Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diverse polyubiquitin interaction properties of ubiquitin-associated domains

Abstract

The ubiquitin-associated (UBA) domain occurs frequently in proteins involved in ubiquitin-dependent signaling pathways. Although polyubiquitin chain binding is considered to be a defining feature of the UBA domain family, the generality of this property has not been established. Here we have surveyed the polyubiquitin interaction properties of 30 UBA domains, including 16 of 17 occurrences in budding yeast. The UBA domains sort into four classes that include linkage-selective polyubiquitin binders and domains that bind different chains (and monoubiquitin) in a nondiscriminatory manner; one notable class (30%) did not bind any ubiquitin ligand surveyed. The properties of a given UBA domain are conserved from yeast to mammals. Their functional relevance is further suggested by the ability of an ectopic UBA domain to alter the specificity of a deubiquitylating enzyme in a predictable manner. Conversely, non-UBA sequences can modulate the interaction properties of a UBA domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diverse polyubiquitin interaction preferences of mammalian UBA domains.
Figure 2: Conservation of UBA domain interaction properties in budding yeast.
Figure 3: Robust binding of monoubiquitin and polyubiquitin chains to UQ1-UBA.
Figure 4: NMR analysis of UBA-monoubiquitin interactions.
Figure 5: Interaction properties of UBA-containing proteins.

Similar content being viewed by others

References

  1. Pickart, C.M. & Fushman, D. Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. 8, 610–616 (2004).

    Article  CAS  Google Scholar 

  2. Hicke, L., Schubert, H.L. & Hill, C.P. Ubiquitin-binding domains. Nat. Rev. Mol. Cell Biol. 6, in the press (2005).

  3. Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921–926 (2003).

    Article  CAS  Google Scholar 

  4. Buchberger, A. From UBA to UBX: new words in the ubiquitin vocabulary. Trends Cell Biol. 12, 216–221 (2002).

    Article  CAS  Google Scholar 

  5. Swanson, K.A., Kang, R.S., Stamenova, S.D., Hicke, L. & Radhakrishnan, I. Solution structure of Vps27 UIM–ubiquitin complex important for endosomal sorting and receptor downregulation. EMBO J. 22, 4597–4606 (2003).

    Article  CAS  Google Scholar 

  6. Mueller, T.D. & Feigon, J. Structural determinants for the binding of ubiquitin-like domains to the proteasome. EMBO J. 22, 4634–4645 (2003).

    Article  CAS  Google Scholar 

  7. Kang, R.S. et al. Solution structure of a CUE–monoubiquitin complex reveals a conserved mode of ubiquitin binding. Cell 113, 621–630 (2003).

    Article  CAS  Google Scholar 

  8. Prag, G. et al. Mechanism of ubiquitin recognition by the CUE domain of Vps9p. Cell 113, 609–620 (2003).

    Article  CAS  Google Scholar 

  9. Mueller, T.D., Kamionka, M. & Feigon, J. Specificity of the interaction between ubiquitin-associated domains and ubiqtuitin. J. Biol. Chem. 279, 11926–11936 (2004).

    Article  CAS  Google Scholar 

  10. Dieckmann, T. et al. Structure of a human DNA repair protein UBA domain that interacts with HIV-1 Vpr. Nat. Struct. Biol. 5, 1042–1047 (1998).

    Article  CAS  Google Scholar 

  11. Hofmann, K. & Bucher, P. The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem. Sci. 21, 172–173 (1996).

    Article  CAS  Google Scholar 

  12. Kleijnen, M.F. et al. The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol. Cell 6, 409–419 (2000).

    Article  CAS  Google Scholar 

  13. Meyer, H.H., Shorter, J.G., Seemann, J., Pappin, D. & Warren, G. A complex of mammalian Ufd1 and Nlp4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J. 19, 2181–2192 (2000).

    Article  CAS  Google Scholar 

  14. Wilkinson, C.R.M. et al. Proteins containing the UBA domain are able to bind multi-ubiquitin chains. Nat. Cell Biol. 3, 939–943 (2001).

    Article  CAS  Google Scholar 

  15. Chen, L., Shinde, U., Ortolan, T.G. & Madura, K. Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly. EMBO Rep. 2, 933–938 (2001).

    Article  CAS  Google Scholar 

  16. Funakoshi, M., Sasaki, T., Nishimoto, T. & Kobayashi, H. Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome. Proc. Natl. Acad. Sci. USA 99, 745–750 (2002).

    Article  CAS  Google Scholar 

  17. Ciani, B., Layfield, R., Cavey, J.R., Sheppard, P.W. & Searle, M.S. Structure of the UBA domain of p62 (SQSTM1) and implications for mutations which cause Paget's disease of bone. J. Biol. Chem. 278, 37409–37412 (2003).

    Article  CAS  Google Scholar 

  18. Davies, G.C. et al. Cbl-b interacts with ubiquitinated proteins; differential functions of the UBA domains of c-Cbl and Cbl-b. Oncogene 23, 7104–7115 (2004).

    Article  CAS  Google Scholar 

  19. Schuberth, C., Richly, H., Rumpf, S. & Buchberger, A. Shp1 and Ubx2 are adaptors of Cdc48 involved in ubiquitin-dependent protein degradation. EMBO Rep. 5, 818–824 (2004).

    Article  CAS  Google Scholar 

  20. Hartmann-Petersen, R. et al. The Ubx2 and Ubx3 cofactors direct Cdc48 activity to proteolytic and nonproteolytic ubiquitin-dependent processes. Curr. Biol. 14, 824–828 (2004).

    Article  CAS  Google Scholar 

  21. Lambertson, D., Chen, L. & Madura, K. Pleiotropic defects caused by loss of the proteasome-interacting factors Rad23 and Rpn10 of Saccharomyces cerevisiae. Genetics 153, 69–79 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Verma, R., Oania, R., Graumann, J. & Deshaies, R.J. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118, 99–110 (2004).

    Article  CAS  Google Scholar 

  23. Medicherla, B., Kostova, Z., Schaefer, A. & Wolf, D.H. A genomic screen identifies Dsk2p and Rad23p as essential components of ER-associated degradation. EMBO Rep. 5, 692–697 (2004).

    Article  CAS  Google Scholar 

  24. Richly, H. et al. A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120, 73–84 (2005).

    Article  CAS  Google Scholar 

  25. Raasi, S. & Pickart, C.M. Rad23 ubiquitin-associated domains (UBA) inhibit 26S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J. Biol. Chem. 278, 8951–8959 (2003).

    Article  CAS  Google Scholar 

  26. Raasi, S., Orlov, I., Fleming, K.G. & Pickart, C.M. Binding of polyubiquitin chains to ubiquitin-associated (UBA) domains of HHR23A. J. Mol. Biol. 341, 1367–1379 (2004).

    Article  CAS  Google Scholar 

  27. Seibenhener, M.L. et al. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell. Biol. 24, 8055–8068 (2004).

    Article  CAS  Google Scholar 

  28. Hofmann, K. & Falquet, L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem. Sci. 26, 347–350 (2001).

    Article  CAS  Google Scholar 

  29. Chim, N. et al. Solution structure of the ubiquitin-binding domain in Swa2p from Saccharomyces cerevisiae. Proteins 54, 784–793 (2004).

    Article  CAS  Google Scholar 

  30. Varadan, R., Walker, O., Pickart, C.M. & Fushman, D. Structural properties of polyubiquitin chains in solution. J. Mol. Biol. 324, 637–647 (2002).

    Article  CAS  Google Scholar 

  31. Tenno, T. et al. Structural basis for distinct roles of Lys63- and Lys48-linked polyubiquitin chains. Genes Cells 9, 865–875 (2004).

    Article  CAS  Google Scholar 

  32. Varadan, R. et al. Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling. J. Biol. Chem. 279, 7055–7063 (2004).

    Article  CAS  Google Scholar 

  33. Wang, B. et al. Structure and ubiquitin interactions of the conserved zinc finger domain of Npl4. J. Biol. Chem. 278, 20225–20234 (2003).

    Article  CAS  Google Scholar 

  34. Ohno, A. et al. Structure of the UBA domain of Dsk2p in complex with ubiquitin molecular determinants for ubiquitin recognition. Structure 13, 521–532 (2005).

    Article  CAS  Google Scholar 

  35. Varadan, R., Assfalg, M., Raasi, S., Pickart, C. & Fushman, D. Structural determinants for selective recognition of a Lys48-linked polyubiquitin chain by a UBA domain. Mol. Cell 18, 687–698 (2005).

    Article  CAS  Google Scholar 

  36. Walters, K.J., Lech, P.J., Goh, A.M., Wang, Q. & Howley, P.M. DNA-repair protein hHR23a alters its protein structure upon binding proteasomal subunit S5a. Proc. Natl. Acad. Sci. USA 100, 12694–12699 (2003).

    Article  CAS  Google Scholar 

  37. Wilkinson, K.D. et al. Metabolism of the polyubiquitin degradation signal: structure, mechanism and role of isopeptidase T. Biochemistry 34, 14535–14546 (1995).

    Article  CAS  Google Scholar 

  38. Amerik, A.Y., Swaminathan, S., Krantz, B.A., Wilkinson, K.D. & Hochstrasser, M. In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome. EMBO J. 16, 4826–4838 (1997).

    Article  CAS  Google Scholar 

  39. Gabriel, J.-M. et al. Zinc is required for the catalytic activity of the human deubiquitinating isopeptidase T. Biochemistry 41, 13755–13766 (2002).

    Article  CAS  Google Scholar 

  40. Rao, H. & Sastry, A. Recognition of specific ubiquitin conjugates is important for the proteolytic functions of the UBA domain proteins Dsk2 and Rad23. J. Biol. Chem. 277, 11691–11695 (2002).

    Article  CAS  Google Scholar 

  41. Kim, I., Mi, K. & Rao, H. Multiple interactions of Rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol. Biol. Cell 15, 3357–3365 (2004).

    Article  CAS  Google Scholar 

  42. Johnson, E.S., Ma, P.C., Ota, I.M. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270, 17442–17456 (1995).

    Article  CAS  Google Scholar 

  43. Saeki, Y., Tayama, T., Toh-e, A. & Yokosawa, H. Definitive evidence for Ufd2-catalyzed elongation of the ubiquitin chain through Lys48 linkage. Biochem. Biophys. Res. Commun. 320, 840–845 (2004).

    Article  CAS  Google Scholar 

  44. Galan, J.M. & Haguenauer-Tsapis, R. Ubiquitin lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J. 16, 5847–5854 (1997).

    Article  CAS  Google Scholar 

  45. Kostova, Z. & Wolf, D.H. For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J. 22, 2309–2317 (2003).

    Article  CAS  Google Scholar 

  46. Chen, Z. & Pickart, C.M. A 25-kilodalton ubiquitin carrier protein (E2) catalyzes multi-ubiquitin chain synthesis via lysine-48 of ubiquitin. J. Biol. Chem. 265, 21835–21842 (1990).

    CAS  PubMed  Google Scholar 

  47. Pichler, A. et al. SUMO modification of the ubiquitin-conjugating enzyme E2–25K. Nat. Struct. Mol. Biol. 12, 264–269 (2005).

    Article  CAS  Google Scholar 

  48. Fleming, A. & Osley, M.A. Silence of the rings. Cell 119, 449–451 (2004).

    Article  CAS  Google Scholar 

  49. Tanaka, T., Kawashima, H., Yeh, E.T. & Kamitani, T. Regulation of the NEDD8 conjugation system by a splicing variant, NUB1L. J. Biol. Chem. 278, 32905–32913 (2003).

    Article  CAS  Google Scholar 

  50. Yuan, X. et al. Structure, dynamics and interactions of p47, a major adaptor of the AAA ATPase, p97. EMBO J. 23, 1463–1473 (2004).

    Article  CAS  Google Scholar 

  51. Cavey, J.R. et al. Loss of ubiquitin-binding associated with Paget's disease of bone p62 (SQSTM1) mutations. J. Bone Miner. Res. 20, 619–624 (2005).

    Article  CAS  Google Scholar 

  52. Russell, N.S. & Wilkinson, K.D. Identification of a novel 29-linked polyubiquitin binding protein, Ufd3, using polyubiquitin chain analogues. Biochemistry 43, 4844–4854 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Hofmann for communicating the alignment shown in Supplementary Figure 1 and for helpful discussions. We are grateful to the many colleagues who provided reagents for these studies, and to R. Cohen for comments on the manuscript. This work was supported by US National Institutes of Health (NIH) grants to C.M.P. (GM60372 and U54 RR020839) and D.F. (GM65334). The Biacore 3000 was purchased with funds from the NIH (S10 RR019046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecile M Pickart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

UBA domains surveyed for polyubiquitin chain-binding properties. (PDF 54 kb)

Supplementary Fig. 2

Mono-ubiquitin binding to selected UBA domains. (PDF 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raasi, S., Varadan, R., Fushman, D. et al. Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nat Struct Mol Biol 12, 708–714 (2005). https://doi.org/10.1038/nsmb962

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb962

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing