the Japan Society of Promotion for Sciences (K.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Buzsáki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Spike transfer

The fraction of spikes in the postsynaptic neuron relative to the number of spikes in the presynaptic, driver neuron (or neurons). It is an indirect way of measuring synaptic strength.

Power laws

A term to describe a relationship between two variables, where one varies as a power of the other. The indication of a power law is a distribution of values on a straight line on a double log plot. The right tail of the lognormal distribution often follows a power law distribution.

Scale-free properties

Properties that characterize networks with a degree distribution that follows a power law, characterized by a heavy tail ('Pareto tail').

Cross-frequency phase–amplitude coupling

This is perhaps the most prominent 'law' underlying the hierarchy of the system of brain oscillators. The phase of the slower oscillation modulates the power of the faster rhythm (or rhythms).

Decibel

A logarithmic unit used to express the ratio between two values of a variable. It is often used to describe gain or attenuation: for example, the ratio of input and output.

Sharp-wave ripples

Patterns of activity in the hippocampus, consisting of a sharp wave reflecting the strong depolarization of the apical dendrites of pyramidal cells and a short-lived, fast oscillation ('ripple') as a result of the interaction between bursting pyramidal cells and perisomatic interneurons.

Theta oscillations

A prominent 4–10 Hz collective rhythm of the hippocampus. Other brain regions can also generate oscillations in this band.

Remap

This term refers to the observation that place cell representations can abruptly change.

Immediate-early gene

A gene that is rapidly and transiently activated in response to relevant stimuli.

Fos

A prominent immediate-early gene in the brain; it is often used as an indicator of neuronal activity.

Synaptic weights

A measure of the strength of the synapse, which determines the amplitude of the postsynaptic neuron's response to a presynaptic spike.

Up states

The active phases of the slow oscillation. Intracellularly, an up state corresponds to latching the membrane potential to a more depolarized, near-spiking threshold value.

Spike-timing-dependent plasticity

(STDP). A plasticity-inducing paradigm in which the relative timing of spikes between the pre- and postsynaptic neurons determines the direction and magnitude of the change in synaptic strength.

Wiring economy

The idea that connections among multiple brain regions and neurons are arranged to reduce energy cost and volume demand.

Feedforward inhibition

Excitatory afferents to the various domains of pyramidal cells are matched by parallel sets of inhibitory interneurons to filter, attenuate or route excitation. It can perform division operation.

Redundancy

This term refers to the observation that multiple replicas of input representations exist.

Degeneracy

In biology, this term refers to the idea that different solutions evolved to carry out the same functions.

Preconfigured brain

This term refers to an idea that connections and dynamics in the brain are largely self-generated and that experience matches the pre-existing patterns to the external world, thereby giving rise to 'meaning'.

Attractors

Hypothetical effectors that move elements of a system to more stable states over time. Inhibition-based brain rhythms often show properties of an attractor.

Internal models

A term derived from the hypothesis that the perceived world is not simply a reflection of the objective reality but depends on previous experience and brain state. In this hypothesis, internal models reflect the source of our individual views.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buzsáki, G., Mizuseki, K. The log-dynamic brain: how skewed distributions affect network operations. Nat Rev Neurosci 15, 264–278 (2014). https://doi.org/10.1038/nrn3687

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3687

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing