Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Specification of catecholaminergic and serotonergic neurons

Key Points

  • The specification of neurotransmitter phenotype is an important aspect of neuronal fate determination. Here, we review our current knowledge of the regulatory circuits that direct neurotransmitter choice and the development of catecholaminergic — noradrenergic (NA) and dopaminergic (DA) — and serotonergic (5-hydroxytryptamine (5-HT, serotonin)-synthesizing) neurons.

  • In both the peripheral and central nervous systems, NA differentiation depends on bone morphogenetic protein (BMP) signalling and on the Mash1 and Phox2b transcription factors. In the sympathetic NA lineage, at least five transcription factors — Mash1, Phox2a, Phox2b, dHand and Gata3 — collaborate in the specification of the NA phenotype. The central NA neurons, which form a nucleus called the locus coeruleus, use many of the same factors, but in a different order.

  • Most DA neurons are located in the substantia nigra and ventral tegmental area of the midbrain. The induction of DA neurons depends on signals from the floor plate and the isthmus, including sonic hedgehog (Shh) and fibroblast growth factor 8 (FGF8). Specification and maintenance of midbrain DA neurons depends on the Nurr1 and Lmx1b transcriptional regulators.

  • 5-HT neurons arise from ventral neuroepithelial progenitors close to the floor plate. Their development, like that of DA neurons, depends on previous patterning of the neuroepithelium by Shh and FGF signalling. At least three transcriptional regulators — Nkx2.2, Gata3 and Pet1 — are required for 5-HT-neuron development.

  • The available data are compatible with a model in which different neuronal types use distinct combinations of transcription factors to control not only the expression of shared properties, such as transmitter-synthesizing enzymes, but also the expression of generic neuronal properties.

Abstract

The specification of neurotransmitter phenotype is an important aspect of neuronal fate determination. Substantial progress has been made in uncovering key extracellular signals and transcriptional regulators that control the mode of neurotransmission in several model systems, among which catecholaminergic and serotonergic neurons feature prominently. Here, we review our current knowledge of the regulatory circuits that direct neurotransmitter choice, and discuss the development of well-studied types of catecholaminergic and serotonergic neurons. One emerging concept is that different types of neuron use a similar core programme to control shared modes of neurotransmission, but recruit different factors that are specific for each neuronal type. Another is that most factors that specify neurotransmitter identity also control other features of the neuronal phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enzymatic pathways of catecholamine and 5-HT synthesis.
Figure 2: Location of 5-HT, locus coeruleus and midbrain dopaminergic neurons with respect to sources of important signalling molecules.
Figure 3: Migration pathway and location of sympathetic precursors.
Figure 4: Cell-extrinsic and -intrinsic factors that are known to be involved in the generation of noradrenergic, dopaminergic and 5-HT neurons.
Figure 5: Regulatory network controlling sympathetic-neuron development.
Figure 6: Transcription-factor cascade controlling locus coeruleus development.

Similar content being viewed by others

References

  1. Björklund, A. & Hökfelt, T. Handbook of Chemical Neuroanatomy (Elsevier, Amsterdam, 1984).

    Google Scholar 

  2. Niewenhuys, R. Chemoarchitecture of the Brain (Springer, Berlin, 1985).

    Book  Google Scholar 

  3. Cooper, J. R. Bloom, F. E. & Roth, R. H. The Biochemical Basis of Neuropharmacology (Oxford Univ. Press, New York, 1977).

    Google Scholar 

  4. Hynes, M. & Rosenthal, A. Specification of dopaminergic and serotonergic neurons in the vertebrate CNS. Curr. Opin. Neurobiol. 9, 26–36 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Paxinos, G. The Rat Nervous System (Academic, San Diego, 1995).

    Google Scholar 

  6. Landis, S. C. Target regulation of neurotransmitter phenotype. Trends Neurosci. 13, 344–350 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Francis, N. J. & Landis, S. C. Cellular and molecular determinants of sympathetic neuron development. Annu. Rev. Neurosci. 22, 541–566 (1999).

  8. Ernsberger, U. & Rohrer, H. Development of the cholinergic neurotransmitter phenotype in postganglionic sympathetic neurons. Cell Tissue Res. 297, 339–361 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Guillemot, F. et al. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75, 463–476 (1993).This paper provides the first genetic evidence for the essential role of Mash1 in sympathetic-neuron development.

    Article  CAS  PubMed  Google Scholar 

  10. Ernsberger, U. et al. The expression of tyrosine hydroxylase and the transcription factors cPhox-2 and Cash-1: evidence for distinct inductive steps in the differentiation of chick sympathetic precursor cells. Mech. Dev. 52, 125–136 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Groves, A. K. et al. Differential regulation of transcription factor gene expression and phenotypic markers in developing sympathetic neurons. Development 121, 887–901 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Hirsch, M. R., Tiveron, M.-C., Guillemot, F., Brunet, J.-F. & Goridis, C. Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development 125, 599–608 (1998).This paper, together with reference 9 , provides genetic evidence for the essential role of Mash1 in peripheral and central NA differentiation, acting independently of Phox2b.

    Article  CAS  PubMed  Google Scholar 

  13. Varley, J. E., Wehby, R. G., Rueger, D. C. & Maxwell, G. D. Number of adrenergic and islet-1 immunoreactive cells is increased in avian trunk neural crest cell cultures in the presence of human recombinant osteogenic protein-1. Dev. Dyn. 203, 434–447 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Lo, L., Tiveron, M.-C. & Anderson, D. J. MASH1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity. Development 125, 609–620 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Reissmann, E. et al. Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development 122, 2079–2088 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Shah, N. M., Groves, A. K. & Anderson, D. J. Alternative neural crest cell fates are instructively promoted by TGFβ superfamily members. Cell 85, 331–343 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Varley, J. E. & Maxwell, G. D. BMP2 and BMP4, but not BMP6 increase the number of adrenergic cells which develop in quail trunk neural crest cultures. Exp. Neurol. 140, 84–94 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Varley, J. E., McPherson, C. E., Zou, H., Niswander, L. & Maxwell, G. D. Expression of a constitutively active type I BMP receptor using a retroviral vector promotes the development of adrenergic cells in neural crest cultures. Dev. Biol. 196, 107–118 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Schneider, C., Wicht, H., Enderich, J., Wegner, M. & Rohrer, H. Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. Neuron 24, 861–870 (1999).This paper provides in vivo evidence for the essential role of BMPs in the development of peripheral NA neurons.

    Article  CAS  PubMed  Google Scholar 

  20. Tiveron, M.-C., Hirsch, M.-R. & Brunet, J.-F. The expression pattern of the transcription factor Phox2 delineates synaptic pathways of the autonomic nervous system. J. Neurosci. 16, 7649–7660 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J.-F. Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 124, 4065–4075 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J.-F. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399, 366–370 (1999).This paper presents genetic evidence for the crucial role of Phox2b in the development of peripheral NA neurons.

    Article  CAS  PubMed  Google Scholar 

  23. Stanke, M. et al. The Phox2 homeodomain proteins are sufficient to promote the development of sympathetic neurons. Development 126, 4087–4094 (1999).This study, together with reference 32 , makes use of GOF methods to show that Phox2a and Phox2b are sufficient to initiate sympathetic-neuron development.

    Article  CAS  PubMed  Google Scholar 

  24. Morin, X. et al. Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron 18, 411–423 (1997).This paper shows the dependence of LC development on Phox2a.

    Article  CAS  PubMed  Google Scholar 

  25. Swanson, D. J., Zellmer, E. & Lewis, E. J. The homeodomain protein Arix interacts synergistically with cyclic AMP to regulate expression of neurotransmitter biosynthetic genes. J. Biol. Chem. 272, 27382–27392 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Yang, C. et al. Paired-like homeodomain proteins, Phox2a and Phox2b, are responsible for noradrenergic cell-specific transcription of the dopamine β-hydroxylase gene. J. Neurochem. 71, 1813–1826 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, H. S., Seo, H., Yang, C., Brunet, J.-F. & Kim, K. S. Noradrenergic-specific transcription of the dopamine β-hydroxylase gene requires synergy of multiple cis-acting elements including at least two Phox2a-binding sites. J. Neurosci. 18, 8247–8260 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Adachi, M., Browne, D. & Lewis, E. J. Paired-like homeodomain proteins Phox2a/Arix and Phox2b/NBPhox have similar genetic organization and independently regulate dopamine β-hydroxylase gene transcription. DNA Cell Biol. 19, 539–554 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Swanson, D. J., Adachi, M. & Lewis, E. J. The homeodomain protein Arix promotes protein kinase A-dependent activation of the dopamine β-hydroxylase promoter through multiple elements and interaction with the coactivator cAMP-response element-binding protein-binding protein. J. Biol. Chem. 275, 2911–2923 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Seo, H. et al. A direct role of the homeodomain proteins, Phox2a/b, in noradrenaline neurotransmitter identity determination. J. Neurochem. 80, 905–916 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Zellmer, E. et al. A homeodomain protein selectively expressed in noradrenergic tissue regulates transcription of neurotransmitter biosynthetic genes. J. Neurosci. 15, 8109–8120 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lo, L., Morin, X., Brunet, J.-F. & Anderson, D. J. Specification of neurotransmitter identity by Phox2 proteins in neural crest stem cells. Neuron 22, 693–705 (1999).This paper makes use of GOF methods to show that Phox2 genes are sufficient to initiate sympathetic-neuron development. It also provides evidence that implicates cAMP signalling in this process.

    Article  CAS  PubMed  Google Scholar 

  33. Pattyn, A., Hirsch, M.-R., Goridis, C. & Brunet, J.-F. Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b. Development 127, 1349–1358 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Howard, M., Foster, D. N. & Cserjesi, P. Expression of HAND gene products may be sufficient for the differentiation of avian neural crest-derived cells into catecholaminergic neurons in culture. Dev. Biol. 215, 62–77 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Howard, M. J., Stanke, M., Schneider, C., Wu, X. & Rohrer, H. The transcription factor dHAND is a downstream effector of BMPs in sympathetic neuron specification. Development 127, 4073–4081 (2000).This study makes use of GOF methods to show the involvement of dHand in the development of sympathetic neurons.

    Article  CAS  PubMed  Google Scholar 

  36. Anderson, D. J. & Jan, Y. N. The Determination of the Neuronal Phenotype (Oxford Univ. Press, Oxford, UK, 1998).

    Book  Google Scholar 

  37. Srivastava, D. et al. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nature Genet. 16, 154–160 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Lim, K. C. et al. Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nature Genet. 25, 209–212 (2000).This paper provides genetic evidence for a role of Gata3 in NA differentiation of the sympathetic lineage, but not in generic neuronal differentiation.

    Article  CAS  PubMed  Google Scholar 

  39. Pacholczyk, T., Blakely, R. D. & Amara, S. G. Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 350, 350–354 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Rohrer, H. Non-neuronal cells from chick sympathetic and dorsal root sensory ganglia express catecholamine uptake and receptors for nerve growth factor during development. Dev. Biol. 111, 95–107 (1985).

    Article  CAS  Google Scholar 

  41. Kim, C. H., Kim, H. S., Cubells, J. F. & Kim, K. S. A previously undescribed intron and extensive 5′ upstream sequence, but not Phox2a-mediated transactivation, are necessary for high level cell type-specific expression of the human norepinephrine transporter gene. J. Biol. Chem. 274, 6507–6518 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Taber Pierce, E. Time of origin of neurons in the brain stem of the mouse. Prog. Brain Res. 40, 53–65 (1973).

    Article  Google Scholar 

  43. Steindler, D. A. & Trosko, B. K. Two types of locus coeruleus neurons born on different embryonic days in the mouse. Anat. Embryol. (Berl.) 179, 423–434 (1989).

    Article  CAS  Google Scholar 

  44. Pattyn, A., Goridis, C. & Brunet, J.-F. Specification of the central noradrenergic phenotype by the homeobox gene Phox2b. Mol. Cell. Neurosci. 15, 235–243 (2000).This paper provides evidence for the essential role of Phox2b in LC development, acting downstream of Phox2a.

    Article  CAS  PubMed  Google Scholar 

  45. Vogel-Höpker, A. & Rohrer, H. The specification of noradrenergic locus coeruleus neurons depends on bone morphogenetic proteins. Development 129, 983–991 (2002).This paper, together with reference 48 , presents in vivo evidence for a role of BMPs in the development of central NA neurons.

    Article  PubMed  Google Scholar 

  46. Liem, K. F. Jr, Tremml, G., Roelink, H. & Jessell, T. M. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82, 969–979 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Altmann, C. R. & Brivanlou, A. H. Neural patterning in the vertebrate embryo. Int. Rev. Cytol. 203, 447–482 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Guo, S. et al. Development of noradrenergic neurons in the zebrafish hindbrain requires BMP, FGF8, and the homeodomain protein soulless/Phox2a. Neuron 24, 555–566 (1999).This study provides genetic evidence in zebrafish for the involvement of BMPs, FGF8 and Phox2a in LC development.

    Article  CAS  PubMed  Google Scholar 

  49. Barth, K. A. et al. Bmp activity establishes a gradient of positional information throughout the entire neural plate. Development 126, 4977–4987 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Wurst, W. & Bally-Cuif, L. Neural plate patterning: upstream and downstream of the isthmic organizer. Nature Rev. Neurosci. 2, 99–108 (2001).

    Article  CAS  Google Scholar 

  51. Qian, Y. et al. Formation of brainstem (nor)adrenergic centers and first-order relay visceral neurons is dependent on homeodomain protein Rnx/Tlx3. Genes Dev. 15, 2533–2545 (2001).This study shows that most central NA neurons depend on Rnx3, which acts independently of Phox2a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Logan, C., Wingate, R. J. T. McKay, I. J. & Lumsden, A. Tlx-1 and Tlx-3 homeobox gene expression in cranial sensory ganglia and hindbrain of the chick embryo: markers of patterned connectivity. J. Neurosci. 18, 5389–5402 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Di Porzio, U., Zuddas, A., Cosenza-Murphy, D. B. & Barker, J. L. Early appearance of tyrosine hydroxylase immunoreactive cells in the mesencephalon of mouse embryos. Int. J. Dev. Neurosci. 8, 523–532 (1990).

    Article  CAS  PubMed  Google Scholar 

  54. Placzek, M. The role of the notochord and floor plate in inductive interactions. Curr. Opin. Genet. Dev. 5, 499–506 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Matise, M. P., Epstein, D. J., Park, H. L., Platt, K. A. & Joyner, A. L. Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development 125, 2759–2770 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Ye, W., Shimamura, K., Rubenstein, J. L., Hynes, M. A. & Rosenthal, A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755–766 (1998).This paper presents evidence for the role of extrinsic signals in providing positional information in the specification of DA and 5-HT neurons.

    Article  CAS  PubMed  Google Scholar 

  57. Semina, E. V., Murray, J. C., Reiter, R., Hrstka, R. F. & Graw, J. Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice. Hum. Mol. Genet. 9, 1575–1585 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Rieger, D. K., Reichenberger, E., McLean, W., Sidow, A. & Olsen, B. R. A double-deletion mutation in the Pitx3 gene causes arrested lens development in aphakia mice. Genomics 72, 61–72 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Smidt, M. P. et al. A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc. Natl Acad. Sci. USA 94, 13305–13310 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wallen, A. et al. Fate of mesencephalic AHD2-expressing dopamine progenitor cells in Nurr1 mutant mice. Exp. Cell Res. 253, 737–746 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Smid, M. P. et al. A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nature Neurosci. 3, 337–341 (2000).This study provides genetic evidence for the essential role of Lmx1b in DA-neuron development.

    Article  Google Scholar 

  62. Zetterström, R. H. et al. Dopamine neuron agenesis in Nurr-1 deficient mice. Science 276, 248–250 (1997).

    Article  PubMed  Google Scholar 

  63. Castillo, S. O. et al. Dopamine biosynthesis is selectively abolished in substantia nigra/ventral tegmental area but not in hypothalamic neurons in mice with targeted disruption of the Nurr1 gene. Mol. Cell. Neurosci. 11, 36–46 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Saucedo-Cardenas, O. et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc. Natl Acad. Sci. USA 95, 4013–4018 (1998).Together with references 62 and 63 , this paper provides genetic evidence for a crucial role of Nurr1 in DA-neuron development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Le, W.-D. et al. Selective agenesis of mesencephalic dopaminergic neurons in Nurr1-deficient mice. Exp. Neurol. 159, 451–458 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Witta, J. et al. Nigrostriatal innervation is preserved in Nurr1-null mice, although dopaminergic neuron precursors are arrested from terminal differentiation. Brain Res. Mol. Brain Res. 84, 67–78 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Zhou, Q.-Y. & Palmiter, R. D. Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83, 1197–1209 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Sacchetti, P., Mitchell, T. R., Granneman, J. G. & Bannon, M. J. Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism. J. Neurochem. 76, 1565–1572 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Zetterström, R. H., Williams, R., Perlmann, T. & Olson, L. Cellular expression of the immediate early transcription factors Nurr1 and NGFI-B suggests a gene regulatory role in several brain regions including the nigrostriatal dopamine system. Brain Res. Mol. Brain Res. 41, 111–120 (1996).

    Article  PubMed  Google Scholar 

  70. Wallen, A. et al. Orphan nuclear receptor Nurr1 is essential for Ret expression in midbrain dopaminergic neurons and in the brainstem. Mol. Cell. Neurosci. 18, 649–663 (2001).

    Article  CAS  Google Scholar 

  71. Chen, H. et al. Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nature Genet. 19, 51–55 (1998).

    Article  PubMed  Google Scholar 

  72. Simon, H. H., Saueressig, H., Wurst, W., Goulding, M. D. & O'Leary, D. D. M. Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J. Neurosci. 21, 3126–3134 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McCaffery, P. & Dräger, U. C. High levels of a retinoic acid-generating dehydrogenase in the meso-telencephalic dopamine system. Proc. Natl Acad. Sci. USA 91, 7772–7776 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Haselbeck, R. J., Hoffmann, I. & Duester, G. Distinct functions for Aldh1 and Raldh2 in the control of ligand production for embryonic retinoid signaling pathways. Dev. Genet. 25, 353–364 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Perlmann, T. & Jansson, L. A novel pathway for vitamin A signaling mediated by RXR heterodimerisation with NGFI-B and NURR1. Genes Dev. 9, 769–782 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Castro, D. S. et al. Induction of cell cycle arrest and morphological differentiation by Nurr1 and retinoids in dopamine MN9D cells. J. Biol. Chem. 276, 43277–43284 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Guo, S. et al. A regulator of transcriptional elongation controls vertebrate neuronal development. Nature 408, 366–369 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Sakurada, K., Ohshima-Sakurada, M., Palmer, T. D. & Gage, F. H. Nurr1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development 126, 4017–4026 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Cazorla, P., Smidt, M. P., O'Malley, K. L. & Burbach, J. P. H. A response element for the homeodomain transcription factor Ptx3 in the tyrosine hydroxylase gene promoter. J. Neurochem. 74, 1829–1837 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Lebel, M., Gauthier, Y., Moreau, A. & Drouin, J. Pitx3 activates mouse tyrosine hydroxylase promoter via a high-affinity site. J. Neurochem. 77, 558–567 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Lee, S. H., Lumelsky, N., Studer, L., Auerbach, J. M. & McKay, R. D. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nature Biotechnol. 18, 675–679 (2000).

    Article  CAS  Google Scholar 

  82. Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Wagner, J. et al. Induction of a midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes. Nature Biotechnol. 17, 653–659 (1999).

    Article  CAS  Google Scholar 

  84. Briscoe, J. et al. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398, 622–627 (1999).This paper shows that the correct development of 5-HT neurons depends on Nkx2.2.

    Article  CAS  PubMed  Google Scholar 

  85. Hendricks, T., Francis, N., Fyodorov, D. & Deneris, E. S. The ETS domain factor Pet-1 is an early and precise marker of central serotoninergic neurons and interacts with a conserved element in serotonergic genes. J. Neurosci. 19, 10348–10356 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pfaar, H. et al. mPet-1, a mouse ETS-domain transcription factor, is expressed in central serotonergic neurons. Dev. Genes Evol. 212, 43–46 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Aitken, A. R. & Törk, I. Early development of serotonin-containing neurons and pathways as seen in wholemount preparations of the fetal rat brain. J. Comp. Neurol. 274, 32–47 (1988).

    Article  CAS  PubMed  Google Scholar 

  88. Briscoe, J., Pierani, A., Jessell, T. M. & Ericson, J. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435–445 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Shimamura, K., Hartigan, D. J., Martinez, S., Puelles, L. & Rubenstein, L. R. Longitudinal organization of the anterior neural plate and neural tube. Development 121, 3923–3933 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Pata, I. et al. The transcription factor GATA3 is a downstream effector of Hoxb1 specification in rhombomere 4. Development 126, 5523–5531 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Hikke van Doorninck, J. et al. GATA3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. J. Neurosci. 19, RC12 (1999).This paper provides genetic evidence for a role of Gata3 in the differentiation of 5-HT neurons.

    Article  PubMed Central  Google Scholar 

  92. Lebrand, C. et al. Transient developmental expression of monoamine transporters in the rodent forebrain. J. Comp. Neurol. 401, 506–524 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Hansson, S. R., Mezey, E. & Hofman, B. J. Serotonin transporter messenger RNA in the developing rat brain: early expression in serotonergic neurons and transient expression in non-serotonergic neurons. Neuroscience 83, 1185–1201 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Zhou, Q., Choi, G. & Anderson, D. J. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31, 791–807 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Rev. Genet. 1, 20–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Marquardt, T. & Pfaff, S. L. Cracking the transcriptional code for cell specification in the neural tube. Cell 106, 651–654 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Goridis, C. & Brunet, J.-F. Transcriptional control of neurotransmitter phenotype. Curr. Opin. Neurobiol. 9, 47–53 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Brunet, J.-F. & Pattyn, A. Phox2 genes, from patterning to connectivity. Curr. Opin. Neurobiol. (in the press).

Download references

Acknowledgements

We thank E. Deneris, J. Ericson, M. Howard and A. Pattyn for disclosing unpublished results, and J.-F. Brunet, F. Müller and M. Stanke for helpful comments on the manuscript. The work carried out in the authors' laboratories was supported by grants to H.R. from the Deutsche Forschungsgemeinschaft, the Fonds der chemischen Industrie and the European Community (QLG3-CT-2000-0072), and by grants to C.G. from the European Community (QLGT-CT-2001-01467), the Association Française contre les Myopathies and the Ministère de la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christo Goridis.

Related links

Related links

DATABASES

GenBank

BMP5

FGF4

FGF8

Foggy

Smad5

LocusLink

Aldh1

BMP2

BMP4

BMP7

DAT

DBH

dHand

En1

En2

Gata3

Gli2

Lmx1b

Mash1

NET

NF160

Nkx2.2

noggin

Nurr1

Pet1

Phox2a

Phox2b

Pitx3

Ret

Rnx

RXR

SCG10

SERT

Shh

TH

tryptophan hydroxylase

OMIM

Parkinson's disease

FURTHER INFORMATION

Encyclopedia of Life Sciences

adrenaline and noradrenaline

amine neurotransmitters

amine transporters

dopamine

serotonin

Glossary

SYMPATHETIC NEURONS

The neurons of the sympathetic nervous system, which is responsible for such physiological effects as reduction of digestive secretions, vasoconstriction and increased heart rate, thereby opposing the effects of the parasympathetic nervous system.

RAPHE NUCLEI

A series of neuronal groups located along the midline of the brainstem. They constitute the main supply of 5-hydroxytryptamine to the rest of the brain.

NEURAL CREST

Groups of cells that migrate from the neural tube to the periphery, where they give rise to a wide variety of cell types.

BONE MORPHOGENETIC PROTEINS

Multifunctional secreted proteins of the transforming growth factor-β superfamily. In the early embryo, they participate in dorsoventral patterning.

BASIC HELIX–LOOP–HELIX

(bHLH). A structural motif that is present in many transcription factors, which is characterized by two α-helices separated by a loop. The helices mediate dimerization, and the adjacent basic region is required for DNA binding.

PRONEURAL GENES

Genes that encode transcription factors of the basic helix–loop–helix class that specify neural progenitor cells and promote their differentiation.

HOMEODOMAIN

A 60-amino-acid DNA-binding domain that comprises three α-helices and is found in many transcription factors.

ZINC FINGER

A protein module in which cysteine or cysteine–histidine residues coordinate a zinc ion. Zinc fingers are often used in DNA recognition and in protein–protein interactions.

AUTONOMIC NEURON

A neuron that belongs to the part of the nervous system that is not under conscious control, and regulates functions such as breathing, circulation and digestion.

ROOF PLATE

The point of fusion of the neural folds, which forms the dorsal-most part of the neural tube.

ISTHMUS

A narrow section of the neural tube that separates the midbrain from the hindbrain.

FLOOR PLATE

The ventral cells of the neural tube that lie along the midline.

MYELENCEPHALON

The caudal subdivision of the embryonic hindbrain, which gives rise to the medulla oblongata.

ETS DOMAIN

The DNA-binding domain of the transcription factors of the Ets family, so-called after the avian ets1 proto-oncogene.

CHIMERIC MICE

Mice that are genetically mosaic. They are produced mainly by injecting embryonic stem (ES) cells of one genotype into blastocysts of another genotype, resulting in mice whose cells are partly derived from the ES cells and partly from the host blastocyst.

BRANCHIOMOTOR NEURONS

The neurons of the cranial nerves that control muscles derived from the branchial arches. In humans, they are the trigeminal, the facial, the glossopharyngeal, the vagus and the spinal accessory nerves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goridis, C., Rohrer, H. Specification of catecholaminergic and serotonergic neurons. Nat Rev Neurosci 3, 531–541 (2002). https://doi.org/10.1038/nrn871

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn871

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing