Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathophysiology of somatosensory abnormalities in Parkinson disease

Abstract

Changes in sensory function that have been described in patients with Parkinson disease (PD) can be either 'pure' disorders of conscious perception such as elevations in sensory threshold, or disorders of sensorimotor integration, in which the interaction between sensory input and motor output is altered. In this article, we review the extensive evidence for disrupted tactile, nociceptive, thermal and proprioceptive sensations in PD, as well as the influences exerted on these sensations by dopaminergic therapy and deep brain stimulation. We argue that abnormal spatial and temporal processing of sensory information produces incorrect signals for the preparation and execution of voluntary movement. Sensory deficits are likely to be a consequence of the dopaminergic denervation of the basal ganglia that is the hallmark of PD. A possible mechanism to account for somatosensory deficits is one in which disease-related dopaminergic denervation leads to a loss of response specificity, resulting in transmission of noisier and less-differentiated information to cortical regions. Changes in pain perception might have a different explanation, possibly involving disease-related effects outside the basal ganglia, including involvement of peripheral pain receptors, as well as structures such as the periaqueductal grey matter and non-dopaminergic neurotransmitter systems.

Key Points

  • Extensive evidence has been obtained for disrupted tactile, nociceptive, thermal and proprioceptive sensations in Parkinson disease

  • Effects of dopaminergic therapy and deep brain stimulation on somatosensory function have been reported

  • The observation that many sensory changes occur early in the course of the disease, when the extent of pathology is limited, suggests a primary role for basal ganglia

  • Multiple mechanisms contribute to changes in sensation, and the role of each may vary with progression of the disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tactile abnormalities in patients with PD.
Figure 2

Similar content being viewed by others

References

  1. Abbruzzese, G. & Berardelli, A. Sensorimotor integration in movement disorders. Mov. Disord. 18, 231–240 (2003).

    PubMed  Google Scholar 

  2. Murphy, J. T., Kwan, H. C., MacKay, W. A. & Wong, Y. C. Spatial organization of precentral cortex in awake primates. III. Input–output coupling. J. Neurophysiol. 41, 1132–1139 (1978).

    CAS  PubMed  Google Scholar 

  3. Rizzolatti, G. Functional organization of inferior area 6. Ciba Found. Symp. 132, 171–186 (1987).

    CAS  PubMed  Google Scholar 

  4. Cressman, E. K., Salomonczyk, D. & Henriques, D. Y. Visuomotor adaptation and proprioceptive recalibration in older adults. Exp. Brain Res. 205, 533–544 (2010).

    PubMed  Google Scholar 

  5. Schiller, N. O., Horemans, I., Ganushchak, L. & Koester, D. Event-related brain potentials during the monitoring of speech errors. Neuroimage 44, 520–530 (2009).

    PubMed  Google Scholar 

  6. Sathian, K., Zangaladze, A., Green, J., Vitek, J. L. & DeLong, M. R. Tactile spatial acuity and roughness discrimination: impairments due to aging and Parkinson's disease. Neurology 49, 168–177 (1997).

    CAS  PubMed  Google Scholar 

  7. Shin, H. W., Kang, S. Y. & Sohn, Y. H. Dopaminergic influence on disturbed spatial discrimination in Parkinson's disease. Mov. Disord. 20, 1640–1643 (2005).

    PubMed  Google Scholar 

  8. Schneider, J. S., Diamond, S. G. & Markham, C. H. Deficits in orofacial sensorimotor function in Parkinson's disease. Ann. Neurol. 19, 275–282 (1986).

    CAS  PubMed  Google Scholar 

  9. Hammer, M. J. & Barlow, S. M. Laryngeal somatosensory deficits in Parkinson's disease: implications for speech respiratory and phonatory control. Exp. Brain Res. 201, 401–409 (2010).

    PubMed  Google Scholar 

  10. Murphy, C. A. & Abrams, T. M. Airway somatosensory deficits and dysphagia in Parkinson's disease. J. Parkinsons Dis. 3, 39–44 (2013).

    PubMed  PubMed Central  Google Scholar 

  11. Weder, B. J. et al. Impaired somatosensory discrimination of shape in Parkinson's disease: association with caudate nucleus dopaminergic function. Hum. Brain Mapp. 8, 1–12 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Weder, B. et al. Disturbed functional brain interactions underlying deficient tactile object discrimination in Parkinson's disease. Hum. Brain Mapp. 11, 131–145 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao, H., Xu, X., Zhao, Y., Long, D. & Zhang. M. Altered brain activation and connectivity in early Parkinson disease tactile perception. AJNR Am. J. Neuroradiol. 32, 1969–1974 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rascol, O. et al. Supplementary and primary sensory motor area activity in Parkinson's disease. Regional cerebral blood flow changes during finger movements and effects of apomorphine. Arch. Neurol. 49, 144–148 (1992).

    CAS  PubMed  Google Scholar 

  15. Jenkins, I. H. et al. Impaired activation of the supplementary motor area in Parkinson's disease is reversed when akinesia is treated with apomorphine. Ann. Neurol. 32, 749–757 (1992).

    CAS  PubMed  Google Scholar 

  16. Haslinger, B. et al. Event-related functional magnetic resonance imaging in Parkinson's disease before and after levodopa. Brain 124, 558–570 (2001).

    CAS  PubMed  Google Scholar 

  17. Wu, T. et al. Changes of functional connectivity of the motor network in the resting state in Parkinson's disease. Neurosci. Lett. 460, 6–10 (2009).

    CAS  PubMed  Google Scholar 

  18. Artieda, J., Pastor, M. A., Lacruz, F. & Obeso, J. A. Temporal discrimination is abnormal in Parkinson's disease. Brain 115, 199–210 (1992).

    PubMed  Google Scholar 

  19. Lee, M. S., Kim, H. S. & Lyoo, C. H. “Off” gait freezing and temporal discrimination threshold in patients with Parkinson disease. Neurology 64, 670–674 (2005).

    PubMed  Google Scholar 

  20. Conte, A. et al. Subthalamic nucleus stimulation and somatosensory temporal discrimination in Parkinson's disease. Brain 133, 2656–2963 (2010).

    PubMed  Google Scholar 

  21. Lyoo, C. H., Ryu, Y. H., Lee, M. J. & Lee, M. S. Striatal dopamine loss and discriminative sensory dysfunction in Parkinson's disease. Acta Neurol. Scand. 126, 344–349 (2012).

    CAS  PubMed  Google Scholar 

  22. Rocchi, L. et al. Somatosensory temporal discrimination threshold may help to differentiate patients with multiple system atrophy from patients with Parkinson's disease. Eur. J. Neurol. 20, 714–719 (2013).

    CAS  PubMed  Google Scholar 

  23. Burke, D., Gandevia, S. C., McKeon, B. & Skuse, N. F. Interactions between cutaneous and muscle afferent projections to cerebral cortex in man. Electroencephalogr. Clin. Neurophysiol. 53, 349–360 (1982).

    CAS  PubMed  Google Scholar 

  24. Costa, J., Valls-Solé, J., Valldeoriola, F. & Rumià, J. Subcortical interactions between somatosensory stimuli of different modalities and their temporal profile. J. Neurophysiol. 100, 1610–1621 (2008).

    PubMed  Google Scholar 

  25. Pastor, M. A., Day, B. L., Macaluso, E., Friston, K. J. & Frackowiak, R. S. The functional neuroanatomy of temporal discrimination. J. Neurosci. 24, 2585–2591 (2004).

    PubMed  PubMed Central  Google Scholar 

  26. Conte, A. et al. Theta-burst stimulation-induced plasticity over primary somatosensory cortex changes somatosensory temporal discrimination in healthy humans. PLoS ONE 7, e32979 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee, M. S. et al. Impaired finger dexterity in patients with Parkinson's disease correlates with discriminative cutaneous sensory dysfunction. Mov. Disord. 25, 2531–2535 (2010).

    PubMed  Google Scholar 

  28. Nelson, A. J. et al. Dopamine alters tactile perception in Parkinson's disease. Can. J. Neurol. Sci. 39, 52–57 (2012).

    PubMed  Google Scholar 

  29. Tommerdahl, M., Tannan, V., Zachek, M., Holden, J. K. & Favorov, O. V. Effects of stimulus-driven synchronization on sensory perception. Behav. Brain Funct. 3, 61 (2007).

    PubMed  PubMed Central  Google Scholar 

  30. Fiorio, M. et al. Subclinical sensory abnormalities in unaffected PINK1 heterozygotes. J. Neurol. 255, 1372–1377 (2008).

    PubMed  Google Scholar 

  31. Santos-García, D. et al. Pain in Parkinson's disease: prevalence, characteristics, associated factors, and relation with other non motor symptoms, quality of life, autonomy, and caregiver burden [Spanish]. Rev. Neurol. 52, 385–393 (2011).

    PubMed  Google Scholar 

  32. Chaudhuri, K. R. & Schapira, A. H. Non-motor symptoms of Parkinson's disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 8, 464–474 (2009).

    CAS  PubMed  Google Scholar 

  33. Beiske, A. G., Loge, J. H., Rønningen, A. & Svensson, E. Pain in Parkinson's disease: prevalence and characteristics. Pain 141, 173–177 (2009).

    CAS  PubMed  Google Scholar 

  34. Defazio, G. et al. Pain as a nonmotor symptom of Parkinson disease: evidence from a case–control study. Arch. Neurol. 65, 1191–1194 (2008).

    PubMed  Google Scholar 

  35. Ha, A. D. & Jankovic, J. Pain in Parkinson's disease. Mov. Disord. 27, 485–491 (2012).

    PubMed  Google Scholar 

  36. Wasner, G. & Deuschl, G. Pains in Parkinson disease—many syndromes under one umbrella. Nat. Rev. Neurol. 8, 284–294 (2012).

    CAS  PubMed  Google Scholar 

  37. Djaldetti, R. et al. Quantitative measurement of pain sensation in patients with Parkinson disease. Neurology 62, 2171–2175 (2004).

    CAS  PubMed  Google Scholar 

  38. Brefel-Courbon, C. et al. Effect of levodopa on pain threshold in Parkinson's disease: a clinical and positron emission tomography study. Mov. Disord. 20, 1557–1563 (2005).

    PubMed  Google Scholar 

  39. Ciampi de Andrade, D. et al. Subthalamic deep brain stimulation modulates small fiber-dependent sensory thresholds in Parkinson's disease. Pain 153, 1107–1113 (2012).

    Google Scholar 

  40. Slaoui, T., Mas-Gerdelat, A., Ory-Magne, F., Rascol, O. & Brefel-Courbon, C. Levodopa modifies pain thresholds in Parkinson's disease patients [French]. Rev. Neurol. (Paris) 163, 66–71 (2007).

    CAS  Google Scholar 

  41. Schestatsky, P. et al. Neurophysiologic study of central pain in patients with Parkinson disease. Neurology 69, 2162–2169 (2007).

    CAS  PubMed  Google Scholar 

  42. Nandhagopal, R. et al. Response to heat pain stimulation in idiopathic Parkinson's disease. Pain Med. 11, 834–840 (2010).

    CAS  PubMed  Google Scholar 

  43. Tinazzi, M. et al. Abnormal processing of the nociceptive input in Parkinson's disease: a study with CO2 laser evoked potentials. Pain 136, 117–124 (2008).

    PubMed  Google Scholar 

  44. Zambito Marsala, S. et al. Spontaneous pain, pain threshold, and pain tolerance in Parkinson's disease. J. Neurol. 258, 627–633 (2011).

    PubMed  Google Scholar 

  45. Lenz, F. A. et al. Painful stimuli evoke potentials recorded over the human anterior cingulate gyrus. J. Neurophysiol. 79, 2231–2234 (1998).

    CAS  PubMed  Google Scholar 

  46. Frot, M., Rambaud, L., Guenot, M. & Mauguiere, F. Intracortical recordings of early pain-related CO2-laser evoked potentials in the human second somatosensory (SII) area. Clin. Neurophysiol. 110, 133–145 (1999).

    CAS  PubMed  Google Scholar 

  47. Bentley, D. E., Derbyshire, S. W., Youell, P. D. & Jones, A. K. Caudal cingulated cortex involvement in pain processing: an inter-individual laser evoked potential source localisation study using realistic head models. Pain 102, 265–271 (2003).

    PubMed  Google Scholar 

  48. Treede, R. D., Lorenz, J. & Baumgartner, U. Clinical usefulness of laser-evoked potentials. Neurophysiol. Clin. 33, 303–314 (2003).

    PubMed  Google Scholar 

  49. Garcia-Larrea, L., Frot, M. & Valeriani, M. Brain generators of laser evoked potentials: from dipoles to functional significance. Clin. Neurophysiol. 33, 279–292 (2003).

    CAS  Google Scholar 

  50. Ohara, S., Crone, N. E., Weiss, N. & Lenz, F. A. Analysis of synchrony demonstrates 'pain networks' defined by rapidly switching, task-specific, functional connectivity between pain-related cortical structures. Pain 123, 244–253 (2006).

    CAS  PubMed  Google Scholar 

  51. Tinazzi, M. et al. Hyperalgesia and laser evoked potentials alterations in hemiparkinson: evidence for an abnormal nociceptive processing. J. Neurol. Sci. 276, 153–158 (2009).

    PubMed  Google Scholar 

  52. Gerdelat-Mas, A. et al. Levodopa raises objective pain threshold in Parkinson's disease: a RIII reflex study. J. Neurol. Neurosurg. Psychiatry 78, 1140–1142 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mylius, V. et al. Pain sensitivity and descending inhibition of pain in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 80, 24–28 (2009).

    CAS  PubMed  Google Scholar 

  54. Perrotta, A. et al. Facilitated temporal summation of pain at spinal level in Parkinson's disease. Mov. Disord. 26, 442–448 (2011).

    PubMed  Google Scholar 

  55. Mylius, V. et al. Pain sensitivity and clinical progression in Parkinson's disease. Mov. Disord. 26, 2220–2225 (2011).

    PubMed  Google Scholar 

  56. Tinazzi, M. et al. Muscular pain in Parkinson's disease and nociceptive processing assessed with CO2 laser-evoked potentials. Mov. Disord. 25, 213–220 (2010).

    PubMed  Google Scholar 

  57. Dellapina, E. et al. Apomorphine effect on pain threshold in Parkinson's disease: a clinical and positron emission tomography study. Mov. Disord. 26, 153–157 (2011).

    PubMed  Google Scholar 

  58. Starkstein, S. E., Preziosi, T. J. & Robinson, R. G. Sleep disorders, pain, and depression in Parkinson's disease. Eur. Neurol. 31, 352–355 (1991).

    CAS  PubMed  Google Scholar 

  59. Etchepare, F. et al. Back problems in Parkinson's disease: an underestimated problem. Joint Bone Spine 73, 298–302 (2006).

    PubMed  Google Scholar 

  60. Ford, B. Pain in Parkinson's disease. Mov. Disord. 25 (Suppl. 1), S98–S103 (2010).

    PubMed  Google Scholar 

  61. Loher, T. J., Burgunder, J. M., Weber, S., Sommerhalder, R. & Krauss, J. K. Effect of chronic pallidal deep brain stimulation on off period dystonia and sensory symptoms in advanced Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 73, 395–399 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Honey, C. R., Stoessl, A. J., Tsui, J. K., Schulzer, M. & Calne, D. B. Unilateral pallidotomy for reduction of parkinsonian pain. J. Neurosurg. 91, 198–201 (1999).

    CAS  PubMed  Google Scholar 

  63. Martínez-Martín, P. et al. Pallidotomy and quality of life in patients with Parkinson's disease: an early study. Mov. Disord. 15, 65–70 (2000).

    PubMed  Google Scholar 

  64. Limousin, P. et al. Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease. N. Engl. J. Med. 339, 1105–1111 (1998).

    CAS  PubMed  Google Scholar 

  65. Witjas, T. et al. Effects of chronic subthalamic stimulation on nonmotor fluctuations in Parkinson's disease. Mov. Disord. 22, 1729–1734 (2007).

    PubMed  Google Scholar 

  66. Zibetti, M. et al. Motor and nonmotor symptom follow-up in parkinsonian patients after deep brain stimulation of the subthalamic nucleus. Eur. Neurol. 58, 218–223 (2007).

    CAS  PubMed  Google Scholar 

  67. Kim, H. J. et al. Chronic subthalamic deep brain stimulation improves pain in Parkinson disease. J. Neurol. 255, 1889–1894 (2008).

    PubMed  Google Scholar 

  68. Kim, H. J., Jeon, B. S. & Paek, S. H. Effect of deep brain stimulation on pain in Parkinson disease. J. Neurol. Sci. 310, 251–255 (2011).

    PubMed  Google Scholar 

  69. Witjas, T. et al. Nonmotor fluctuations in Parkinson's disease: frequent and disabling. Neurology 59, 408–413 (2002).

    PubMed  Google Scholar 

  70. Chudler, E. H. & Dong, W. K. The role of the basal ganglia in nociception and pain. Pain 60, 3–38 (1995).

    CAS  PubMed  Google Scholar 

  71. Pertovaara, A. & Wei, H. Dual influence of the striatum on neuropathic hypersensitivity. Pain 137, 50–59 (2008).

    CAS  PubMed  Google Scholar 

  72. Tassorelli, C. et al. Behavioural responses and Fos activation following painful stimuli in a rodent model of Parkinson's disease. Brain Res. 1176, 53–61 (2007).

    CAS  PubMed  Google Scholar 

  73. Boecker, H. et al. Sensory processing in Parkinson's and Huntington's disease: investigations with 3D H2 15O-PET. Brain 122, 1651–1665 (1999).

    PubMed  Google Scholar 

  74. Jellinger, K. A. Pathology of Parkinson's disease. Changes other than the nigrostriatal pathway. Mol. Chem. Neuropathol. 14, 153–197 (1991).

    CAS  PubMed  Google Scholar 

  75. Jellinger, K. A. Post mortem studies in Parkinson's disease—is it possible to detect brain areas for specific symptoms? J. Neural Transm. Suppl. 56, 1–29 (1999).

    CAS  PubMed  Google Scholar 

  76. Zarow, C., Lyness, S. A., Mortimer, J. A. & Chui, H. C. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch. Neurol. 60, 337–341 (2003).

    PubMed  Google Scholar 

  77. Fava, M. The role of the serotonergic and noradrenergic neurotransmitter systems in the treatment of psychological and physical symptoms of depression. J. Clin. Psychiatry 64 (Suppl. 13), 26–29 (2003).

    CAS  PubMed  Google Scholar 

  78. Reichling, D. B. & Levine, J. D. Pain and death: neurodegenerative disease mechanisms in the nociceptor. Ann. Neurol. 69, 13–21 (2011).

    PubMed  Google Scholar 

  79. Nolano, M. et al. Sensory deficit in Parkinson's disease: evidence of a cutaneous denervation. Brain 131, 1903–1911 (2008).

    PubMed  Google Scholar 

  80. Kanda, T., Tsukagoshi, H., Oda, M., Miyamoto, K. & Tanabe, H. Changes of unmyelinated nerve fibers in sural nerve in amyotrophic lateral sclerosis, Parkinson's disease and multiple system atrophy. Acta Neuropathol. 91, 145–154 (1996).

    CAS  PubMed  Google Scholar 

  81. Gierthmühlen, J. et al. Influence of deep brain stimulation and levodopa on sensory signs in Parkinson's disease. Mov. Disord. 25, 1195–1202 (2010).

    PubMed  Google Scholar 

  82. Maruo, T. et al. Deep brain stimulation of the subthalamic nucleus improves temperature sensation in patients with Parkinson's disease. Pain 152, 860–865 (2011).

    PubMed  Google Scholar 

  83. Maschke, M., Gomez, C. M., Tuite, P. J. & Konczak, J. Dysfunction of the basal ganglia, but not the cerebellum, impairs kinaesthesia. Brain 126, 2312–2322 (2003).

    PubMed  Google Scholar 

  84. Konczak, J., Krawczewski, K., Tuite, P. & Maschke, M. The perception of passive motion in Parkinson's disease. J. Neurol. 254, 655–663 (2007).

    PubMed  Google Scholar 

  85. Putzki, N. et al. Kinesthesia is impaired in focal dystonia. Mov. Disord. 21, 754–760 (2006).

    PubMed  Google Scholar 

  86. Zia, S., Cody, F. W. & O'Boyle, D. J. Identification of unilateral elbow-joint position is impaired by Parkinson's disease. Clin. Anat. 15, 23–31 (2002).

    PubMed  Google Scholar 

  87. Demirci, M., Grill, S., McShane, L. & Hallett, M. A mismatch between kinesthetic and visual perception in Parkinson's disease. Ann. Neurol. 41, 781–788 (1997).

    CAS  PubMed  Google Scholar 

  88. Konczak, J., Li, K. Y., Tuite, P. J. & Poizner, H. Haptic perception of object curvature in Parkinson's disease. PLoS ONE 3, e2625 (2008).

    PubMed  PubMed Central  Google Scholar 

  89. Konczak, J. et al. Proprioception and motor control in Parkinson's disease. J. Mot. Behav. 41, 543–552 (2009).

    PubMed  Google Scholar 

  90. Konczak, J. et al. Parkinson's disease accelerates age-related decline in haptic perception by altering somatosensory integration. Brain 135, 3371–3379 (2012).

    PubMed  Google Scholar 

  91. Fiorio, M. et al. Defective temporal discrimination of passive movements in Parkinson's disease. Neurosci. Lett. 417, 312–315 (2007).

    CAS  PubMed  Google Scholar 

  92. Adamovich, S. V., Berkinblit, M. B., Hening, W., Sage, J. & Poizner, H. The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson's disease. Neuroscience 104, 1027–1041 (2001).

    CAS  PubMed  Google Scholar 

  93. Flash, T., Inzelberg, R., Schechtman, E. & Korczyn, A. D. Kinematic analysis of upper limb trajectories in Parkinson's disease. Exp. Neurol. 118, 215–226 (1992).

    CAS  PubMed  Google Scholar 

  94. Klockgether, T. & Dichgans, J. Visual control of arm movement in Parkinson's disease. Mov. Disord. 9, 48–56 (1994).

    CAS  PubMed  Google Scholar 

  95. Jackson, S. R., Jackson, G. M., Harrison, J., Henderson, L. & Kennard, C. The internal control of action and Parkinson's disease: a kinematic analysis of visually-guided and memory-guided prehension movements. Exp. Brain Res. 105, 147–162 (1995).

    CAS  PubMed  Google Scholar 

  96. Muratori, L. M., McIsaac, T. L., Gordon, A. M. & Santello, M. Impaired anticipatory control of force sharing patterns during whole-hand grasping in Parkinson's disease. Exp. Brain Res. 185, 41–52 (2008).

    PubMed  Google Scholar 

  97. Schettino, L. F. et al. Hand preshaping in Parkinson's disease: effects of visual feedback and medication state. Exp. Brain Res. 168, 186–202 (2006).

    PubMed  Google Scholar 

  98. Currà, A. et al. Performance of sequential arm movements with and without advance knowledge of motor pathways in Parkinson's disease. Mov. Disord. 12, 646–654 (1997).

    PubMed  Google Scholar 

  99. Tan, T., Almeida, Q. J. & Rahimi, F. Proprioceptive deficits in Parkinson's disease patients with freezing of gait. Neuroscience 192, 746–752 (2011).

    CAS  PubMed  Google Scholar 

  100. Jacobs, J. V. & Horak, F. B. Abnormal proprioceptive–motor integration contributes to hypometric postural responses of subjects with Parkinson's disease. Neuroscience 141, 999–1009 (2006).

    CAS  PubMed  Google Scholar 

  101. Lewis, G. N., Byblow, W. D. & Walt, S. E. Stride length regulation in Parkinson's disease: the use of extrinsic, visual cues. Brain 123, 2077–2090 (2000).

    PubMed  Google Scholar 

  102. Martens, K. A. & Almeida, Q. J. Dissociating between sensory and perceptual deficits in PD: more than simply a motor deficit. Mov. Disord. 27, 387–392 (2012).

    PubMed  Google Scholar 

  103. Poizner, H. et al. The timing of arm–trunk coordination is deficient and vision-dependent in Parkinson's patients during reaching movements. Exp. Brain Res. 133, 279–292 (2000).

    CAS  PubMed  Google Scholar 

  104. Rabin, E., Muratori, L., Svokos, K. & Gordon, A. Tactile/proprioceptive integration during arm localization is intact in individuals with Parkinson's disease. Neurosci. Lett. 470, 38–42 (2010).

    CAS  PubMed  Google Scholar 

  105. Jobst, E. E., Melnick, M. E., Byl, N. N., Dowling, G. A. & Aminoff, M. J. Sensory perception in Parkinson disease. Arch. Neurol. 54, 450–454 (1997).

    CAS  PubMed  Google Scholar 

  106. Maschke, M., Tuite, P. J., Krawczewski, K., Pickett, K. & Konczak, J. The perception of heaviness in Parkinson's disease. Mov. Disord. 21, 1013–1018 (2006).

    PubMed  Google Scholar 

  107. Li, K. Y., Pickett, K., Nestrasil, I., Tuite, P. & Konczak, J. The effect of dopamine replacement therapy on haptic sensitivity in Parkinson's disease. J. Neurol. 257, 1992–1998 (2010).

    CAS  PubMed  Google Scholar 

  108. Mongeon, D., Blanchet, P. & Messier, J. Impact of Parkinson's disease and dopaminergic medication on proprioceptive processing. Neuroscience 158, 426–440 (2009).

    CAS  PubMed  Google Scholar 

  109. Bronte-Stewart, H. M., Minn, A. Y., Rodrigues, K., Buckley, E. L. & Nashner, L. M. Postural instability in idiopathic Parkinson's disease: the role of medication and unilateral pallidotomy. Brain 125, 2100–2114 (2002).

    PubMed  Google Scholar 

  110. Rocchi, L., Chiari, L. & Horak, F. B. Effects of deep brain stimulation and levodopa on postural sway in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 73, 267–274 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. O'Suilleabhain, P., Bullard, J. & Dewey, R. B. Proprioception in Parkinson's disease is acutely depressed by dopaminergic medications. J. Neurol. Neurosurg. Psychiatry 71, 607–610 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Shukla, A. W. et al. Long-term subthalamic nucleus stimulation improves sensorimotor integration and proprioception. J. Neurol. Neurosurg. Psychiatry 84, 1020–1028 (2013).

    Google Scholar 

  113. Maschke, M., Tuite, P. J., Pickett, K., Wächter, T. & Konczak, J. The effect of subthalamic nucleus stimulation on kinaesthesia in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 76, 569–571 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Pesenti, A. et al. Subthalamic somatosensory evoked potentials in Parkinson's disease. Mov. Disord. 18, 1341–1345 (2003).

    PubMed  Google Scholar 

  115. Theodosopoulos, P. V., Marks, W. J., Christine, C. & Starr, P. A. Locations of movement-related cells in the human subthalamic nucleus in Parkinson's disease. Mov. Disord. 18, 791–798 (2003).

    PubMed  Google Scholar 

  116. Hamani, C., Saint-Cyr, J. A., Fraser, J., Kaplitt, M. & Lozano, A. M. The subthalamic nucleus in the context of movement disorders. Brain 127, 4–20 (2004).

    PubMed  Google Scholar 

  117. Rossini, P. M. et al. Parkinson's disease and somatosensory evoked potentials: apomorphine-induced transient potentiation of frontal components. Neurology 43, 2495–2500 (1993).

    CAS  PubMed  Google Scholar 

  118. Rossini, P. M. et al. Abnormalities of short-latency somatosensory evoked potentials in parkinsonian patients. Electroencephalogr. Clin. Neurophysiol. 74, 277–289 (1989).

    CAS  PubMed  Google Scholar 

  119. Mauguière, F., Broussolle, E. & Isnard, J. Apomorphine-induced relief of the akinetic–rigid syndrome and early median nerve somatosensory evoked potentials (SEPs) in Parkinson's disease. Electroencephalogr. Clin. Neurophysiol. 88, 243–254 (1993).

    PubMed  Google Scholar 

  120. Garcia, P. A., Aminoff, M. J. & Goodin, D. S. The frontal N30 component of the median-derived SEP in patients with predominantly unilateral Parkinson's disease. Neurology 45, 989–992 (1995).

    CAS  PubMed  Google Scholar 

  121. Abbruzzese, G., Marchese, R. & Trompetto, C. Sensory and motor evoked potentials in multiple system atrophy: a comparative study with Parkinson's disease. Mov. Disord. 12, 315–321 (1997).

    CAS  PubMed  Google Scholar 

  122. Onofrj, M. et al. The abnormality of N30 somatosensory evoked potential in idiopathic Parkinson's disease is unrelated to disease stage or clinical scores and insensitive to dopamine manipulations. Mov. Disord. 10, 71–80 (1995).

    CAS  PubMed  Google Scholar 

  123. Seiss, E., Praamstra, P., Hesse, C. W. & Rickards, H. Proprioceptive sensory function in Parkinson's disease and Huntington's disease: evidence from proprioception-related EEG potentials. Exp. Brain Res. 148, 308–319 (2003).

    CAS  PubMed  Google Scholar 

  124. Nagy, A., Eördegh, G., Paróczy, Z., Márkus, Z. & Benedek, G. Multisensory integration in the basal ganglia. Eur. J. Neurosci. 24, 917–924 (2006).

    PubMed  Google Scholar 

  125. Rosenkranz, K. & Rothwell, J. C. Modulation of proprioceptive integration in the motor cortex shapes human motor learning. J. Neurosci. 32, 9000–9006 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ostry, D. J., Darainy, M., Mattar, A. A., Wong, J. & Gribble, P. L. Somatosensory plasticity and motor learning. J. Neurosci. 30, 5384–5393 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Körding, K. P. & Wolpert, D. M. Bayesian decision theory in sensorimotor control. Trends Cogn. Sci. 10, 319–326 (2006).

    PubMed  Google Scholar 

  128. Rome, S. & Grünewald, R. A. Abnormal perception of vibration-induced illusion of movement in dystonia. Neurology 53, 1794–1800 (1999).

    CAS  PubMed  Google Scholar 

  129. Frima, N., Nasir, J. & Grünewald, R. A. Abnormal vibration-induced illusion of movement in idiopathic focal dystonia: an endophenotypic marker? Mov. Disord. 23, 373–377 (2008).

    PubMed  Google Scholar 

  130. Frima, N., Rome, S. M. & Grünewald, R. A. The effect of fatigue on abnormal vibration induced illusion of movement in idiopathic focal dystonia. J. Neurol. Neurosurg. Psychiatry 74, 1154–1156 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Tinazzi, M., Fiorio, M., Fiaschi, A., Rothwell, J. C. & Bhatia, K. P. Sensory functions in dystonia: insights from behavioral studies. Mov. Disord. 24, 1427–1436 (2009).

    PubMed  Google Scholar 

  132. Fiorio, M. et al. Impairment of the rubber hand illusion in focal hand dystonia. Brain 134, 1428–1437 (2011).

    PubMed  Google Scholar 

  133. Müller, S. V. et al. Disturbed egocentric space representation in cervical dystonia. Mov. Disord. 20, 58–63 (2005).

    PubMed  Google Scholar 

  134. Scontrini, A. et al. Somatosensory temporal discrimination in patients with primary focal dystonia. J. Neurol. Neurosurg. Psychiatry 80, 1315–1319 (2009).

    CAS  PubMed  Google Scholar 

  135. Tinazzi, M. et al. Temporal discrimination in patients with dystonia and tremor and patients with essential tremor. Neurology 80, 76–84 (2013).

    PubMed  Google Scholar 

  136. Conte, A. et al. Is increased blinking a form of blepharospasm? Neurology 80, 2236–2241 (2013).

    PubMed  PubMed Central  Google Scholar 

  137. Tinazzi, M. et al. Temporal discrimination of two passive movements in writer's cramp. Mov. Disord. 21, 1131–1135 (2006).

    PubMed  Google Scholar 

  138. Sanger, T. D., Tarsy, D. & Pascual-Leone, A. Abnormalities of spatial and temporal sensory discrimination in writer's cramp. Mov. Disord. 16, 94–99 (2001).

    CAS  PubMed  Google Scholar 

  139. Bradley, D. et al. Temporal discrimination threshold: VBM evidence for an endophenotype in adult onset primary torsion dystonia. Brain 132, 2327–2235 (2009).

    CAS  PubMed  Google Scholar 

  140. Conte, A. et al. Primary somatosensory cortical plasticity and tactile temporal discrimination in focal hand dystonia. Clin. Neurophysiol. http://dx.doi.org/10.1016/j.clinph.2013.08.006.

  141. Kimmich, O. et al. Sporadic adult onset primary torsion dystonia is a genetic disorder by the temporal discrimination test. Brain 134, 2656–2663 (2011).

    PubMed  Google Scholar 

  142. Walsh, R. et al. Sporadic adult onset dystonia: sensory abnormalities as an endophenotype in unaffected relatives. J. Neurol. Neurosurg. Psychiatry 78, 980–983 (2007).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. Conte and N. Khan researched the data for the article. A. Berardelli and J. C. Rothwell made substantial contributions to discussions of the content. A. Conte and N. Khan wrote the article. G. Defazio reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Alfredo Berardelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conte, A., Khan, N., Defazio, G. et al. Pathophysiology of somatosensory abnormalities in Parkinson disease. Nat Rev Neurol 9, 687–697 (2013). https://doi.org/10.1038/nrneurol.2013.224

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.224

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing