Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Quantitative comparison of expression with adeno-associated virus (AAV-2) brain-specific gene cassettes

Abstract

This study compared a range of mammalian CNS expression cassettes in recombinant adeno-associated virus (AAV-2) vectors using strong endogenous promoter sequences, with or without a strong post-regulatory element and polyadenylation signal. Changes in these elements led to transgene expression varying by over three orders of magnitude. In experiments conducted in primary cell culture and in >100 stereotactically injected rats, we observed highly efficient and stable (>15 months) gene expression in neurons and limited expression in glia; the highest expression occurred with endogenous, nonviral promoters such as neuron-specific enolase and β-actin. The packaging size of AAV-2 was maximized at 5.7 kb without impairing gene expression, as judged by direct comparison with a number of smaller AAV-2 constructs. The genomic insert size and titer were confirmed by Southern blot and quantitative PCR, and infectivity was tested by particle titer using ELISA with a conformation-dependent epitope that requires the full intact capsid. A packaging and purification protocol we describe allows for high-titer, high-capacity AAV-2 vectors that can transduce over 2 × 105 neurons in vivo per microliter of vector, using the strongest expression cassette.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Douglas JT et al. A system for the propagation of adenoviral vectors with genetically modified receptor specificities Nat Biotechnol 1999 17: 470–475

    Article  CAS  PubMed  Google Scholar 

  2. Romanczuk H et al. Modification of an adenoviral vector with biologically selected peptides: a novel strategy for gene delivery to cells of choice Hum Gene Ther 1999 10: 2615–2626

    Article  CAS  PubMed  Google Scholar 

  3. Girod A et al. Genetic capsid modifications allow efficent re-targeting of AAV-2 Nat Med 1999 9: 1052–1056

    Article  Google Scholar 

  4. Davidson B et al. Recombinant adeno-associated virus type 2, 4 and 5 vectors: transduction of variant cell types and regions in the mammalian cental nervous system Proc Natl Acad Sci USA 2000 97: 3428–3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaplitt MG et al. Long-term gene expression and phenotypic correction using AAV vectors in the mammalian brain Nat Genet 1994 8: 148–154

    Article  CAS  PubMed  Google Scholar 

  6. Du B, Wu P, Boldt-Houle DM, Terwilliger EF . Efficient transduction of human neurons with an AAV vector Gene Therapy 1996 3: 254–261

    CAS  PubMed  Google Scholar 

  7. McCown TJ et al. Differential and persistent expression patterns of CNS gene transfer by an AAV vector Brain Res 1996 713: 99–107

    Article  CAS  PubMed  Google Scholar 

  8. During MJ et al. Peroral gene therapy of lactose intolerance using an AAV vector Nat Med 1998 4: 1131–1135

    Article  CAS  PubMed  Google Scholar 

  9. During MJ et al. In vivo expression of therapeutic human genes for dopamine production in the caudates of MPTP-treated monkeys using an AAV vector Gene Therapy 1998 5: 820–827

    Article  CAS  PubMed  Google Scholar 

  10. Chamberlin NL, Du B, Lacalle SD, Saper CB . Recombinant AAV vector: use for transgene expression and anterograde tract tracing in the CNS Brain Res 1998 793: 169–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Andersen JK, Garber DA, Meaney CA, Breakefield XO . Gene transfer into mammalian central nervous system using herpes simplex virus vectors: extended expression of bacterial lacZ in neurons using the neuron-specific enolase promoter Hum Gene Ther 1992 3: 487–499

    Article  CAS  PubMed  Google Scholar 

  12. Andersen JK, Frim DM, Isacson O, Breakefield XO . Herpesvirus-mediated gene delivery into the brain: specificity and efficiency of the neuron-specific enolase promoter Cell Mol Neurobiol 1993 13: 503–515

    Article  CAS  PubMed  Google Scholar 

  13. Doll RF et al. Comparison of promoter strengths on gene delivery into mammalian brain cells using AAV vectors Gene Therapy 1996 3: 437–447

    CAS  PubMed  Google Scholar 

  14. Peel AL, Zolotukhin S, Schrimsher GW, Muzyczka N . Efficient transduction of green fluorescent protein in spinal cord neurons using AAV vectors containing cell type-specific promoter Gene Ther 1997 4: 16–24

    Article  CAS  PubMed  Google Scholar 

  15. Klein RL et al. Neuron-specific transduction in the rat septohippocampal or nigrostriatal pathway by recombinant AAV vectors Exp Neurol 1998 150: 183–194

    Article  CAS  PubMed  Google Scholar 

  16. Chen H, McCarty DM, Bruce AT, Suzuki K . Gene transfer and expression in oligodendrocytes under the control of myelin basic protein transcriptional control region mediated by AAV Gene Therapy 1998 5: 50–58

    Article  PubMed  Google Scholar 

  17. Morelli AE et al. Neuronal and glial cell type-specific promoters within adenovirus recombinants restrict the expression of the apoptosis-inducing molecule Fas ligand to predetermined brain cell types, and abolish peripheral liver toxicity J Gen Virol 1999 80: 571–583

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Yu L, Geller AI . Diverse stabilities of expression in the rat brain from different cellular promoters in a helper-virus-free herpes simplex virus type 1 vector system Hum Gene Ther 1999 10: 1761–1771

    Google Scholar 

  19. Hannas-Djebbara Z et al. Transgene expression of plasmid DNAs directed by viral or neural promoters in the rat brain Mol Brain Res 1997 46: 91–99

    Article  CAS  PubMed  Google Scholar 

  20. Podsakoff G, Wong KK, Chatterjee S . Efficient gene transfer into non-dividing cells by AAV-based vectors J Virol 1994 68: 5656–5666

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Xiao X, Li J, McCown TJ, Samulski RJ . Gene transfer by AAV into the central nervous system Exp Neurol 1997 144: 113–124

    Article  CAS  PubMed  Google Scholar 

  22. Wu P, Phillips MI, Bui J, Terwilliger EF . AAV vector mediated transgene integration into neurons and other nondividing cell targets J Virol 1998 72: 5919–5926

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lo WD et al. AAV-mediated gene transfer to the brain: duration and modulation of expression Hum Gene Ther 1999 20: 201–213

    Article  Google Scholar 

  24. Mizukami H, Young NS, Brown KE . AAV-2 binds to a 150kD cell membrane glycoprotein Virology 1996 217: 124–130

    Article  CAS  PubMed  Google Scholar 

  25. Duan D et al. Polarity influences the efficiency of recombinant AAV infection in differentiated airway epithelia Hum Gene Ther 1998 9: 2761–2776

    Article  CAS  PubMed  Google Scholar 

  26. Summerford C, Samulski RJ . Membrane-associated heparan sulfate proteoglycan is a receptor for AAV-2 virions J Virol 1998 72: 1438–1445

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ruffing M, Heid H, Kleinschmidt JA . Mutations in the carboxy terminus of AAV capsid proteins affect viral infectivity: lack of an RGD integrin-binding motif J Gen Virol 1994 75: 3385–3392

    Article  CAS  PubMed  Google Scholar 

  28. Summerford C, Barlett JS, Samulski RJ . aVb5 integrin: a co-receptor for AAV-2 infection Nat Med 1999 5: 78–81

    Article  CAS  PubMed  Google Scholar 

  29. Qing K et al. Human fibroblast growth factor receptor is a co-receptor for infection by AAV-2 Nat Med 1999 5: 71–77

    Article  CAS  PubMed  Google Scholar 

  30. Bartlett JS, Samulski RJ, McCown TJ . Selective and rapid uptake of AAV-2 in brain Hum Gene Ther 1998 9: 1181–1186

    Article  CAS  PubMed  Google Scholar 

  31. Linden RM, Woo SLC . AAVant-garde gene therapy Nat Med 1999 5: 21–22

    Article  CAS  PubMed  Google Scholar 

  32. Dong JY, Fan PD, Frizzell RA . Quantitative analysis of the packaging capacity of recombinant AAV Hum Gene Ther 1996 7: 2101–2112

    Article  CAS  PubMed  Google Scholar 

  33. Hermonat PL, Quirk JG, Bishop BM, Han L . The packaging capacity of AAV and the potential for wild-type-plus AAV gene therapy vectors FEBS Lett 1997 407: 78–84

    Article  CAS  PubMed  Google Scholar 

  34. Wang D et al. Efficient CFTR expression from AAV vectors packaged with promoters – the 2nd generation Gene Therapy 1999 6: 667–675

    Article  CAS  PubMed  Google Scholar 

  35. Huang ZM, Yen TS . Role of the hepatitis B virus posttranscritional regulatory element in export of intronless transcripts Mol Cell Biol 1995 15: 3864–3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Donello J, Loeb JE, Hope TJ . Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element J Virol 1998 72: 5085–5092

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pfarr DS et al. Differential effects of polyadenylation regions on gene expression in mammalian cells DNA 1986 5: 115–122

    Article  CAS  PubMed  Google Scholar 

  38. Yew NS et al. Optimization of plasmid vectors for high-level expression in lung epithelial cells Hum Gene Ther 1997 8: 575–584

    Article  CAS  PubMed  Google Scholar 

  39. Blomer U et al. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector J Virol 1997 71: 6641–6649

    CAS  PubMed  PubMed Central  Google Scholar 

  40. McLachlan EM, Janig W . The cell bodies of origin of sympathetic and sensory axons in some skin and muscle nerves of the cat hindlimb J Comp Neurol 1983 214: 115–130

    Article  CAS  PubMed  Google Scholar 

  41. Zolotukhin S et al. Recombinant AAV virus purification using novel methods improves infectious titer and yield Gene Therapy 1999 6: 973–985

    Article  CAS  PubMed  Google Scholar 

  42. Qiu J, Mizukami H, Brown KE . AAV-2 co-receptors? Nat Med 1999 5: 467–468

    Article  CAS  PubMed  Google Scholar 

  43. Nurcombe V et al. Developmental regulation of neural response to FGF-1 and FGF-2 by heparan sulfate proteoglycan Science 1993 260: 103–106

    Article  CAS  PubMed  Google Scholar 

  44. Pinkstaff JK et al. Integrin subunit gene expression is regionally differentiated in adult brain J Neurosci 1999 19: 1541–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bansal R et al. Development and FGF-2-mediated regulation of syndecans and glypican in oligodendrocytes Mol Cell Neurosci 1997 7: 276–288

    Article  Google Scholar 

  46. Takami K et al. FGF-1 expression in the cortex and hippocampus in Alzheimer's Disease Brain Res 1998 802: 89–97

    Article  CAS  PubMed  Google Scholar 

  47. Tawil NJ et al. Expression and distribution of functional integrins in rat CNS glia J Neurosci Res 1994 39: 436–447

    Article  CAS  PubMed  Google Scholar 

  48. Duan D et al. Dynamin is required for recombinant AAV-2 infection J Virol 1999 73: 10371–10376

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Qiu J, Brown KE . A 110kDa nuclear shuttle protein, nucleolin, specifically binds to AAV-2 capsid Virology 1999 257: 373–382

    Article  CAS  PubMed  Google Scholar 

  50. Qing K et al. AAV-2-mediated gene transfer: correlation of tyrosine phosphorylation of the cellular single-stranded D sequence-binding protein with transgene expression in human cells in vitro and murine tissues in vivo J Virol 1998 72: 1593–1599

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Flotte TR et al. Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an AAV vector Proc Natl Acad Sci USA 1993 90: 10613–10617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Twyman RM, Jones EA . Sequences in the proximal 5′ flanking region of the rat neuron-specific enolase (NSE) gene are sufficient for cell type-specific reporter gene expression J Mol Neurosci 1997 8: 63–73

    Article  CAS  PubMed  Google Scholar 

  53. Forss-Petter S et al. Transgenic mice expressing beta-galactosidase in mature neurons under neuron-specific enolase promoter control Neuron 1990 5: 187–197

    Article  CAS  PubMed  Google Scholar 

  54. Leone P et al. Global CNS gene transfer for a childhood neurogenetic enzyme deficiency: Canavan disease Curr Opin Mol Ther 1999 1: 487–492

    CAS  PubMed  Google Scholar 

  55. Lachmann RH, Efstathiou S . Use of herpes simplex virus type 1 for transgene expression within the nervous system Clin Sci (Colch) 1999 96: 533–541

    Article  CAS  Google Scholar 

  56. La Gamma EF et al. Dopaminergic regulation of a transfected preproenkephalin promoter in primary rat astrocytes in vitro and in vivo Exp Neurol 1994 130: 304–310

    Article  CAS  PubMed  Google Scholar 

  57. Clark KR et al. Highly purified recombinant AAV vectors are biologically active and free of detectable helper and wild type virus Hum Gene Ther 1999 10: 1031–1039

    Article  CAS  PubMed  Google Scholar 

  58. Wistuba A et al. Subcellular compartmentalization of AAV-2 assembly J Virol 1997 71: 1341–1352

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the following individuals for kindly providing gene constructs and plasmids: the human enkephalin promoter was provided by Dr M Comb; the NF promoters were donated by Dr J-P Julien; the human nAChR promoter was donated by Drs A Bessis and J-P Changeux at Institut Pasteur; and the human EF promoter was donated by Dr A Shibui. We would also like to thank S McPhee for his help with the digital images.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, R., Janson, C., Mastakov, M. et al. Quantitative comparison of expression with adeno-associated virus (AAV-2) brain-specific gene cassettes. Gene Ther 8, 1323–1332 (2001). https://doi.org/10.1038/sj.gt.3301529

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301529

Keywords

This article is cited by

Search

Quick links