Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mini-Review

Programmed cell death regulation: basic mechanisms and therapeutic opportunities

Abstract

The molecular mechanisms responsible for induction or inhibition of apoptosis signal transduction have been intensively investigated during the past few years. Information gained from mechanistic studies and from structural analysis of apoptosis regulatory proteins has provided considerable insight into the pathways that determine whether a cell will live or die. Many of these advances were recently presented at the American Association for Cancer Research Special Conference on ‘Programmed Cell Death Regulation: Basic Mechanisms and Therapeutic Opportunities’. This mini-review will discuss the current state of knowledge regarding apoptosis signaling pathways and the function of apoptosis regulatory proteins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Gottlieb RA, Nordberg J, Skowronski E, Babior BM . Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification Proc Natl Acad Sci USA 1996 93: 654–658

    CAS  Google Scholar 

  2. Matsuyama S, Xu Q, Velours J, Reed JC . The Mitochondrial F0F1-ATPase proton pump is required for function of the proapoptotic protein Bax in yeast and mammalian cells Mol Cell 1998 1: 327–336

    CAS  Google Scholar 

  3. Liu X, Kim CN, Yang J, Jemmerson R, Wang X . Induction of apoptotic program in cell- free extracts: requirement for dATP and cytochrome c Cell 1996 86: 147–157

    CAS  Google Scholar 

  4. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X . Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3 Cell 1997 90: 405–413

    CAS  Google Scholar 

  5. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X . Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade Cell 1997 91: 479–489

    CAS  Google Scholar 

  6. Vander Heiden MG, Chandel NS, Schumacker PT, Thompson CB . Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange Mol Cell 1999 3: 159–167

    CAS  Google Scholar 

  7. Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB . Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria Cell 1997 91: 627–637

    CAS  Google Scholar 

  8. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X . Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors Cell 1998 94: 481–490

    CAS  Google Scholar 

  9. Li H, Zhu H, Xu C-J, Yuan J . Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis Cell 1998 94: 491–501

    CAS  Google Scholar 

  10. Chinnaiyan AM, O'Rourke K, Lane BR, Dixit VM . Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death Science 1997 275: 1122–1126

    CAS  Google Scholar 

  11. Wu D, Wallen HD, Nunez G . Interaction and regulation of subcellular localization of CED-4 by CED-9 Science 1997 275: 1126–1129

    CAS  Google Scholar 

  12. Conradt B, Horvitz HR . The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9 Cell 1998 93: 519–529

    CAS  Google Scholar 

  13. del Peso L, Gonzalez VM, Nunez G . Caenorhabditis elegans EGL-1 disrupts the interaction of CED-9 with CED-4 and promotes CED-3 activation J Biol Chem 1998 273: 33495–33500

    CAS  Google Scholar 

  14. Hengartner MO . Programmed cell death in the nematode C. elegans Rec Prog Hormone Res 1999 54: 213–222

    CAS  Google Scholar 

  15. Rodriguez A, Oliver H, Zou H, Chen P, Wang X, Abrams JM . Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway Nature Cell Biol 1999 1: 272–279

    CAS  Google Scholar 

  16. Ng FW, Nguyen M, Kwan T, Branton PE, Nicholson DW, Cromlish JA, Shore GC . p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum J Cell Biol 1997 139: 327–338

    CAS  Google Scholar 

  17. Deveraux QL, Reed JC . IAP family proteins – suppressors of apoptosis Genes Dev 1999 13: 239–252

    CAS  Google Scholar 

  18. Ambrosini G, Adida C, Altieri D . A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma Nature Med 1997 3: 917–921

    CAS  Google Scholar 

  19. Altieri DC, Marchisio C . Survivin apoptosis: an interloper between cell death and cell proliferation in cancer Lab Invest 1999 79: 1327–1333

    CAS  Google Scholar 

  20. Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, Altieri DC . Cell cycle control of apoptosis and mitotic spindle checkpoint by survivin Nature 1998 396: 580–584

    CAS  Google Scholar 

  21. Liston P, Roy N, Tamai K, Lefebvre C, Baird S, Cherton-Horvat G, Farahani R, McLean M, Ikeda J-E, MacKenzie A, Korneluk RG . Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes Nature 1996 379: 349–353

    CAS  Google Scholar 

  22. Duckett CS, Nava VE, Gedrich RW, Clem RJ, Van Dongen JL, Gilfillan MC, Shiels H, Hardwick JM, Thompson CB . A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors EMBO J 1996 15: 2685–2694

    CAS  Google Scholar 

  23. Deveraux QL, Takahashi R, Salvesen GS, Reed JC . X-linked IAP is a direct inhibitor of cell-death proteases Nature 1997 388: 300–304

    CAS  Google Scholar 

  24. Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula SM, Alnemri ES, Salvesen GS, Reed JC . IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases EMBO J 1998 17: 2215–2223

    CAS  Google Scholar 

  25. Holcik M, Lefebvre C, Yeh C, Chow T, Korneluk RG . A new internal-ribosome- entry-site motif potentiates XIAP-mediated cytoprotection Nature Cell Biol 1999 1: 190–192

    CAS  Google Scholar 

  26. Takahashi R, Deveraux Q, Tamm I, Welsh K, Assa-Munt N, Salvesen GS, Reed JC . A single BIR domain of XIAP sufficient for inhibiting caspases J Biol Chem 1998 273: 7787–7790

    CAS  Google Scholar 

  27. Sun C, Cai M, Gunasekera AH, Meadows RP, Wang H, Chen J, Zhang H, Wu W, Xu N, Ng S-C, Fesik SW . NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP Nature 1999 401: 818–822

    CAS  Google Scholar 

  28. Cohen O, Inbal B, Kissil JL, Raveh T, Berissi H, Spivak-Kroizaman T, Feinstein E, Kimchi A . DAP-kinase participates in TNF-alpha- and Fas-induced apoptosis and its function requires the death domain J Cell Biol 1999 146: 141–148

    CAS  Google Scholar 

  29. Kissil JL, Feinstein E, Cohen O, Jones PA, Tsai YC, Knowles MA, Eydmann ME, Kimchi A . DAP-kinase loss of expression in various carcinoma and B-cell lymphoma cell lines: possible implications for role as tumor suppressor gene Oncogene 1997 15: 403–407

    CAS  Google Scholar 

  30. Lewis J, Oyler GA, Ueno K, Fannjiang YR, Chau BN, Vornov J, Korsmeyer SJ, Zou S, Hardwick JM . Inhibition of virus-induced neuronal apoptosis by Bax Nature Med 1999 5: 832–835

    CAS  Google Scholar 

  31. Cheng EH-Y, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, Hardwick JM . Conversion of Bcl-2 to a Bax-like death effector by caspases Science 1997 278: 1966–1968

    CAS  Google Scholar 

  32. Grandgirard D, Studer E, Monney L, Belser T, Fellay I, Borner C, Michel MR . Alphaviruses induce apoptosis in Bcl-2-overexpressing cells: evidence for a caspase-mediated, proteolytic inactivation of Bcl-2 EMBO J 1998 17: 1268–1278

    CAS  Google Scholar 

  33. Fujita N, Tsuruo T . Involvement of Bcl-2 cleavage in the acceleration of VP-16-induced U937 cell apoptosis Biochem Biophys Res Commun 1998 246: 484–488

    CAS  Google Scholar 

  34. Clem RJ, Cheng EH-Y, Karp CL, Kirsch DG, Ueno K, Takahashi A, Kastan MB, Griffin DE, Earnshaw WC, Veliuona MA, Hardwick JM . Modulation of cell death by Bcl-XL through caspase interaction Proc Natl Acad Sci USA 1998 95: 554–559

    CAS  Google Scholar 

  35. Ashkenazi A, Dixit VM . Death receptors: signaling and modulation Science 1998 281: 1305–1308

    CAS  Google Scholar 

  36. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH . Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo Nature Med 1999 5: 157–163

    CAS  Google Scholar 

  37. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH . Safety and antitumor activity of recombinant soluble Apo2 ligand J Clin Invest 1999 104: 155–162

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, D. Programmed cell death regulation: basic mechanisms and therapeutic opportunities. Leukemia 14, 1340–1344 (2000). https://doi.org/10.1038/sj.leu.2401849

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401849

Keywords

This article is cited by

Search

Quick links