Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in MRI for 'cryptogenic' epilepsies

Abstract

Nearly one-third of patients with focal epilepsy experience disabling seizures that are refractory to pharmacotherapy. Drug-resistant focal epilepsy is, however, potentially curable by surgery. Although lesions associated with the epileptic focus can often be accurately detected by MRI, in many patients conventional imaging based on visual evaluation is unable to pinpoint the surgical target. Patients with so-called cryptogenic epilepsy represent one of the greatest clinical challenges in many tertiary epilepsy centers. In recent years, it has become increasingly clear that epilepsies that are considered cryptogenic are not necessarily nonlesional, the primary histopathological substrate being subtle cortical dysplasia. This Review considers the application of new advances in brain imaging, such as MRI morphometry, computational modeling and diffusion tensor imaging. By revealing dysplastic lesions that previously eluded visual assessments, quantitative structural MRI methods such as these have clearly demonstrated an increased diagnostic yield of epileptic lesions, and have provided successful surgical options to an increasing number of patients with 'cryptogenic' epilepsy.

Key Points

  • In drug-resistant epilepsy, the most important predictor of favorable surgical outcome is complete resection of the lesion detected by MRI

  • Epilepsies that are considered cryptogenic are not necessarily nonlesional

  • The most common histopathological finding in cryptogenic epilepsy is focal cortical dysplasia

  • Quantitative structural image analysis could reveal dysplastic lesions in patients considered to have cryptogenic epilepsy on the basis of visual evaluation by MRI

  • The continued development of new imaging modalities and computational methods aimed at revealing the so-called nonlesional epilepsies will enable surgery in an increasing number of patients

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-resolution 3T axial sections showing FCD Palmini type IIb in the frontal lobe.
Figure 2: High-resolution 3 T MRI of a 16-year-old patient with drug-resistant cryptogenic frontal lobe epilepsy.
Figure 3: Individual voxel-based morphometry in a 20-year-old patient with cryptogenic epilepsy and a parietotemporal EEG focus.
Figure 4: Computational models of focal cortical dysplasia.

Similar content being viewed by others

References

  1. WHO. Epilepsy fact sheet no. 999 [online], (2009).

  2. Garcia, H. H. & Del Brutto, O. H. Neurocysticercosis: updated concepts about an old disease. Lancet Neurol. 4, 653–661 (2005).

    Article  PubMed  Google Scholar 

  3. Kwan, P. & Brodie, M. J. Early identification of refractory epilepsy. N. Engl. J. Med. 342, 314–319 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Cascino, G. D. Temporal lobe epilepsy is a progressive neurologic disorder: time means neurons! Neurology 72, 1718–1719 (2009).

    Article  PubMed  Google Scholar 

  5. Wiebe, S. Burden of intractable epilepsy. Adv. Neurol. 97, 1–4 (2006).

    PubMed  Google Scholar 

  6. Tellez-Zenteno, J. F., Ronquillo, L. H. & Wiebe, S. Sudden unexpected death in epilepsy: evidence-based analysis of incidence and risk factors. Epilepsy Res. 65, 101–115 (2005).

    Article  PubMed  Google Scholar 

  7. Lerner, J. T. et al. Assessment and surgical outcomes for mild type I and severe type II cortical dysplasia: a critical review and the UCLA experience. Epilepsia 50, 1310–1335 (2009).

    Article  PubMed  Google Scholar 

  8. Wiebe, S. Brain surgery for epilepsy. Lancet 362 (Suppl.), S48–S49 (2003).

    Article  PubMed  Google Scholar 

  9. Wiebe, S., Blume, W. T., Girvin, J. P. & Eliasziw, M. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N. Engl. J. Med. 345, 311–318 (2001).

    CAS  Google Scholar 

  10. Cascino, G. D. Surgical treatment for epilepsy. Epilepsy Res. 60, 179–186 (2004).

    Article  PubMed  Google Scholar 

  11. Fauser, S. et al. Focal cortical dysplasias: surgical outcome in 67 patients in relation to histological subtypes and dual pathology. Brain 127, 2406–2418 (2004).

    Article  PubMed  Google Scholar 

  12. Engel, J. Jr et al. Practice parameter: temporal lobe and localized neocortical resections for epilepsy: report of the Quality Standards Subcommittee of the American Academy of Neurology, in association with the American Epilepsy Society and the American Association of Neurological Surgeons. Neurology 60, 538–547 (2003).

    Article  PubMed  Google Scholar 

  13. Tellez-Zenteno, J. F., Dhar, R., Hernandez-Ronquillo, L. & Wiebe, S. Long-term outcomes in epilepsy surgery: antiepileptic drugs, mortality, cognitive and psychosocial aspects. Brain 130, 334–345 (2007).

    Article  PubMed  Google Scholar 

  14. Bernasconi, A. in Advances in Neurology Ch. 6 (eds Blume, W. et al.) 273–278 (Lippincott-Williams & Wilkins, Philadelphia, 2006).

    Google Scholar 

  15. Cossu, M. et al. Epilepsy surgery in children: results and predictors of outcome on seizures. Epilepsia 49, 65–72 (2008).

    Article  PubMed  Google Scholar 

  16. Mosewich, R. K. et al. Factors predictive of the outcome of frontal lobe epilepsy surgery. Epilepsia 41, 843–849 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Widdess-Walsh, P. et al. Subdural electrode analysis in focal cortical dysplasia: predictors of surgical outcome. Neurology 69, 660–667 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Jeha, L. E. et al. Surgical outcome and prognostic factors of frontal lobe epilepsy surgery. Brain 130, 574–584 (2007).

    Article  PubMed  Google Scholar 

  19. Berg, A. T. et al. The multicenter study of epilepsy surgery: recruitment and selection for surgery. Epilepsia 44, 1425–1433 (2003).

    Article  PubMed  Google Scholar 

  20. McGonigal, A. et al. Stereoelectroencephalography in presurgical assessment of MRI-negative epilepsy. Brain 130, 3169–3183 (2007).

    Article  PubMed  Google Scholar 

  21. Kim, D. W. et al. Predictors of surgical outcome and pathologic considerations in focal cortical dysplasia. Neurology 72, 211–216 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Tellez-Zenteno, J. F., Hernandez Ronquillo, L., Moien-Afshari, F. & Wiebe, S. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res. 89, 310–318 (2010).

    Article  PubMed  Google Scholar 

  23. Krsek, P. et al. Incomplete resection of focal cortical dysplasia is the main predictor of poor postsurgical outcome. Neurology 72, 217–223 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Fauser, S. et al. Factors influencing surgical outcome in patients with focal cortical dysplasia. J. Neurol. Neurosurg. Psychiatry 79, 103–105 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Tanriverdi, T., Ajlan, A., Poulin, N. & Olivier, A. Morbidity in epilepsy surgery: an experience based on 2,449 epilepsy surgery procedures from a single institution. J. Neurosurg. 110, 1111–1123 (2009).

    Article  PubMed  Google Scholar 

  26. Duchowny, M. Clinical, functional, and neurophysiologic assessment of dysplastic cortical networks: implications for cortical functioning and surgical management. Epilepsia 50 (Suppl. 9), 19–27 (2009).

    Article  PubMed  Google Scholar 

  27. Yun, C. H. et al. Prognostic factors in neocortical epilepsy surgery: multivariate analysis. Epilepsia 47, 574–579 (2006).

    Article  PubMed  Google Scholar 

  28. Bien, C. G. et al. Characteristics and surgical outcomes of patients with refractory magnetic resonance imaging-negative epilepsies. Arch. Neurol. 66, 1491–1499 (2009).

    Article  PubMed  Google Scholar 

  29. Wetjen, N. M. et al. Intracranial electroencephalography seizure onset patterns and surgical outcomes in nonlesional extratemporal epilepsy. J. Neurosurg. 110, 1147–1152 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Alarcón, G. et al. Is it worth pursuing surgery for epilepsy in patients with normal neuroimaging? J. Neurol. Neurosurg. Psychiatry 77, 474–480 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chapman, K. et al. Seizure outcome after epilepsy surgery in patients with normal preoperative MRI. J. Neurol. Neurosurg. Psychiatry 76, 710–713 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rugg-Gunn, F. J. et al. Diffusion tensor imaging in refractory epilepsy. Lancet 359, 1748–1751 (2002).

    Article  PubMed  Google Scholar 

  33. Frater, J. L., Prayson, R. A., Morris, H. H. III & Bingaman, W. E. Surgical pathologic findings of extratemporal-based intractable epilepsy: a study of 133 consecutive resections. Arch. Pathol. Lab. Med. 124, 545–549 (2000).

    CAS  PubMed  Google Scholar 

  34. Jayakar, P. et al. Epilepsy surgery in patients with normal or nonfocal MRI scans: integrative strategies offer long-term seizure relief. Epilepsia 49, 758–764 (2008).

    Article  PubMed  Google Scholar 

  35. Barkovich, A. J., Kuzniecky, R. I., Jackson, G. D., Guerrini, R. & Dobyns, W. B. A developmental and genetic classification for malformations of cortical development. Neurology 65, 1873–1887 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Palmini, A. et al. Terminology and classification of the cortical dysplasias. Neurology 62, S2–S8 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Sisodiya, S. M. Malformations of cortical development: burdens and insights from important causes of human epilepsy. Lancet Neurol. 3, 29–38 (2004).

    Article  PubMed  Google Scholar 

  38. Blümcke, I. et al. The clinicopathologic spectrum of focal cortical dysplasias: A consensus classification proposed by an ad hoc task force of the ILAE Diagnostic Methods Commission 1. Epilepsia (in press).

  39. Thom, M. et al. Cajal–Retzius cells, inhibitory interneuronal populations and neuropeptide Y expression in focal cortical dysplasia and microdysgenesis. Acta Neuropathol. 105, 561–569 (2003).

    CAS  PubMed  Google Scholar 

  40. Andres, M. et al. Human cortical dysplasia and epilepsy: an ontogenetic hypothesis based on volumetric MRI and NeuN neuronal density and size measurements. Cereb. Cortex 15, 194–210 (2005).

    Article  PubMed  Google Scholar 

  41. Sisodiya, S. M., Fauser, S., Cross, J. H. & Thom, M. Focal cortical dysplasia type II: biological features and clinical perspectives. Lancet Neurol. 8, 830–843 (2009).

    Article  PubMed  Google Scholar 

  42. Matsuda, K. et al. Neuroradiologic findings in focal cortical dysplasia: histologic correlation with surgically resected specimens. Epilepsia 42 (Suppl. 6), 29–36 (2001).

    Article  PubMed  Google Scholar 

  43. Barkovich, A. J., Kuzniecky, R. I., Bollen, A. W. & Grant, P. E. Focal transmantle dysplasia: a specific malformation of cortical development. Neurology 49, 1148–1152 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Urbach, H. et al. Focal cortical dysplasia of Taylor's balloon cell type: a clinicopathological entity with characteristic neuroimaging and histopathological features, and favorable postsurgical outcome. Epilepsia 43, 33–40 (2002).

    Article  PubMed  Google Scholar 

  45. Taylor, D. C., Falconer, M. A., Bruton, C. J. & Corsellis, J. A. N. Focal dysplasia of the cerebral cortex in epilepsy. J. Neurol. Neurosurg. Psychiatry 34, 369–387 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cohen-Gadol, A. A., Ozduman, K., Bronen, R. A., Kim, J. H. & Spencer, D. D. Long-term outcome after epilepsy surgery for focal cortical dysplasia. J. Neurosurg. 101, 55–65 (2004).

    Article  PubMed  Google Scholar 

  47. Tassi, L. et al. Focal cortical dysplasia: neuropathological subtypes, EEG, neuroimaging and surgical outcome. Brain 125, 1719–1732 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Colombo, N. et al. Focal cortical dysplasias: MR imaging, histopathologic, and clinical correlations in surgically treated patients with epilepsy. AJNR Am. J. Neuroradiol. 24, 724–733 (2003).

    PubMed  PubMed Central  Google Scholar 

  49. Kloss, S., Pieper, T., Pannek, H., Holthausen, H. & Tuxhorn, I. Epilepsy surgery in children with focal cortical dysplasia (FCD): results of long-term seizure outcome. Neuropediatrics 33, 21–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Lawson, J. A. et al. Distinct clinicopathologic subtypes of cortical dysplasia of Taylor. Neurology 64, 55–61 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Krsek, P. et al. Different features of histopathological subtypes of pediatric focal cortical dysplasia. Ann. Neurol. 63, 758–769 (2008).

    Article  PubMed  Google Scholar 

  52. Krsek, P. et al. Different presurgical characteristics and seizure outcomes in children with focal cortical dysplasia type I or II. Epilepsia 50, 125–137 (2009).

    Article  PubMed  Google Scholar 

  53. Bronen, R. A. et al. Focal cortical dysplasia of Taylor, balloon cell subtype: MR differentiation from low-grade tumors. AJNR Am. J. Neuroradiol. 18, 1141–1151 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim, S. K. et al. Focal cortical dysplasia: comparison of MRI and FDG-PET. J. Comput. Assist. Tomogr. 24, 296–302 (2000).

    Article  CAS  Google Scholar 

  55. Von Oertzen, J. et al. Standard magnetic resonance imaging is inadequate for patients with refractory focal epilepsy. J. Neurol. Neurosurg. Psychiatry 73, 643–647 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Barkovich, A. J., Rowley, H. A. & Andermann, F. MR in partial epilepsy: value of high-resolution volumetric techniques. AJNR Am. J. Neuroradiol. 16, 339–343 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bastos, A. C. et al. Diagnosis of subtle focal dysplastic lesions: curvilinear reformatting from three-dimensional magnetic resonance imaging. Ann. Neurol. 46, 88–94 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Bastos, A. C. et al. Curvilinear reconstruction of 3D magnetic resonance imaging in patients with partial epilepsy: a pilot study. Magn. Res. Imaging 13, 1107–1112 (1995).

    Article  CAS  Google Scholar 

  59. Huppertz, H. J., Kassubek, J., Altenmuller, D. M., Breyer, T. & Fauser, S. Automatic curvilinear reformatting of three-dimensional MRI data of the cerebral cortex. Neuroimage 39, 80–86 (2008).

    Article  PubMed  Google Scholar 

  60. Wiggins, G. C. et al. 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry. Magn. Reson. Med. 56, 216–223 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Strandberg, M., Larsson, E. M., Backman, S. & Kallen, K. Pre-surgical epilepsy evaluation using 3T MRI. Do surface coils provide additional information? Epileptic Disord. 10, 83–92 (2008).

    PubMed  Google Scholar 

  62. Knake, S. et al. 3T phased array MRI improves the presurgical evaluation in focal epilepsies: a prospective study. Neurology 65, 1026–1031 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Haacke, E. M., Xu, Y., Cheng, Y. C. & Reichenbach, J. R. Susceptibility weighted imaging (SWI). Magn. Reson. Med. 52, 612–618 (2004).

    Article  PubMed  Google Scholar 

  64. Duyn, J. H. et al. High-field MRI of brain cortical substructure based on signal phase. Proc. Natl Acad. Sci. USA 104, 11796–11801 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Marques, J. P., van der Zwaag, W., Granziera, C., Krueger, G. & Gruetter, R. Cerebellar cortical layers: in vivo visualization with structural high-field-strength MR imaging. Radiology 254, 942–948 (2010).

    Article  PubMed  Google Scholar 

  66. Madan, N. & Grant, P. E. New directions in clinical imaging of cortical dysplasias. Epilepsia 50 (Suppl. 9), 9–18 (2009).

    Article  PubMed  Google Scholar 

  67. Ashburner, J. & Friston, K. J. Voxel-based morphometry—the methods. Neuroimage 11, 805–821 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Good, C. D. et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14, 21–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Salmond, C. H. et al. Distributional assumptions in voxel-based morphometry. Neuroimage 17, 1027–1030 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Bruggemann, J. M. et al. Voxel-based morphometry in the detection of dysplasia and neoplasia in childhood epilepsy: limitations of grey matter analysis. J. Clin. Neurosci. 16, 780–785 (2009).

    Article  PubMed  Google Scholar 

  71. Bruggemann, J. M. et al. Voxel-based morphometry in the detection of dysplasia and neoplasia in childhood epilepsy: combined grey/white matter analysis augments detection. Epilepsy Res. 77, 93–101 (2007).

    Article  PubMed  Google Scholar 

  72. Colliot, O. et al. Individual voxel-based analysis of gray matter in focal cortical dysplasia. Neuroimage 29, 162–171 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Wilke, M., Kassubek, J., Ziyeh, S., Schulze-Bonhage, A. & Huppertz, H. J. Automated detection of gray matter malformations using optimized voxel-based morphometry: a systematic approach. Neuroimage 20, 330–343 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Merschhemke, M. et al. Quantitative MRI detects abnormalities in relatives of patients with epilepsy and malformations of cortical development. Neuroimage 18, 642–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Kassubek, J., Huppertz, H. J., Spreer, J. & Schulze-Bonhage, A. Detection and localization of focal cortical dysplasia by voxel-based 3-D MRI analysis. Epilepsia 43, 596–602 (2002).

    Article  PubMed  Google Scholar 

  76. Bonilha, L. et al. Voxel-based morphometry reveals excess gray matter concentration in patients with focal cortical dysplasia. Epilepsia 47, 908–915 (2006).

    Article  PubMed  Google Scholar 

  77. Prayson, R. A., Spreafico, R. & Vinters, H. V. Pathologic characteristics of the cortical dysplasias. Neurosurg. Clin. N. Am. 13, 17–25 (2002).

    Article  PubMed  Google Scholar 

  78. Fauser, S. et al. Multi-focal occurrence of cortical dysplasia in epilepsy patients. Brain 132, 2079–2090 (2009).

    Article  PubMed  Google Scholar 

  79. Eriksson, S. H. et al. Quantitative grey matter histological measures do not correlate with grey matter probability values from in vivo MRI in the temporal lobe. J. Neurosci. Methods 181, 111–118 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rugg-Gunn, F. J., Boulby, P. A., Symms, M. R., Barker, G. J. & Duncan, J. S. Whole-brain T2 mapping demonstrates occult abnormalities in focal epilepsy. Neurology 64, 318–325 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Rugg-Gunn, F. J. et al. Magnetization transfer imaging in focal epilepsy. Neurology 60, 1638–1645 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Focke, N. K., Symms, M. R., Burdett, J. L. & Duncan, J. S. Voxel-based analysis of whole brain FLAIR at 3T detects focal cortical dysplasia. Epilepsia 49, 786–793 (2008).

    Article  PubMed  Google Scholar 

  83. Rugg-Gunn, F. J., Boulby, P. A., Symms, M. R., Barker, G. J. & Duncan, J. S. Imaging the neocortex in epilepsy with double inversion recovery imaging. Neuroimage 31, 39–50 (2006).

    Article  PubMed  Google Scholar 

  84. Colliot, O., Antel, S. B., Naessens, V. B., Bernasconi, N. & Bernasconi, A. In vivo profiling of focal cortical dysplasia on high-resolution MRI with computational models. Epilepsia 47, 134–142 (2006).

    Article  PubMed  Google Scholar 

  85. Salmenpera, T. M. et al. Evaluation of quantitative magnetic resonance imaging contrasts in MRI-negative refractory focal epilepsy. Epilepsia 48, 229–237 (2007).

    Article  PubMed  Google Scholar 

  86. Focke, N. K. et al. Automated normalized FLAIR imaging in MRI-negative patients with refractory focal epilepsy. Epilepsia 50, 1484–1490 (2009).

    Article  PubMed  Google Scholar 

  87. Pell, G. S., Briellmann, R. S., Pardoe, H., Abbott, D. F. & Jackson, G. D. Composite voxel-based analysis of volume and T2 relaxometry in temporal lobe epilepsy. Neuroimage 39, 1151–1161 (2008).

    Article  PubMed  Google Scholar 

  88. Barkovich, A. J. & Raybaud, C. A. Neuroimaging in disorders of cortical development. Neuroimaging Clin. N. Am. 14, 231–254 (2004).

    Article  PubMed  Google Scholar 

  89. Colombo, N., Salamon, N., Raybaud, C., Ozkara, C. & Barkovich, A. J. Imaging of malformations of cortical development. Epileptic Disord. 11, 194–205 (2009).

    PubMed  Google Scholar 

  90. Bronen, R. A., Spencer, D. D. & Fulbright, R. K. Cerebrospinal fluid cleft with cortical dimple: MR imaging marker for focal cortical dysgenesis. Radiology 214, 657–663 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Riviere, D. et al. Automatic recognition of cortical sulci of the human brain using a congregation of neural networks. Med. Image Anal. 6, 77–92 (2002).

    Article  PubMed  Google Scholar 

  92. Besson, P., Andermann, F., Dubeau, F. & Bernasconi, A. Small focal cortical dysplasia lesions are located at the bottom of a deep sulcus. Brain 131, 3246–3255 (2008).

    Article  PubMed  Google Scholar 

  93. Van Essen, D. C. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385, 313–318 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Rakic, P. Defects of neuronal migration and the pathogenesis of cortical malformations. Prog. Brain Res. 73, 15–37 (1988).

    Article  CAS  PubMed  Google Scholar 

  95. Lee, S. K. et al. Diffusion tensor MRI visualizes decreased subcortical fiber connectivity in focal cortical dysplasia. Neuroimage 22, 1826–1829 (2004).

    Article  PubMed  Google Scholar 

  96. Widjaja, E. et al. Subcortical alterations in tissue microstructure adjacent to focal cortical dysplasia: detection at diffusion-tensor MR imaging by using magnetoencephalographic dipole cluster localization. Radiology 251, 206–215 (2009).

    Article  PubMed  Google Scholar 

  97. Widjaja, E. et al. Evaluation of subcortical white matter and deep white matter tracts in malformations of cortical development. Epilepsia 48, 1460–1469 (2007).

    Article  PubMed  Google Scholar 

  98. Najm, I. M., Bingaman, W. E. & Lüders, H. O. The use of subdural grids in the management of focal malformations due to abnormal cortical development. Neurosurg. Clin. N. Am. 13, 87–92 (2002).

    Article  PubMed  Google Scholar 

  99. Miller, D. et al. Intraoperative ultrasound to define focal cortical dysplasia in epilepsy surgery. Epilepsia 49, 156–158 (2008).

    Article  PubMed  Google Scholar 

  100. Bernasconi, A. et al. Texture analysis and morphological processing of magnetic resonance imaging assist detection of focal cortical dysplasia in extra-temporal partial epilepsy. Ann. Neurol. 49, 770–775 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Huppertz, H. J. et al. Enhanced visualization of blurred gray–white matter junctions in focal cortical dysplasia by voxel-based 3D MRI analysis. Epilepsy Res. 67, 35–50 (2005).

    Article  PubMed  Google Scholar 

  102. Srivastava, S. et al. Feature-based statistical analysis of structural MR data for automatic detection of focal cortical dysplastic lesions. Neuroimage 27, 253–266 (2005).

    Article  PubMed  Google Scholar 

  103. Antel, S. B. et al. Computational models of MRI characteristics of focal cortical dysplasia improve lesion detection. Neuroimage 17, 1755–1760 (2002).

    Article  PubMed  Google Scholar 

  104. Antel, S. B. et al. Automated detection of focal cortical dysplasia lesions using computational models of their MRI characteristics and texture analysis. Neuroimage 19, 1748–1759 (2003).

    Article  PubMed  Google Scholar 

  105. Bernasconi, A. Quantitative MR imaging of the neocortex. Neuroimaging Clin. N. Am. 14, 425–436 (2004).

    Article  PubMed  Google Scholar 

  106. Colliot, O. et al. Segmentation of focal cortical dysplasia lesions on MRI using level set evolution. Neuroimage 32, 1621–1630 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Bookstein, F. L. “Voxel-based morphometry” should not be used with imperfectly registered images. Neuroimage 14, 1454–1462 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Besson, P., Bernasconi, N., Colliot, O., Evans, A. & Bernasconi, A. Surface-based texture and morphological analysis detects subtle cortical dysplasia. Med. Image Comput. Comput. Assist Interv. 11, 645–652 (2008).

    PubMed  Google Scholar 

  109. Basser, P. J., Mattiello, J. & Le Bihan, D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Beaulieu, C. The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed. 15, 435–455 (2002).

    Article  PubMed  Google Scholar 

  111. Concha, L., Gross, D. W., Wheatley, B. M. & Beaulieu, C. Diffusion tensor imaging of time-dependent axonal and myelin degradation after corpus callosotomy in epilepsy patients. Neuroimage 32, 1090–1099 (2006).

    Article  PubMed  Google Scholar 

  112. Mori, S. et al. Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn. Reson. Med. 47, 215–223 (2002).

    Article  PubMed  Google Scholar 

  113. Dumas de la Roque, A. et al. Diffusion tensor imaging of partial intractable epilepsy. Eur. Radiol. 15, 279–285 (2005).

    Article  PubMed  Google Scholar 

  114. Gross, D. W., Bastos, A. & Beaulieu, C. Diffusion tensor imaging abnormalities in focal cortical dysplasia. Can. J. Neurol. Sci. 32, 477–482 (2005).

    Article  PubMed  Google Scholar 

  115. Eriksson, S. H., Rugg-Gunn, F. J., Symms, M. R., Barker, G. J. & Duncan, J. S. Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. Brain 124, 617–626 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Guye, M. et al. What is the significance of interictal water diffusion changes in frontal lobe epilepsies? Neuroimage 35, 28–37 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Rugg-Gunn, F. J., Eriksson, S. H., Symms, M. R., Barker, G. J. & Duncan, J. S. Diffusion tensor imaging of cryptogenic and acquired partial epilepsies. Brain 124, 627–636 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Thivard, L. et al. Interictal diffusion MRI in partial epilepsies explored with intracerebral electrodes. Brain 129, 375–385 (2006).

    Article  PubMed  Google Scholar 

  119. Tuch, D. S., Reese, T. G., Wiegell, M. R. & Wedeen, V. J. Diffusion MRI of complex neural architecture. Neuron 40, 885–895 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Tuch, D. S. et al. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48, 577–582 (2002).

    Article  PubMed  Google Scholar 

  121. Behrens, T. E. et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat. Neurosci. 6, 750–757 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Rosenow, F. & Luders, H. Presurgical evaluation of epilepsy. Brain 124, 1683–1700 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Kwong, K. K. et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl Acad. Sci. USA 89, 5675–5679 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ogawa, S. et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl Acad. Sci. USA 89, 5951–5955 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gotman, J. Epileptic networks studied with EEG–fMRI. Epilepsia 49 (Suppl. 3), 42–51 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Grova, C. et al. Concordance between distributed EEG source localization and simultaneous EEG-fMRI studies of epileptic spikes. Neuroimage 39, 755–774 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Richardson, M. Current themes in neuroimaging of epilepsy: brain networks, dynamic phenomena, and clinical relevance. Clin. Neurophysiol. 121, 1153 (2010).

    Article  PubMed  Google Scholar 

  128. Vulliemoz, S., Lemieux, L., Daunizeau, J., Michel, C. M. & Duncan, J. S. The combination of EEG source imaging and EEG-correlated functional MRI to map epileptic networks. Epilepsia 51, 491–505 (2010).

    Article  PubMed  Google Scholar 

  129. Kellinghaus, C. & Luders, H. O. Frontal lobe epilepsy. Epileptic Disord. 6, 223–239 (2004).

    PubMed  Google Scholar 

  130. Tyvaert, L. et al. Thalamic nuclei activity in idiopathic generalized epilepsy: an EEG–fMRI study. Neurology 73, 2018–2022 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Gotman, J. et al. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc. Natl Acad. Sci. USA 102, 15236–15240 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zijlmans, M. et al. EEG–fMRI in the preoperative work-up for epilepsy surgery. Brain 130, 2343–2353 (2007).

    Article  PubMed  Google Scholar 

  133. Moeller, F. et al. EEG–fMRI: adding to standard evaluations of patients with nonlesional frontal lobe epilepsy. Neurology 73, 2023–2030 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. Bernasconi and N. Bernasconi wrote the article, and contributed to the editing and reviewing of the article. All the authors provided contributions to discussions of the content, and A. Bernasconi, B. C. Bernhardt and D. Schrader researched data for the article.

Corresponding author

Correspondence to Andrea Bernasconi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernasconi, A., Bernasconi, N., Bernhardt, B. et al. Advances in MRI for 'cryptogenic' epilepsies. Nat Rev Neurol 7, 99–108 (2011). https://doi.org/10.1038/nrneurol.2010.199

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.199

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing