Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain

Abstract

The mammalian retromer complex consists of SNX1, SNX2, Vps26, Vps29 and Vps35, and retrieves lysosomal enzyme receptors from endosomes to the trans-Golgi network. The structure of human Vps26A at 2.1-Å resolution reveals two curved β-sandwich domains connected by a polar core and a flexible linker. Vps26 has an unpredicted structural relationship to arrestins. The Vps35-binding site on Vps26 maps to a mobile loop spanning residues 235–246, near the tip of the C-terminal domain. The loop is phylogenetically conserved and provides a mechanism for Vps26 integration into the complex that leaves the rest of the structure free for engagements with membranes and for conformational changes. Hydrophobic residues and a glycine in this loop are required for integration into the retromer complex and endosomal localization of human Vps26, and for the function of yeast Vps26 in carboxypeptidase Y sorting.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of Vps26A.
Figure 2: Surface properties of Vps26.
Figure 3: Polar core of Vps26.
Figure 4: Structural similarities between Vps26 and β-arrestin.
Figure 5: Identification of the Vps35-binding site on Vps26.
Figure 6: The binding site for Vps35 is required for Vps26 integration into the retromer complex in vivo.
Figure 7: Analysis of CPY sorting in wild-type and mutant Vps26p-expressing yeast strains.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Ghosh, P., Dahms, N.M. & Kornfeld, S. Mannose 6-phosphate receptors: new twists in the tale. Nat. Rev. Mol. Cell Biol. 4, 202–212 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Bonifacino, J.S. The GGA proteins: adaptors on the move. Nat. Rev. Mol. Cell Biol. 5, 23–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Meyer, C. et al. mu1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J. 19, 2193–2203 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Doray, B., Ghosh, P., Griffith, J., Geuze, H.J. & Kornfeld, S. Cooperation of GGAs and AP-1 in packaging MPRs at the trans-Golgi network. Science 297, 1700–1703 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Diaz, E. & Pfeffer, S.R. TIP47: A cargo selection device for mannose 6-phosphate receptor trafficking. Cell 93, 433–443 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Wan, L. et al. PACS-1 defines a novel gene family of cytosolic sorting proteins required for trans-Golgi network localization. Cell 94, 205–216 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Bowers, K. & Stevens, T.H. Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1744, 438–454 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Seaman, M.N. Recycle your receptors with retromer. Trends Cell Biol. 15, 68–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Horazdovsky, B.F. et al. A sorting nexin-1 homologue, vps5p, forms a complex with vps17p and is required for recycling the vacuolar protein-sorting receptor. Mol. Biol. Cell 8, 1529–1541 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seaman, M.N.J., McCaffery, J.M. & Emr, S.D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol. 142, 665–681 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Seaman, M.N.J. & Williams, H.P. Identification of the functional domains of yeast sorting nexins Vps5p and Vps17p. Mol. Biol. Cell 13, 2826–2840 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cheever, M.L. et al. Phox domain interaction with Ptdlns(S)P targets the Vam7 t-SNARE to vacuole membranes. Nat. Cell Biol. 3, 613–618 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Kanai, F. et al. The PX domains of p47phox and p40phox bind to lipid products of Pl(3)K. Nat. Cell Biol. 3, 675–678 (2001).

    CAS  PubMed  Google Scholar 

  14. Xu, Y., Hortsman, H., Seet, L., Wong, S.H. & Hong, W. SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P. Nat. Cell Biol. 3, 658–666 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Ellson, C.D. et al. Ptdlns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40(phox). Nat. Cell Biol. 3, 679–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Virbasius, J.V. et al. Activation of the Akt-related cytokine-independent survival kinase requires interaction of its phox domain with endosomal phosphatidylinositol 3-phosphate. Proc. Natl. Acad. Sci. USA 98, 12908–12913 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peter, B.J. et al. BAR domains as sensors of membrane curvature: The amphiphysin BAR structure. Science 303, 495–499 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Nothwehr, S.F., Bruinsma, P. & Strawn, L.A. Distinct domains within Vps35p mediate the retrieval of two different cargo proteins from the yeast prevacuolar/endosomal compartment. Mol. Biol. Cell 10, 875–890 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arighi, C.N., Hartnell, L.M., Aguilar, R.C., Haft, C.R. & Bonifacino, J.S. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165, 123–133 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carlton, J. et al. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides. Curr. Biol. 14, 1791–1800 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Seaman, M.N. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J. Cell Biol. 165, 111–122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhong, Q. et al. Determinants of the endosomal localization of sorting nexin 1. Mol. Biol. Cell 16, 2049–2057 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, D. et al. Crystal structure of human vacuolar protein sorting protein 29 reveals a phosphodiesterase/nuclease-like fold and two protein-protein interaction sites. J. Biol. Chem. 280, 22962–22967 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Collins, B.M., Skinner, C.F., Watson, P.J., Seaman, M.N. & Owen, D.J. Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly. Nat. Struct. Mol. Biol. 12, 594–602 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, J.J., Radice, G., Perkins, C.P. & Costantini, F. Identification and characterization of a novel, evolutionarily conserved gene disrupted by the murine Hb58 embryonic lethal insertion. Development 115, 227–288 (1992).

    Google Scholar 

  26. Small, S.A. et al. Model-guided microarray implicates the retromer complex in Alzheimer's disease. Ann. Neurol. 58, 909–919 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Kerr, M.C. et al. A novel mammalian retromer component, Vps26B. Traffic 6, 991–1001 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Lefkowitz, R.J. & Whalen, E.J. beta-arrestins: traffic cops of cell signaling. Curr. Opin. Cell Biol. 16, 162–168 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Hurley, J.H. & Misra, S. Signaling and subcellular targeting by membrane-binding domains. Annu. Rev. Biophys. Biomol. Struct. 29, 49–79 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Holm, L. & Sander, C. Dali—a network tool for protein-structure comparison. Trends Biochem. Sci. 20, 478–480 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Hirsch, J.A., Schubert, C., Gurevich, V.V. & Sigler, P.B. The 2.8 angstrom crystal structure of visual arrestin: a model for arrestin's regulation. Cell 97, 257–269 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Haft, C.R. et al. Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol. Biol. Cell 11, 4105–4116 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reddy, J.V. & Seaman, M.N. Vps26p, a component of retromer, directs the interactions of Vps35p in endosome-to-Golgi retrieval. Mol. Biol. Cell 12, 3242–3256 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goodman, O.B. et al. beta-arrestin acts as a clathrin adaptor in endocytosis of the beta(2)-adrenergic receptor. Nature 383, 447–450 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Granzin, J. et al. X-ray crystal structure of arrestin from bovine rod outer segments. Nature 391, 918–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Han, M., Gurevich, V.V., Vishnivetskiy, S.A., Sigler, P.B. & Schubert, C. Crystal structure of beta-arrestin at 1.9 angstrom: Possible mechanism of receptor binding and membrane translocation. Structure 9, 869–880 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Milano, S.K., Pace, H.C., Kim, Y.M., Brenner, C. & Benovic, J.L. Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry 41, 3321–3328 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Vishnivetskiy, S.A., Hirsch, J.A., Velez, M.G., Gurevich, Y.V. & Gurevich, V.V. Transition of arrestin into the active receptor-binding state requires an extended interdomain hinge. J. Biol. Chem. 277, 43961–43967 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Xiao, K.H., Shenoy, S.K., Nobles, K. & Lefkowitz, R.J. Activation-dependent conformational changes in beta-arrestin 2. J. Biol. Chem. 279, 55744–55753 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Vishnivetskiy, S.A., Hosey, M.M., Benovic, J.L. & Gurevich, V.V. Mapping the arrestin-receptor interface—structural elements responsible for receptor specificity of arrestin proteins. J. Biol. Chem. 279, 1262–1268 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Miller, G.J., Mattera, R., Bonifacino, J.S. & Hurley, J.H. Recognition of accessory protein motifs by the gamma-adaptin ear domain of GGA3. Nat. Struct. Biol. 10, 599–606 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Collins, B.M., Praefcke, G.J.K., Robinson, M.S. & Owen, D.J. Structural basis for binding of accessory proteins by the appendage domain of GGAs. Nat. Struct. Biol. 10, 607–613 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  46. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  48. Bonifacino, J.S. & Dell'Angelica, E.C. Protein labeling and immunoprecipitation. in Current Protocols in Cell Biology (eds. Bonifacino, J.S., Dasso, M., Harford, J.B., Lippincott-Schwartz, J. & Yamada, K.M.) 7.0.0–7.2.10 (John Wiley and Sons, New York, 1998).

    Google Scholar 

  49. Mattera, R., Arighi, C.N., Lodge, R., Zerial, M. & Bonifacino, J.S. Divalent interaction of the GGAs with the Rabaptin-5-Rabex-5 complex. EMBO J. 22, 78–88 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bonangelino, C.J., Chavez, E.M. & Bonifacino, J.S. Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. Mol. Biol. Cell 13, 2486–2501 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Beach and X. Zhu for technical assistance, W. Smith for liposome binding studies, H. Watson and C. Bonangelino for advice on CPY-sorting assays, C. Haft for reagents and comments on the manuscript and D. Hurt, G. Miller and the staff of beamline 22-ID, APS, Argonne National Laboratory for assistance with X-ray data collection. This research was supported by the US National Institutes of Health through the intramural programs of the National Institute of Diabetes and Digestive and Kidney Diseases (to J.H.H.) and the National Institute of Child Health and Human Development (to J.S.B.). Use of the APS was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under contract no.W-31-109-Eng-38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H Hurley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Electron density (PDF 2327 kb)

Supplementary Fig. 2

Crystal packing (PDF 4160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, H., Rojas, R., Bonifacino, J. et al. The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain. Nat Struct Mol Biol 13, 540–548 (2006). https://doi.org/10.1038/nsmb1103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing