Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the multifunctional Gβ5–RGS9 complex

Abstract

Regulators of G-protein signaling (RGS) proteins enhance the intrinsic GTPase activity of G protein α (Gα) subunits and are vital for proper signaling kinetics downstream of G protein–coupled receptors (GPCRs). R7 subfamily RGS proteins specifically and obligately dimerize with the atypical G protein β5 (Gβ5) subunit through an internal G protein γ (Gγ)-subunit–like (GGL) domain. Here we present the 1.95-Å crystal structure of the Gβ5–RGS9 complex, which is essential for normal visual and neuronal signal transduction. This structure reveals a canonical RGS domain that is functionally integrated within a molecular complex that is poised for integration of multiple steps during G-protein activation and deactivation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of Gβ5–RGS9.
Figure 2: RGS9 N-terminal lobe.
Figure 3: Conserved Gα binding interface on Gβ5.
Figure 4: Gγ-subunit–like (GGL) domains and Gγ subunits are structurally equivalent.
Figure 5: The RGS9-RGS domain interfaces with Gβ5 and activated Gα subunits.
Figure 6: Membrane orientation of the Gβ5–RGS9 complex.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Gilman, A.G. Nobel Lecture. G proteins and regulation of adenylyl cyclase. Biosci. Rep. 15, 65–97 (1995).

    Article  CAS  Google Scholar 

  2. Berman, D.M. & Gilman, A.G. Mammalian RGS proteins: barbarians at the gate. J. Biol. Chem. 273, 1269–1272 (1998).

    Article  CAS  Google Scholar 

  3. De Vries, L., Zheng, B., Fischer, T., Elenko, E. & Farquhar, M.G. The regulator of G protein signaling family. Annu. Rev. Pharmacol. Toxicol. 40, 235–271 (2000).

    Article  CAS  Google Scholar 

  4. Ross, E.M. & Wilkie, T.M. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu. Rev. Biochem. 69, 795–827 (2000).

    Article  CAS  Google Scholar 

  5. Gold, S.J., Ni, Y.G., Dohlman, H.G. & Nestler, E.J. Regulators of G-protein signaling (RGS) proteins: region-specific expression of nine subtypes in rat brain. J. Neurosci. 17, 8024–8037 (1997).

    Article  CAS  Google Scholar 

  6. Neubig, R.R. & Siderovski, D.P. Regulators of G-protein signalling as new central nervous system drug targets. Nat. Rev. Drug Discov. 1, 187–197 (2002).

    Article  CAS  Google Scholar 

  7. Krispel, C.M. et al. RGS expression rate-limits recovery of rod photoresponses. Neuron 51, 409–416 (2006).

    Article  CAS  Google Scholar 

  8. Zachariou, V. et al. Essential role for RGS9 in opiate action. Proc. Natl. Acad. Sci. USA 100, 13656–13661 (2003).

    Article  CAS  Google Scholar 

  9. Rahman, Z. et al. RGS9 modulates dopamine signaling in the basal ganglia. Neuron 38, 941–952 (2003).

    Article  CAS  Google Scholar 

  10. Kovoor, A. et al. D2 dopamine receptors colocalize regulator of G-protein signaling 9–2 (RGS9–2) via the RGS9 DEP domain, and RGS9 knock-out mice develop dyskinesias associated with dopamine pathways. J. Neurosci. 25, 2157–2165 (2005).

    Article  CAS  Google Scholar 

  11. Nishiguchi, K.M. et al. Defects in RGS9 or its anchor protein R9AP in patients with slow photoreceptor deactivation. Nature 427, 75–78 (2004).

    Article  CAS  Google Scholar 

  12. Lishko, P.V., Martemyanov, K.A., Hopp, J.A. & Arshavsky, V.Y. Specific binding of RGS9-Gβ5L to protein anchor in photoreceptor membranes greatly enhances its catalytic activity. J. Biol. Chem. 277, 24376–24381 (2002).

    Article  CAS  Google Scholar 

  13. Hu, G. & Wensel, T.G. R9AP, a membrane anchor for the photoreceptor GTPase accelerating protein, RGS9–1. Proc. Natl. Acad. Sci. USA 99, 9755–9760 (2002).

    Article  CAS  Google Scholar 

  14. Martemyanov, K.A., Yoo, P.J., Skiba, N.P. & Arshavsky, V.Y. R7BP, a Novel Neuronal protein interacting with RGS proteins of the R7 family. J. Biol. Chem. 280, 5133–5136 (2005).

    Article  CAS  Google Scholar 

  15. Sondek, J. & Siderovski, D.P. Gγ-like (GGL) domains: new frontiers in G-protein signaling and β-propeller scaffolding. Biochem. Pharmacol. 61, 1329–1337 (2001).

    Article  CAS  Google Scholar 

  16. Jones, M.B., Siderovski, D.P. & Hooks, S.B. The Gβγ dimer as a novel source of selectivity in G-protein signaling: GGL-ing at convention. Mol. Interv. 4, 200–214 (2004).

    Article  CAS  Google Scholar 

  17. Lambright, D.G. et al. The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 379, 311–319 (1996).

    Article  CAS  Google Scholar 

  18. Wall, M.A., Posner, B.A. & Sprang, S.R. Structural basis of activity and subunit recognition in G protein heterotrimers. Structure 6, 1169–1183 (1998).

    Article  CAS  Google Scholar 

  19. Wong, H.C. et al. Structural basis of the recognition of the dishevelled DEP domain in the Wnt signaling pathway. Nat. Struct. Biol. 7, 1178–1184 (2000).

    Article  CAS  Google Scholar 

  20. Anderson, G.R., Semenov, A., Song, J.H. & Martemyanov, K.A. The membrane anchor R7BP controls the proteolytic stability of the striatal specific RGS protein, RGS9–2. 282, 4772–4781. J. Biol. Chem. (2006).

  21. Patikoglou, G.A. & Koelle, M.R. An N-terminal region of Caenorhabditis elegans RGS proteins EGL-10 and EAT-16 directs inhibition of Gαo versus Gαq signaling. J. Biol. Chem. 277, 47004–47013 (2002).

    Article  CAS  Google Scholar 

  22. Martemyanov, K.A. et al. The DEP domain determines subcellular targeting of the GTPase activating protein RGS9 in vivo. J. Neurosci. 23, 10175–10181 (2003).

    Article  CAS  Google Scholar 

  23. Sondek, J., Bohm, A., Lambright, D.G., Hamm, H.E. & Sigler, P.B. Crystal structure of a GA protein βγ dimer at 2.1Å resolution. Nature 379, 369–374 (1996).

    Article  CAS  Google Scholar 

  24. Watson, A.J., Katz, A. & Simon, M.I. A fifth member of the mammalian G-protein β-subunit family. Expression in brain and activation of the β2 isotype of phospholipase C. J. Biol. Chem. 269, 22150–22156 (1994).

    CAS  PubMed  Google Scholar 

  25. Snow, B.E. et al. A G protein γ subunit-like domain shared between RGS11 and other RGS proteins specifies binding to Gβ5 subunits. Proc. Natl. Acad. Sci. USA 95, 13307–13312 (1998).

    Article  CAS  Google Scholar 

  26. Ford, C.E. et al. Molecular basis for interactions of G protein βγ subunits with effectors. Science 280, 1271–1274 (1998).

    Article  CAS  Google Scholar 

  27. Posner, B.A., Gilman, A.G. & Harris, B.A. Regulators of G protein signaling 6 and 7. Purification of complexes with Gβ5 and assessment of their effects on G protein-mediated signaling pathways. J. Biol. Chem. 274, 31087–31093 (1999).

    Article  CAS  Google Scholar 

  28. Snow, B.E., Betts, L., Mangion, J., Sondek, J. & Siderovski, D.P. Fidelity of G protein β-subunit association by the G protein γ-subunit-like domains of RGS6, RGS7, and RGS11. Proc. Natl. Acad. Sci. USA 96, 6489–6494 (1999).

    Article  CAS  Google Scholar 

  29. Dingus, J. et al. G Protein βγ dimer formation: Gβ and Gγ differentially determine efficiency of in vitro dimer formation. Biochemistry 44, 11882–11890 (2005).

    Article  CAS  Google Scholar 

  30. Slep, K.C. et al. Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 Å. Nature 409, 1071–1077 (2001).

    Article  CAS  Google Scholar 

  31. Tesmer, J.J., Berman, D.M., Gilman, A.G. & Sprang, S.R. Structure of RGS4 bound to AlF4-activated Giα1: stabilization of the transition state for GTP hydrolysis. Cell 89, 251–261 (1997).

    Article  CAS  Google Scholar 

  32. Skiba, N.P. et al. RGS9-G β 5 substrate selectivity in photoreceptors. Opposing effects of constituent domains yield high affinity of RGS interaction with the G protein-effector complex. J. Biol. Chem. 276, 37365–37372 (2001).

    Article  CAS  Google Scholar 

  33. Chen, C.A. & Manning, D.R. Regulation of G proteins by covalent modification. Oncogene 20, 1643–1652 (2001).

    Article  CAS  Google Scholar 

  34. Hajdu-Cronin, Y.M., Chen, W.J., Patikoglou, G., Koelle, M.R. & Sternberg, P.W. Antagonism between Goα and Gqα in Caenorhabditis elegans: the RGS protein EAT-16 is necessary for Goα signaling and regulates Gqα activity. Genes Dev. 13, 1780–1793 (1999).

    Article  CAS  Google Scholar 

  35. Robatzek, M., Niacaris, T., Steger, K., Avery, L. & Thomas, J.H. eat-11 encodes GPB-2, a Gβ5 ortholog that interacts with Goα and Gqα to regulate C. elegans behavior. Curr. Biol. 11, 288–293 (2001).

    Article  CAS  Google Scholar 

  36. Ballon, D.R. et al. DEP-domain-mediated regulation of GPCR signaling responses. Cell 126, 1079–1093 (2006).

    Article  CAS  Google Scholar 

  37. Hooks, S.B. et al. RGS6, RGS7, RGS9, and RGS11 stimulate GTPase activity of Gi family G-proteins with differential selectivity and maximal activity. J. Biol. Chem. 278, 10087–10093 (2003).

    Article  CAS  Google Scholar 

  38. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  39. Potterton, E., Briggs, P., Turkenburg, M. & Dodson, E. A graphical user interface to the CCP4 program suite. Acta Crystallogr. D Biol. Crystallogr. 59, 1131–1137 (2003).

    Article  Google Scholar 

  40. Ten Eyck, L.F. Crystallographic fast Fourier transforms. Acta Crystallogr. A 29, 183–191 (1973).

    Article  CAS  Google Scholar 

  41. Cowtan, K.D. & Zhang, K.Y. Density modification for macromolecular phase improvement. Prog. Biophys. Mol. Biol. 72, 245–270 (1999).

    Article  CAS  Google Scholar 

  42. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  43. Gaudet, R., Bohm, A. & Sigler, P.B. Crystal structure at 2.4 Å resolution of the complex of transducin βγ and its regulator, phosducin. Cell 87, 577–588 (1996).

    Article  CAS  Google Scholar 

  44. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  45. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  46. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  47. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997).

    Article  CAS  Google Scholar 

  48. Lee, B. & Richards, F.M. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  49. Potterton, L. et al. Developments in the CCP4 molecular-graphics project. Acta Crystallogr. D Biol. Crystallogr. 60, 2288–2294 (2004).

    Article  Google Scholar 

  50. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  51. Christopher, J.A. The Spock Homepage. <http://quorum.tamu.edu/>(1998).

  52. Okada, T. et al. The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J. Mol. Biol. 342, 571–583 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Betts for suggestions in analyzing diffraction data. Data were collected at the Southeast Regional Collaborative Access Team (SER-CAT) 22-ID beamline at the Advanced Photon Source, Argonne National Laboratory. Supporting institutions may be found at http://www.ser-cat.org/members.html. We thank the SER-CAT beamline staff for assistance in data collection. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. This research was funded by grants from the US National Institutes of Health (P01-GM65533 and R01-GM081881 to J.S. and T.K.H.), the American Cancer Society (PF-06-034-01-GMC to M.L.C) and the University of North Carolina Lineberger Comprehensive Cancer Center (M.L.C.).

Author information

Authors and Affiliations

Authors

Contributions

M.L.C., J.T.S., D.P.S., T.K.H. and J.S. conceived, performed and analyzed experiments, and co-wrote the manuscript. S.G. assisted with construct design.

Corresponding author

Correspondence to John Sondek.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheever, M., Snyder, J., Gershburg, S. et al. Crystal structure of the multifunctional Gβ5–RGS9 complex. Nat Struct Mol Biol 15, 155–162 (2008). https://doi.org/10.1038/nsmb.1377

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1377

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing