Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Packet-based communication in the cortex

Abstract

Cortical circuits work through the generation of coordinated, large-scale activity patterns. In sensory systems, the onset of a discrete stimulus usually evokes a temporally organized packet of population activity lasting 50–200 ms. The structure of these packets is partially stereotypical, and variation in the exact timing and number of spikes within a packet conveys information about the identity of the stimulus. Similar packets also occur during ongoing stimuli and spontaneously. We suggest that such packets constitute the basic building blocks of cortical coding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Consistent sequential packet structure in response to different stimuli.
Figure 2: Information coding within packets.
Figure 3: Spontaneous packets have a similar structure to stimulus-evoked packets.
Figure 4: Sequential spiking pattern within packets is preserved across different brain states.
Figure 5: Global propagation of packets.

Similar content being viewed by others

References

  1. Mainen, Z. F. & Sejnowski, T. J. Reliability of spike timing in neocortical neurons. Science 268, 1503–1506 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Bair, W. & Koch, C. Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Comput. 8, 1185–1202 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Buracas, G. T., Zador, A. M., DeWeese, M. R. & Albright, T. D. Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20, 959–969 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. DeWeese, M. R., Wehr, M. & Zador, A. M. Binary spiking in auditory cortex. J. Neurosci. 23, 7940–7949 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Heil, P. First-spike latency of auditory neurons revisited. Curr. Opin. Neurobiol. 14, 461–467 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Panzeri, S., Petersen, R. S., Schultz, S. R., Lebedev, M. & Diamond, M. E. The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron 29, 769–777 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Laurent, G. A systems perspective on early olfactory coding. Science 286, 723–728 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. O'Keefe, J. & Recce, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. McNaughton, B. L., O'Keefe, J. & Barnes, C. A. The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J. Neurosci. Methods 8, 391–397 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Rolston, J. D., Wagenaar, D. A. & Potter, S. M. Precisely timed spatiotemporal patterns of neural activity in dissociated cortical cultures. Neuroscience 148, 294–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Eytan, D. & Marom, S. Dynamics and effective topology underlying synchronization in networks of cortical neurons. J. Neurosci. 26, 8465–8476 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cossart, R., Aronov, D. & Yuste, R. Attractor dynamics of network UP states in the neocortex. Nature 423, 283–288 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. MacLean, J. N., Watson, B. O., Aaron, G. B. & Yuste, R. Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48, 811–823 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Mao, B.-Q., Hamzei-Sichani, F., Aronov, D., Froemke, R. C. & Yuste, R. Dynamics of spontaneous activity in neocortical slices. Neuron 32, 883–898 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Ikegaya, Y. et al. Synfire chains and cortical songs: temporal modules of cortical activity. Science 304, 559–564 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Abeles, M. Local Cortical Circuits (Springer, 1982).

    Book  Google Scholar 

  19. Dayhoff, J. E. & Gerstein, G. L. Favored patterns in spike trains. II. Application. J. Neurophysiol. 49, 1349–1363 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. Prut, Y. et al. Spatiotemporal structure of cortical activity: properties and behavioral relevance. J. Neurophysiol. 79, 2857–2874 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Villa, A. E., Tetko, I. V., Hyland, B. & Najem, A. Spatiotemporal activity patterns of rat cortical neurons predict responses in a conditioned task. Proc. Natl Acad. Sci. USA 96, 1106–1111 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nádasdy, Z., Hirase, H., Czurkó, A., Csicsvari, J. & Buzsáki, G. Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 19, 9497–9507 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shmiel, T. et al. Temporally precise cortical firing patterns are associated with distinct action segments. J. Neurophysiol. 96, 2645–2652 (2006).

    Article  PubMed  Google Scholar 

  24. Izhikevich, E. M., Gally, J. A. & Edelman, G. M. Spike-timing dynamics of neuronal groups. Cereb. Cortex 14, 933–944 (2004).

    Article  PubMed  Google Scholar 

  25. Buonomano, D. V. & Maass, W. State-dependent computations: spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 10, 113–125 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Fiete, I. R., Senn, W., Wang, C. Z. & Hahnloser, R. H. Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity. Neuron 65, 563–576 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Loebel, A., Nelken, I. & Tsodyks, M. Processing of sounds by population spikes in a model of primary auditory cortex. Front. Neurosci. 1, 197 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Verduzco-Flores, S. O., Bodner, M. & Ermentrout, B. A model for complex sequence learning and reproduction in neural populations. J. Comput. Neurosci. 32, 403–423 (2012).

    Article  PubMed  Google Scholar 

  29. Roxin, A., Hakim, V. & Brunel, N. The statistics of repeating patterns of cortical activity can be reproduced by a model network of stochastic binary neurons. J. Neurosci. 28, 10734–10745 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kang, S., Kitano, K. & Fukai, T. Structure of spontaneous UP and DOWN transitions self-organizing in a cortical network model. PLoS Comput. Biol. 4, e1000022 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Oram, M., Wiener, M., Lestienne, R. & Richmond, B. Stochastic nature of precisely timed spike patterns in visual system neuronal responses. J. Neurophysiol. 81, 3021–3033 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Baker, S. N. & Lemon, R. N. Precise spatiotemporal repeating patterns in monkey primary and supplementary motor areas occur at chance levels. J. Neurophysiol. 84, 1770–1780 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Mokeichev, A. et al. Stochastic emergence of repeating cortical motifs in spontaneous membrane potential fluctuations in vivo. Neuron 53, 413–425 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. McLelland, D. & Paulsen, O. Cortical songs revisited: a lesson in statistics. Neuron 53, 319–321 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Luczak, A., Barthó, P. & Harris, K. D. Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron 62, 413–425 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Luczak, A., Barthó, P., Marguet, S. L., Buzsáki, G. & Harris, K. D. Sequential structure of neocortical spontaneous activity in vivo. Proc. Natl Acad. Sci. USA 104, 347–352 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Hromádka, T., DeWeese, M. R. & Zador, A. M. Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biol. 6, e16 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Nelken, I., Chechik, G., Mrsic-Flogel, T. D., King, A. J. & Schnupp, J. W. Encoding stimulus information by spike numbers and mean response time in primary auditory cortex. J. Comput. Neurosci. 19, 199–221 (2005).

    Article  PubMed  Google Scholar 

  39. Barthó, P., Curto, C., Luczak, A., Marguet, S. L. & Harris, K. D. Population coding of tone stimuli in auditory cortex: dynamic rate vector analysis. Eur. J. Neurosci. 30, 1767–1778 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Supèr, H., Spekreijse, H. & Lamme, V. A. Two distinct modes of sensory processing observed in monkey primary visual cortex (V1). Nat. Neurosci. 4, 304–310 (2001).

    Article  PubMed  Google Scholar 

  41. Derdikman, D., Hildesheim, R., Ahissar, E., Arieli, A. & Grinvald, A. Imaging spatiotemporal dynamics of surround inhibition in the barrels somatosensory cortex. J. Neurosci. 23, 3100–3105 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Evarts, E. V. & Tanji, J. Reflex and intended responses in motor cortex pyramidal tract neurons of monkey. J. Neurophysiol. 39, 1069–1080 (1976).

    Article  CAS  PubMed  Google Scholar 

  43. Murray, J. D. et al. A hierarchy of intrinsic timescales across primate cortex. Nat. Neurosci. 17, 1661–1663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qin, L., Wang, J. Y. & Sato, Y. Representations of cat meows and human vowels in the primary auditory cortex of awake cats. J. Neurophysiol. 99, 2305–2319 (2008).

    Article  PubMed  Google Scholar 

  45. Linden, J. F., Liu, R. C., Sahani, M., Schreiner, C. E. & Merzenich, M. M. Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex. J. Neurophysiol. 90, 2660–2675 (2003).

    Article  PubMed  Google Scholar 

  46. Furukawa, S. & Middlebrooks, J. C. Cortical representation of auditory space: information-bearing features of spike patterns. J. Neurophysiol. 87, 1749–1762 (2002).

    Article  PubMed  Google Scholar 

  47. Foffani, G., Chapin, J. K. & Moxon, K. A. Computational role of large receptive fields in the primary somatosensory cortex. J. Neurophysiol. 100, 268–280 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Foffani, G., Tutunculer, B. & Moxon, K. A. Role of spike timing in the forelimb somatosensory cortex of the rat. J. Neurosci. 24, 7266–7271 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Buzsáki, G. & Mizuseki, K. The log-dynamic brain: how skewed distributions affect network operations. Nat. Rev. Neurosci. 15, 264–278 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Jermakowicz, W. J., Chen, X., Khaytin, I., Bonds, A. & Casagrande, V. A. Relationship between spontaneous and evoked spike-time correlations in primate visual cortex. J. Neurophysiol. 101, 2279–2289 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Havenith, M. N. et al. Synchrony makes neurons fire in sequence, and stimulus properties determine who is ahead. J. Neurosci. 31, 8570–8584 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bizley, J. K., Walker, K. M., King, A. J. & Schnupp, J. W. Neural ensemble codes for stimulus periodicity in auditory cortex. J. Neurosci. 30, 5078–5091 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cury, K. M. & Uchida, N. Robust odor coding via inhalation-coupled transient activity in the mammalian olfactory bulb. Neuron 68, 570–585 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Gawne, T. J., Kjaer, T. W. & Richmond, B. J. Latency: another potential code for feature binding in striate cortex. J. Neurophysiol. 76, 1356–1360 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Junek, S., Kludt, E., Wolf, F. & Schild, D. Olfactory coding with patterns of response latencies. Neuron 67, 872–884 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Churchland, M. M. et al. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat. Neurosci. 13, 369–378 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chase, S. M. & Young, E. D. First-spike latency information in single neurons increases when referenced to population onset. Proc. Natl Acad. Sci. USA 104, 5175–5180 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Johansson, R. S. & Birznieks, I. First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat. Neurosci. 7, 170–177 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Lu, T., Liang, L. & Wang, X. Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat. Neurosci. 4, 1131–1138 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Montemurro, M. A., Rasch, M. J., Murayama, Y., Logothetis, N. K. & Panzeri, S. Phase-of-firing coding of natural visual stimuli in primary visual cortex. Curr. Biol. 18, 375–380 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Panzeri, S., Brunel, N., Logothetis, N. K. & Kayser, C. Sensory neural codes using multiplexed temporal scales. Trends Neurosci. 33, 111–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Sugase, Y., Yamane, S., Ueno, S. & Kawano, K. Global and fine information coded by single neurons in the temporal visual cortex. Nature 400, 869–873 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Brincat, S. L. & Connor, C. E. Dynamic shape synthesis in posterior inferotemporal cortex. Neuron 49, 17–24 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Grastyan, E., John, E. & Bartlett, F. Evoked response correlate of symbol and significate. Science 201, 168–171 (1978).

    Article  CAS  PubMed  Google Scholar 

  65. Gilad, A., Meirovithz, E. & Slovin, H. Population responses to contour integration: early encoding of discrete elements and late perceptual grouping. Neuron 78, 389–402 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Zipser, K., Lamme, V. A. & Schiller, P. H. Contextual modulation in primary visual cortex. J. Neurosci. 16, 7376–7389 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, X., Lu, T., Snider, R. K. & Liang, L. Sustained firing in auditory cortex evoked by preferred stimuli. Nature 435, 341–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Weng, C., Yeh, C.-I., Stoelzel, C. R. & Alonso, J.-M. Receptive field size and response latency are correlated within the cat visual thalamus. J. Neurophysiol. 93, 3537–3547 (2005).

    Article  PubMed  Google Scholar 

  69. Sachidhanandam, S., Sreenivasan, V., Kyriakatos, A., Kremer, Y. & Petersen, C. C. Membrane potential correlates of sensory perception in mouse barrel cortex. Nat. Neurosci. 16, 1671–1677 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Nienborg, H. & Cumming, B. G. Decision-related activity in sensory neurons reflects more than a neuron's causal effect. Nature 459, 89–92 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Llinás, R. R. & Paré, D. Of dreaming and wakefulness. Neuroscience 44, 521–535 (1991).

    Article  PubMed  Google Scholar 

  72. DeWeese, M. R. & Zador, A. M. Non-Gaussian membrane potential dynamics imply sparse, synchronous activity in auditory cortex. J. Neurosci. 26, 12206–12218 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Luczak, A., Bartho, P. & Harris, K. D. Gating of sensory input by spontaneous cortical activity. J. Neurosci. 33, 1684–1695 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Okun, M. & Lampl, I. Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat. Neurosci. 11, 535–537 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Hromádka, T., Zador, A. M. & DeWeese, M. R. Up states are rare in awake auditory cortex. J. Neurophysiol. 109, 1989–1995 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Beggs, J. M. & Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shew, W. L., Yang, H., Petermann, T., Roy, R. & Plenz, D. Neuronal avalanches imply maximum dynamic range in cortical networks at criticality. J. Neurosci. 29, 15595–15600 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shew, W. L., Yang, H., Yu, S., Roy, R. & Plenz, D. Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches. J. Neurosci. 31, 55–63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sakata, S. & Harris, K. D. Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron 64, 404–418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sanchez-Vives, M. V. & McCormick, D. A. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3, 1027–1034 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Markov, N. T. et al. Cortical high-density counterstream architectures. Science 342, 1238406 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Coogan, T. A. & Burkhalter, A. Hierarchical organization of areas in rat visual cortex. J. Neurosci. 13, 3749–3749 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mao, T. et al. Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72, 111–123 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Luczak, A. & MacLean, J. N. Default activity patterns at the neocortical microcircuit level. Front. Integr. Neurosci. 6, 30 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hoffman, K. & McNaughton, B. Coordinated reactivation of distributed memory traces in primate neocortex. Science 297, 2070–2073 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Ji, D. & Wilson, M. A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat. Neurosci. 10, 100–107 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Han, F., Caporale, N. & Dan, Y. Reverberation of recent visual experience in spontaneous cortical waves. Neuron 60, 321–327 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Eagleman, S. L. & Dragoi, V. Image sequence reactivation in awake V4 networks. Proc. Natl Acad. Sci. USA 109, 19450–19455 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bermudez Contreras, E. J. et al. Formation and reverberation of sequential neural activity patterns evoked by sensory stimulation are enhanced during cortical desynchronization. Neuron 79, 555–566 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Abeles, M. & Gerstein, G. L. Detecting spatiotemporal firing patterns among simultaneously recorded single neurons. J. Neurophysiol. 60, 909–924 (1988).

    Article  CAS  PubMed  Google Scholar 

  91. Euston, D. R., Tatsuno, M. & McNaughton, B. L. Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science 318, 1147–1150 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Diesmann, M., Gewaltig, M.-O. & Aertsen, A. Stable propagation of synchronous spiking in cortical neural networks. Nature 402, 529–533 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Niedermeyer, E. & da Silva, F. L. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (Lippincott Williams & Wilkins, 2005).

    Google Scholar 

  94. Nunez, P. L. & Srinivasan, R. Electric Fields of the Brain: The Neurophysics of EEG (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  95. Contreras, D. & Steriade, M. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J. Neurosci. 15, 604–622 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. McCormick, D. A. & Bal, T. Sleep and arousal: thalamocortical mechanisms. Annu. Rev. Neurosci. 20, 185–215 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Crochet, S. & Petersen, C. C. Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat. Neurosci. 9, 608–610 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Poulet, J. F. & Petersen, C. C. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454, 881–885 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Harris, K. D. & Thiele, A. Cortical state and attention. Nat. Rev. Neurosci. 12, 509–523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Renart, A. et al. The asynchronous state in cortical circuits. Science 327, 587–590 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Issa, E. B. & Wang, X. Sensory responses during sleep in primate primary and secondary auditory cortex. J. Neurosci. 28, 14467–14480 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Edeline, J. M., Dutrieux, G., Manunta, Y. & Hennevin, E. Diversity of receptive field changes in auditory cortex during natural sleep. Eur. J. Neurosci. 14, 1865–1880 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Luo, H. & Poeppel, D. Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron 54, 1001–1010 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Britvina, T. & Eggermont, J. Spectrotemporal receptive fields during spindling and non-spindling epochs in cat primary auditory cortex. Neuroscience 154, 1576–1588 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Luczak, A. & Barthó, P. Consistent sequential activity across diverse forms of UP states under ketamine anesthesia. Eur. J. Neurosci. 36, 2830–2838 (2012).

    Article  PubMed  Google Scholar 

  106. Buzsáki, G. Two-stage model of memory trace formation: a role for 'noisy' brain states. Neuroscience 31, 551–570 (1989).

    Article  PubMed  Google Scholar 

  107. McClelland, J. L., McNaughton, B. L. & O'Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419 (1995).

    Article  PubMed  Google Scholar 

  108. Marr, D. Simple memory: a theory for archicortex. Phil. Trans. R. Soc. Lond. B 262, 23–81 (1971).

    Article  CAS  Google Scholar 

  109. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon Press Oxford, 1978).

    Google Scholar 

  110. Buzsáki, G., Horvath, Z., Urioste, R., Hetke, J. & Wise, K. High-frequency network oscillation in the hippocampus. Science 256, 1025–1027 (1992).

    Article  PubMed  Google Scholar 

  111. Chrobak, J. J. & Buzsáki, G. High-frequency oscillations in the output networks of the hippocampal–entorhinal axis of the freely behaving rat. J. Neurosci. 16, 3056–3066 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vanderwolf, C. H. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr. Clin. Neurophysiol. 26, 407–418 (1969).

    Article  CAS  PubMed  Google Scholar 

  113. Diba, K. & Buzsáki, G. Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci. 10, 1241–1242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dragoi, G. & Tonegawa, S. Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 469, 397–401 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Samsonovich, A. & McNaughton, B. L. Path integration and cognitive mapping in a continuous attractor neural network model. J. Neurosci. 17, 5900–5920 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mohajerani, M. H. et al. Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nat. Neurosci. 16, 1426–1435 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Frostig, R. D., Xiong, Y., Chen-Bee, C. H., Kvašnák, E. & Stehberg, J. Large-scale organization of rat sensorimotor cortex based on a motif of large activation spreads. J. Neurosci. 28, 13274–13284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ferezou, I. et al. Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron 56, 907–923 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Roland, P. E. et al. Cortical feedback depolarization waves: a mechanism of top-down influence on early visual areas. Proc. Natl Acad. Sci. USA 103, 12586–12591 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Xu, W., Huang, X., Takagaki, K. & Wu, J.-Y. Compression and reflection of visually evoked cortical waves. Neuron 55, 119–129 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Berger, T. W., Rinaldi, P. C., Weisz, D. J. & Thompson, R. F. Single-unit analysis of different hippocampal cell types during classical conditioning of rabbit nictitating membrane response. J. Neurophysiol. 50, 1197–1219 (1983).

    Article  CAS  PubMed  Google Scholar 

  122. Foster, T. C., Christian, E. P., Hampson, R. E., Campbell, K. A. & Deadwyler, S. A. Sequential dependencies regulate sensory evoked responses of single units in the rat hippocampus. Brain Res. 408, 86–96 (1987).

    Article  CAS  PubMed  Google Scholar 

  123. Pereira, A. et al. Processing of tactile information by the hippocampus. Proc. Natl Acad. Sci. USA 104, 18286–18291 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Siapas, A. G. & Wilson, M. A. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21, 1123–1128 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Sirota, A., Csicsvari, J., Buhl, D. & Buzsáki, G. Communication between neocortex and hippocampus during sleep in rodents. Proc. Natl Acad. Sci. USA 100, 2065–2069 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Battaglia, F. P., Sutherland, G. R. & McNaughton, B. L. Hippocampal sharp wave bursts coincide with neocortical 'up-state' transitions. Learn. Mem. 11, 697–704 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Wierzynski, C. M., Lubenov, E. V., Gu, M. & Siapas, A. G. State-dependent spike-timing relationships between hippocampal and prefrontal circuits during sleep. Neuron 61, 587–596 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hahn, T. T., Sakmann, B. & Mehta, M. R. Phase-locking of hippocampal interneurons' membrane potential to neocortical up-down states. Nat. Neurosci. 9, 1359–1361 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Isomura, Y. et al. Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations. Neuron 52, 871–882 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Tkach, D., Reimer, J. & Hatsopoulos, N. G. Congruent activity during action and action observation in motor cortex. J. Neurosci. 27, 13241–13250 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lamme, V. A. & Roelfsema, P. R. The distinct modes of vision offered by feedforward and recurrent processing. Trends. Neurosci. 23, 571–579 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Zuo, Y. et al. Complementary contributions of spike timing and spike rate to perceptual decisions in rat S1 and S2 cortex. Curr. Biol. 25, 357–363 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Salinas, E. & Sejnowski, T. J. Correlated neuronal activity and the flow of neural information. Nat. Rev. Neurosci. 2, 539–550 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).

    Article  PubMed  Google Scholar 

  135. Kayser, C., Montemurro, M. A., Logothetis, N. K. & Panzeri, S. Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns. Neuron 61, 597–608 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Buzsaki, G. Rhythms of the Brain (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  137. Mu, Y. & Poo, M.-M. Spike timing-dependent LTP/LTD mediates visual experience-dependent plasticity in a developing retinotectal system. Neuron 50, 115–125 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Kayser, C., Ince, R. A. & Panzeri, S. Analysis of slow (theta) oscillations as a potential temporal reference frame for information coding in sensory cortices. PLoS Comput. Biol. 8, e1002717 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kwag, J., McLelland, D. & Paulsen, O. Phase of firing as a local window for efficient neuronal computation: tonic and phasic mechanisms in the control of theta spike phase. Front. Hum. Neurosci. 5, 3 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Reich, D. S., Mechler, F. & Victor, J. D. Temporal coding of contrast in primary visual cortex: when, what, and why. J. Neurophysiol. 85, 1039–1050 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Petersen, R. S., Panzeri, S. & Diamond, M. E. Population coding of stimulus location in rat somatosensory cortex. Neuron 32, 503–514 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Brasselet, R., Panzeri, S., Logothetis, N. K. & Kayser, C. Neurons with stereotyped and rapid responses provide a reference frame for relative temporal coding in primate auditory cortex. J. Neurosci. 32, 2998–3008 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Huxter, J. R., Senior, T. J., Allen, K. & Csicsvari, J. Theta phase-specific codes for two-dimensional position, trajectory and heading in the hippocampus. Nat. Neurosci. 11, 587–594 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Turesson, H. K., Logothetis, N. K. & Hoffman, K. L. Category-selective phase coding in the superior temporal sulcus. Proc. Natl Acad. Sci. USA 109, 19438–19443 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Noreña, A. & Eggermont, J. J. Comparison between local field potentials and unit cluster activity in primary auditory cortex and anterior auditory field in the cat. Hear. Res. 166, 202–213 (2002).

    Article  PubMed  Google Scholar 

  147. Kelly, R. C., Smith, M. A., Kass, R. E. & Lee, T. S. Local field potentials indicate network state and account for neuronal response variability. J. Comput. Neurosci. 29, 567–579 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Storm, J. K+ channels and their distribution in large cortical pyramidal neurones. J. Physiol. 525, 565–566 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sugino, K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat. Neurosci. 9, 99–107 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Vervaeke, K., Hu, H., Graham, L. J. & Storm, J. F. Contrasting effects of the persistent Na+ current on neuronal excitability and spike timing. Neuron 49, 257–270 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Mainen, Z. F. & Sejnowski, T. J. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382, 363–366 (1996).

    Article  CAS  PubMed  Google Scholar 

  152. Schwindt, P., O'Brien, J. A. & Crill, W. Quantitative analysis of firing properties of pyramidal neurons from layer 5 of rat sensorimotor cortex. J. Neurophysiol. 77, 2484–2498 (1997).

    Article  CAS  PubMed  Google Scholar 

  153. de Kock, C. P. & Sakmann, B. Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific. Proc. Natl Acad. Sci. USA 106, 16446–16450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Volgushev, M., Chauvette, S., Mukovski, M. & Timofeev, I. Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave sleep. J. Neurosci. 26, 5665–5672 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Eckmann, J.-P., Jacobi, S., Marom, S., Moses, E. & Zbinden, C. Leader neurons in population bursts of 2D living neural networks. New J. Phys. 10, 015011 (2008).

    Article  Google Scholar 

  156. Yamashita, T. et al. Membrane potential dynamics of neocortical projection neurons driving target-specific signals. Neuron 80, 1477–1490 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Yoshimura, Y., Dantzker, J. L. & Callaway, E. M. Excitatory cortical neurons form fine-scale functional networks. Nature 433, 868–873 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Wang, Y. et al. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat. Neurosci. 9, 534–542 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Hefti, B. J. & Smith, P. H. Anatomy, physiology, and synaptic responses of rat layer V auditory cortical cells and effects of intracellular GABAA blockade. J. Neurophysiol. 83, 2626–2638 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. Takahashi, N., Sasaki, T., Matsumoto, W., Matsuki, N. & Ikegaya, Y. Circuit topology for synchronizing neurons in spontaneously active networks. Proc. Natl Acad. Sci. USA 107, 10244–10249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Petreanu, L., Mao, T., Sternson, S. M. & Svoboda, K. The subcellular organization of neocortical excitatory connections. Nature 457, 1142–1145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Perin, R., Berger, T. K. & Markram, H. A synaptic organizing principle for cortical neuronal groups. Proc. Natl Acad. Sci. USA 108, 5419–5424 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Song, S., Sjöström, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e68 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Cossell, L. et al. Functional organization of excitatory synaptic strength in primary visual cortex. Nature 518, 339–403 (2015).

    Article  CAS  Google Scholar 

  165. Braitenberg, V. & Schüz, A. Cortex: Statistics and Geometry of Neuronal Connectivity 135–137 (Springer, 1998).

    Book  Google Scholar 

  166. Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    Article  PubMed  CAS  Google Scholar 

  167. Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  168. Bassett, D. S. & Bullmore, E. Small-world brain networks. Neuroscientist 12, 512–523 (2006).

    Article  PubMed  Google Scholar 

  169. Luczak, A. in Analysis and Modeling of Coordinated Multi-neuronal Activity (ed. Tatsuno, M.) 163–182 (Springer, 2015).

    Book  Google Scholar 

  170. Galán, R. F. On how network architecture determines the dominant patterns of spontaneous neural activity. PLoS ONE 3, e2148 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Jenkins, W. M., Merzenich, M. M., Ochs, M. T., Allard, T. & Guic-Robles, E. Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. J. Neurophysiol. 63, 82–104 (1990).

    Article  CAS  PubMed  Google Scholar 

  173. Recanzone, G. A., Schreiner, C. & Merzenich, M. M. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13, 87–103 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Berkes, P., Orbán, G., Lengyel, M. & Fiser, J. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331, 83–87 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Chang, E. F. & Merzenich, M. M. Environmental noise retards auditory cortical development. Science 300, 498–502 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) discovery grant (DG) and the NSERC DG Accelerator Supplement to A.L., by the Alberta Innovates Health Solutions Polaris Award (MH46823-16) to B.L.M., as well as by the Wellcome Trust (grant number 95668) and the Simons Foundation (grant number 325512) to K.D.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Luczak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Firing-rate coding

A coding scheme in which the features of a stimulus, such as its intensity, are coded by the number of spikes emitted within a specific period of time.

Network attractors

Activity patterns towards which a recurrent dynamical network evolves over time from a range of different initial conditions.

Quiet wakefulness

A period of drowsiness in which an animal is not moving and, for relevant species, not whisking.

Small-world topology

A type of network structure with highly interconnected local nodes and few long-range connections, which results in there being a short path between any two nodes while each node has relatively few connections.

Spike-time coding

A coding scheme in which information is transmitted by the exact timing of the action potential in reference to a specific event (for example, stimulus onset or spiking of another neuron).

Spike-timing reliability

A correlation-based measure that quantifies reproducibility of spike trains across trials. It decreases with spike-timing jitter and with spike count variability.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luczak, A., McNaughton, B. & Harris, K. Packet-based communication in the cortex. Nat Rev Neurosci 16, 745–755 (2015). https://doi.org/10.1038/nrn4026

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn4026

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing