Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phosphorylation of human PRP28 by SRPK2 is required for integration of the U4/U6-U5 tri-snRNP into the spliceosome

Abstract

Several protein kinases, including SRPK1 and SRPK2, have been implicated in spliceosome assembly and catalytic activation. However, little is known about their targets. Here we show that SRPK1 is predominantly associated with U1 small nuclear ribonucleoprotein (snRNP), whereas SRPK2 associates with the U4/U6-U5 tri-snRNP. RNAi-mediated depletion in HeLa cells showed that SRPK2 is essential for cell viability, and it is required for spliceosomal B complex formation. SRPK2 knock down results in hypophosphorylation of the arginine-serine (RS) domain–containing human PRP28 protein (PRP28, also known as DDX23), and destabilizes PRP28 association with the tri-snRNP. Immunodepletion of PRP28 from HeLa cell nuclear extract and complementation studies revealed that PRP28 phosphorylation is required for its stable association with the tri-snRNP and for tri-snRNP integration into the B complex. Our results demonstrate a role for SRPK2 in splicing and reveal a previously unknown function for PRP28 in spliceosome assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SRPK1 and SRPK2 are associated with the U1 snRNP and the tri-snRNP, respectively.
Figure 2: RNAi-mediated depletion of SRPK2, but not of SRPK1, blocks splicing.
Figure 3: PRP28 dissociates from the tri-snRNP upon SRPK2 knockdown.
Figure 4: Differential loss of PRP28 isoelectric variants upon SRPK1 or SRPK2 knockdown.
Figure 5: PRP28 dissociates from the tri-snRNP upon phosphatase (PPase) treatment.
Figure 6: Immunodepletion of PRP28 blocks spliceosome assembly.
Figure 7: Phosphorylation of PRP28 is required for B complex formation.
Figure 8: Restoration of splicing activity to SRPK2 knockdown extracts.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Jurica, M.S. & Moore, M.J. Pre-mRNA splicing: awash in a sea of proteins. Mol. Cell 12, 5–14 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Will, C.L. & Lührmann, R. Spliceosome structure and function. in The RNA World 3rd edn (eds. Gesteland, R.F., Cech, T.R. & Atkins, J.F.) 369–400 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2006).

    Google Scholar 

  3. Staley, J.P. & Guthrie, C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92, 315–326 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Fu, X.D. The superfamily of arginine/serine-rich splicing factors. RNA 1, 663–680 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Graveley, B.R. Sorting out the complexity of SR protein functions. RNA 6, 1197–1211 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sanford, J.R., Ellis, J. & Cáceres, J.F. Multiple roles of arginine/serine-rich splicing factors in RNA processing. Biochem. Soc. Trans. 33, 443–446 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Black, D.L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Wu, J.Y. & Maniatis, T. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75, 1061–1070 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Shen, H. & Green, M.R. A pathway of sequential arginine-serine-rich domain-splicing signal interactions during mammalian spliceosome assembly. Mol. Cell 16, 363–373 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Shen, H. & Green, M.R. RS domain-splicing signal interactions in splicing of U12-type and U2-type introns. Nat. Struct. Mol. Biol. 14, 597–603 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Teigelkamp, S., Mundt, C., Achsel, T., Will, C.L. & Lührmann, R. The human U5 snRNP-specific 100-kD protein is an RS domain-containing, putative RNA helicase with significant homology to the yeast splicing factor Prp28p. RNA 3, 1313–1326 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Woppmann, A. et al. Identification of an snRNP-associated kinase activity that phosphorylates arginine/serine rich domains typical of splicing factors. Nucleic Acids Res. 21, 2815–2822 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Staley, J.P. & Guthrie, C. An RNA switch at the 5′ splice site requires ATP and the DEAD box protein Prp28p. Mol. Cell 3, 55–64 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Will, C.L. et al. Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein. EMBO J. 21, 4978–4988 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jamison, S.F. et al. U1 snRNP-ASF/SF2 interaction and 5′ splice site recognition: characterization of required elements. Nucleic Acids Res. 23, 3260–3267 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kohtz, J.D. et al. Protein-protein interactions and 5′-splice-site recognition in mammalian mRNA precursors. Nature 368, 119–124 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Eperon, I.C. et al. Selection of alternative 5′ splice sites: role of U1 snRNP and models for the antagonistic effects of SF2/ASF and hnRNP A1. Mol. Cell. Biol. 20, 8303–8318 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roscigno, R.F. & Garcia-Blanco, M.A. SR proteins escort the U4/U6·U5 tri-snRNP to the spliceosome. RNA 1, 692–706 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Makarova, O.V., Makarov, E.M. & Lührmann, R. The 65 and 110 kDa SR-related proteins of the U4/U6·U5 tri-snRNP are essential for the assembly of mature spliceosomes. EMBO J. 20, 2553–2563 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mermoud, J.E., Cohen, P. & Lamond, A.I. Ser/Thr-specific protein phosphatases are required for both catalytic steps of pre-mRNA splicing. Nucleic Acids Res. 20, 5263–5269 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mermoud, J.E., Cohen, P.T. & Lamond, A.I. Regulation of mammalian spliceosome assembly by a protein phosphorylation mechanism. EMBO J. 13, 5679–5688 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Manley, J.L. & Tacke, R. SR proteins and splicing control. Genes Dev. 10, 1569–1579 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Xiao, S.H. & Manley, J.L. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev. 11, 334–344 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Shi, Y., Reddy, B. & Manley, J.L. PP1/PP2A phosphatases are required for the second step of Pre-mRNA splicing and target specific snRNP proteins. Mol. Cell 23, 819–829 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Colwill, K. et al. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J. 15, 265–275 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rossi, F. et al. Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381, 80–82 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Gui, J.F., Lane, W.S. & Fu, X.D. A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature 369, 678–682 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Kuroyanagi, N., Onogi, H., Wakabayashi, T. & Hagiwara, M. Novel SR-protein-specific kinase, SRPK2, disassembles nuclear speckles. Biochem. Biophys. Res. Commun. 242, 357–364 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, H.Y. et al. SRPK2: a differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells. J. Cell Biol. 140, 737–750 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakagawa, O. et al. Centronuclear myopathy in mice lacking a novel muscle-specific protein kinase transcriptionally regulated by MEF2. Genes Dev. 19, 2066–2077 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fetzer, S., Lauber, J., Will, C.L. & Lührmann, R. The [U4/U6·U5] tri-snRNP-specific 27K protein is a novel SR protein that can be phosphorylated by the snRNP-associated protein kinase. RNA 3, 344–355 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lemm, I. et al. Ongoing U snRNP biogenesis is required for the integrity of Cajal bodies. Mol. Biol. Cell 17, 3221–3231 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, K.A. & Green, M.R. Small-scale preparation of extracts from radiolabeled cells efficient in pre-mRNA splicing. Methods Enzymol. 181, 20–30 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Makarova, O.V., Makarov, E.M., Liu, S., Vornlocher, H.-P. & Lührmann, R. Protein 61K, encoded by a gene (PRPF31) linked to autosomal dominant retinitis pigmentosa, is required for U4/U6·U5 tri-snRNP formation and pre-mRNA splicing. EMBO J. 21, 1148–1157 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schaffert, N., Hossbach, M., Heintzmann, R., Achsel, T. & Lührmann, R. RNAi knockdown of hPrp31 leads to an accumulation of U4/U6 di-snRNPs in Cajal bodies. EMBO J. 23, 3000–3009 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Laggerbauer, B. et al. The human U5 snRNP 52K protein (CD2BP2) interacts with U5-102K (hPrp6), a U4/U6·U5 tri-snRNP bridging protein, but dissociates upon tri-snRNP formation. RNA 11, 598–608 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Daub, H. et al. Identification of SRPK1 and SRPK2 as the major cellular protein kinases phosphorylating hepatitis B virus core protein. J. Virol. 76, 8124–8137 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kamachi, M. et al. Human autoimmune sera as molecular probes for the identification of an autoantigen kinase signaling pathway. J. Exp. Med. 196, 1213–1225 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Woppmann, A., Patschinsky, T., Bringmann, P., Godt, F. & Lührmann, R. Characterisation of human and murine snRNP proteins by two-dimensional gel electrophoresis and phosphopeptide analysis of U1-specific 70K protein variants. Nucleic Acids Res. 18, 4427–4438 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stoyanov, A.V. & Righetti, P.G. Dynamics of protein isoelectric focusing in immobilized pH gradient gels. Electrophoresis 17, 1313–1318 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, S., Rauhut, R., Vornlocher, H.P. & Lührmann, R. The network of protein-protein interactions within the human U4/U6·U5 tri-snRNP. RNA 12, 1418–1430 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Strauss, E.J. & Guthrie, C. A cold-sensitive mRNA splicing mutant is a member of the RNA helicase gene family. Genes Dev. 5, 629–641 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Strauss, E.J. & Guthrie, C. PRP28, a 'DEAD-box' protein, is required for the first step of mRNA splicing in vitro. Nucleic Acids Res. 22, 3187–3193 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tazi, J. et al. Thiophosphorylation of U1–70K protein inhibits pre-mRNA splicing. Nature 363, 283–286 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Bessonov, S. et al. Isolation of an active step I spliceosome and composition of its RNP core. Nature advance online publication, doi:10.1038/nature06842 (5 March 2008).

  46. Elbashir, S.M., Harborth, J., Weber, K. & Tuschl, T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26, 199–213 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Lerner, E.A., Lerner, M.R., Janeway, C.A. Jr & Steitz, J.A. Monoclonal antibodies to nucleic acid-containing cellular constituents: probes for molecular biology and autoimmune disease. Proc. Natl. Acad. Sci. USA 78, 2737–2741 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kastner, B. & Lührmann, R. Purification of U small nuclear ribonucleoprotein particles. Methods Mol. Biol. 118, 289–298 (1999).

    CAS  PubMed  Google Scholar 

  49. Shin, C. & Manley, J.L. The SR protein SRp38 represses splicing in M phase cells. Cell 111, 407–417 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Dignani, J.D., Lebovitz, R.M. & Roeder, R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  Google Scholar 

  51. Nikolakaki, E. et al. Cloning and characterization of an alternatively spliced form of SR protein kinase 1 that interacts specifically with scaffold attachment factor-B. J. Biol. Chem. 276, 40175–40182 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Lemm and M. Hoßbach for help with RNAi experiments, X.-D. Fu (University of California, San Diego, USA) for the plasmid encoding SRPK2, H. Manniga for synthesis of siRNAs, and S. Trowitzsch and G. Weber for the gift of purified tri-snRNP. We thank C.L. Will for critically reading the manuscript. We acknowledge the expert technical assistance of H. Kohansal, P. Kempkes and T. Conrad with HeLa cell extract and snRNP preparation, and M. Raabe with MS. This work was funded by grants from the DFG, the Fonds der Chemischen Industrie, the Volkswagen Stiftung and the EURASNET (within the 6th EU framework; LSHG-CT-2005-518238).

Author information

Authors and Affiliations

Authors

Contributions

R.M., K.H. and R.L. designed the research; R.M. performed the research; S.M. and R.F. provided recombinant PRP28; H.U. performed MS; R.M., K.H. and R.L. analyzed data and wrote the paper.

Corresponding author

Correspondence to Reinhard Lührmann.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Materials (PDF 1850 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathew, R., Hartmuth, K., Möhlmann, S. et al. Phosphorylation of human PRP28 by SRPK2 is required for integration of the U4/U6-U5 tri-snRNP into the spliceosome. Nat Struct Mol Biol 15, 435–443 (2008). https://doi.org/10.1038/nsmb.1415

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1415

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing