Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ERK MAP kinase signaling in post-mortem brain of suicide subjects: differential regulation of upstream Raf kinases Raf-1 and B-Raf

Abstract

The Raf kinases Raf-1 and B-Raf are upstream activators of the extracellular signal-regulated kinase (ERK)-signaling pathway and therefore participates in many physiological functions in brain, including neuronal survival and synaptic plasticity. Previously, we observed that activation of ERK-1/2, the downstream component of ERK signaling, is significantly reduced in post-mortem brain of suicide victims. The present study was undertaken to further examine whether suicide brain is also associated with abnormalities in upstream molecules in ERK signaling. The study was performed in prefrontal cortex (PFC) and hippocampus obtained from 28 suicide victims and 21 normal controls. mRNA levels of Raf-1, B-Raf, and cyclophilin were measured by quantitative RT-PCR. Protein levels of Raf-1 and B-Raf were determined by Western blot, whereas their catalytic activities were determined by immunoprecipitation and enzymatic assays. It was observed that the catalytic activity of B-Raf was significantly reduced in PFC and hippocampus of suicide subjects. This decrease was associated with a decrease in its protein, but not mRNA, level. On the other hand, catalytic activity, and mRNA and protein levels, of Raf-1 were not altered in post-mortem brain of suicide subjects. The observed changes were not related to confounding variables; however, Raf-1 showed a negative correlation with age. Also, the changes in B-Raf were present in all suicide subjects, irrespective of psychiatric diagnosis. Our results of selective reduction in catalytic activity and expression of B-Raf but not Raf-1 suggest that B-Raf may be playing an important role in altered ERK signaling in brain of suicide subjects, and thus in the pathophysiology of suicide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME . Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995; 270: 1326–1331.

    Article  CAS  PubMed  Google Scholar 

  2. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME . Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 1999; 286: 1358–1362.

    Article  CAS  PubMed  Google Scholar 

  3. Grewal SS, York RD, Stork PJS . Extracellular-signaling-regulated kinase signaling in neurons. Curr Opin Neurobiol 1999; 9: 544–553.

    Article  CAS  PubMed  Google Scholar 

  4. Hetman M, Kanning K, Cavanaugh JE, Xia Z . Neuroprotection by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. J Biol Chem 1999; 274: 22569–22680.

    Article  CAS  PubMed  Google Scholar 

  5. Impey S, Obrietan K, Storm DR . Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron 1999; 23: 11–14.

    Article  CAS  PubMed  Google Scholar 

  6. Sweatt JD . Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 2004; 14: 311–317.

    Article  CAS  PubMed  Google Scholar 

  7. Kerkoff E, Rapp UR . Cell cycle targets of Ras/Raf signaling. Oncogene 1998; 17: 1457–1462.

    Article  Google Scholar 

  8. Leevers SJ, Paterson HF, Marshall CJ . Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 1994; 369: 411–414.

    Article  CAS  PubMed  Google Scholar 

  9. Gomez N, Cohen P . Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases. Nature 1991; 353: 170–173.

    Article  CAS  PubMed  Google Scholar 

  10. Jacobs BL, van Praag H, Gage FH . Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatr 2000; 5: 262–269.

    Article  CAS  Google Scholar 

  11. Duman RS . Pathophysiology of depression: the concept of synaptic plasticity. Eur Psychiatr 2002; 17: 306–310.

    Article  Google Scholar 

  12. Charney DS, Manji HK . Life stress, genes, and depression: multiple pathways lead to increased risk and new opportunities for intervention. Sci STKE 2004; re5, [DOI: 10.1126/stke.225].

  13. Fossati P, Radtchenko A, Boyer P . Neuroplasticity: from MRI to depressive symptoms. Eur Neuropsychopharmacol 2004; 14: S503–S510.

    Article  CAS  PubMed  Google Scholar 

  14. Altschuler DL, Casanova MF, Goldberg TE, Kleinman JE . The hippocampus and parahippocampus in schizophrenia, suicide and control brains. Arch Gen Psychiatr 1990; 47: 1029–1034.

    Article  Google Scholar 

  15. Ongur D, Drevets WC, Price JL . Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA 1998; 95: 13290–13295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rajkowska G . Morphometric methods for studying the prefrontal cortex in suicide victims and psychiatric patients. Ann NY Acad Sci USA 1997; 836: 253–268.

    Article  CAS  Google Scholar 

  17. Rajkowska G . Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatr 2000; 48: 766–777.

    Article  CAS  Google Scholar 

  18. Uno H, Tarara R, Else JG, Suleman MA, Sapolsky RM . Hippocampal damage associated with prolonged and fatal stress in primates. J Neurosci 1999; 9: 1705–1711.

    Article  Google Scholar 

  19. Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatr 1999; 45: 1085–1098.

    Article  CAS  Google Scholar 

  20. Sapolsky RM . The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biol Psychiatr 2000; 48: 755–765.

    Article  CAS  Google Scholar 

  21. Patapoutian A, Reichardt LF . Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 2001; 11: 272–280.

    Article  CAS  PubMed  Google Scholar 

  22. Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM . Decreased serum brain-derived neurotrophin factor levels in major depressed patients. Psychiatr Res 2002; 109: 143–148.

    Article  CAS  Google Scholar 

  23. Smith MA, Makino S, Altemus M, Michelson D, Hong SK, Kvetnansky R et al. Stress and antidepressants differentially regulate neurotrophin 3 mRNA expression in the locus coeruleus. Proc Natl Acad Sci USA 1995; 92: 8788–8792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith MA, Makino S, Kvetnansky R, Post RM . Effects of stress on neurotrophic factor expression in the rat brain. Ann NY Acad Sci 1995; 771: 234–239.

    Article  CAS  PubMed  Google Scholar 

  25. Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN . Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatr 2003; 60: 804–815.

    Article  CAS  PubMed  Google Scholar 

  26. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS . Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002; 22: 3251–3261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Trentani A, Kuipers SD, Ter Horst GJ, Den Boer JA . Selective chronic stress-induced in vivo ERK1/2 hyperphosphorylation in medial prefrontocortical dendrites: implications for stress-related cortical pathology? Eur J Neurosci 2002; 15: 1681–1691.

    Article  CAS  PubMed  Google Scholar 

  28. Einat H, Yuan P, Gould TD, Li JL, Du JH, Zhang L et al. The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. Soc Neurosci 2003; 23: 7311–7316.

    Article  CAS  Google Scholar 

  29. Dwivedi Y, Rizavi HS, Roberts RC, Conley RC, Tamminga CA, Pandey GN . Reduced activation and expression of ERK1/2 MAP kinase in the postmortem brain of depressed suicide subjects. J Neurochem 2001; 77: 916–928.

    Article  CAS  PubMed  Google Scholar 

  30. Stephens RM, Sithanandam G, Copeland TD, Kaplan DR, Rapp UR, Morrison DK . 95-kilodalton B-Raf serine/threonine kinase: identification of the protein and its major autophosphorylation site. Mol Cell Biol 1992; 12: 3733–3742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Daum G, Eisenmanntappe I, Fries HW, Troppmair J, Rapp UR . The ins and outs of Raf kinases. Trends Biochem Sci 1994; 19: 474–480.

    Article  CAS  PubMed  Google Scholar 

  32. Pearson G, Robinson F, Gibson TB, Xu B-E, Karandikar M, Berman K et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22: 153–183.

    CAS  PubMed  Google Scholar 

  33. Storm SM, Cleveland JL, Rapp UR . Expression of Raf family proto-oncogenes in normal mouse tissues. Oncogene 1990; 5: 345–351.

    CAS  PubMed  Google Scholar 

  34. Vossler MR, Yao H, York RD, Pan MG, Rim CS, Stork PJS . cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell 1997; 89: 73–82.

    Article  CAS  PubMed  Google Scholar 

  35. Schaap D, van der Wal J, Howe LR, Marshall CJ, van Blitterswijk WJ . A dominant-negative mutant of raf blocks mitogen-activated protein kinase activation by growth factors and oncogenic p21ras. J Biol Chem 1993; 268: 20232–20236.

    CAS  PubMed  Google Scholar 

  36. Kang UG, Jeon SH, Lee JE, Joo Y-H, Yi JS, Park J-B et al. The activation of B-Raf and Raf-1 after electroconvulsive shock in the rat hippocampus. Neuropharmacology 2000; 39: 703–706.

    Article  CAS  PubMed  Google Scholar 

  37. Harrison PJ, Heath PR, Eastwood SL, Burnet PW, McDonald B, Pearson RC . The relative importance of premortem acidosis and postmortem interval for human brain gene expression studies: selective mRNA vulnerability and comparison with their encoded proteins. Neurosci Lett 1995; 200: 151–154.

    Article  CAS  PubMed  Google Scholar 

  38. Salzman S, Endicott J, Clayton P, Winokur G . Diagnostic Evaluation After Death (DEAD). Rockville, MD: National Institute of Mental Health, Neuroscience Research Branch, 1983.

    Google Scholar 

  39. Spitzer RL, Williams JBW, Gibbon M, First MD . Structural Clinical Interview for DSM-IV (SCID), New York State Psychiatric Institute. New York, NY: Biometrics Research, 1995.

    Google Scholar 

  40. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ . Protein measurement with the folic phenol reagent. J Biol Chem 1951; 193: 266–275.

    Google Scholar 

  41. Dwivedi Y, Conley RR, Roberts RC, Tamminga CA, Pandey GN . Alpha subunits of G proteins in the prefrontal cortex of teenage and adult suicide victims. Neuropsychopharmacology 2002; 27: 499–517.

    CAS  PubMed  Google Scholar 

  42. Barnier JV, Papin C, Eychene A, Lecoq O, Calothy G . The mouse B-raf gene encodes multiple protein isoforms with tissue-specific expression. J Biol Chem 1995; 270: 23381–23389.

    Article  CAS  PubMed  Google Scholar 

  43. Sithanandam G, Kolch W, Duh FM, Rapp UR . Complete coding sequence of a human B-raf cDNA and detection of B-raf protein kinase with isozyme specific antibodies. Oncogene 1990; 5: 1775–1780.

    CAS  PubMed  Google Scholar 

  44. Morice C, Nothias F, Konig S, Vernier P, Baccarini M, Vincent JD et al. Raf-1 and B-Raf proteins have similar regional distributions but differential subcellular localization in adult rat brain. Eur J Neurosci 1999; 11: 1995–2006.

    Article  CAS  PubMed  Google Scholar 

  45. Marais R, Light Y, Paterson HF, Marshall CJ . Ras-GTP translocates Raf-1 to the plasma membrane where it becomes phosphorylated on tyrosine residues 340 and 341 by membrane bound tyrosine kinases. EMBO J 1995; 14: 3136–3145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marais R, Light Y, Paterson HF, Mason CS, Marshall CJ . Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic Ras and tyrosine kinases. J Biol Chem 1997; 14: 4378–4383.

    Article  Google Scholar 

  47. Moodie SA, Paris M, Kolch W, Wolfman A . Association of MEK1 with p21ras. GMPPNP is dependent on B-Raf. Mol Cell Biol 1994; 14: 7153–7162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Catling AD, Reuter CW, Cox ME, Parsons SJ, Weber MJ . Partial purification of a mitogen-activated protein kinase kinase activator from bovine brain. Identification as B-Raf or a B-Raf-associated activity. J Biol Chem 1994; 269: 30014–30021.

    CAS  PubMed  Google Scholar 

  49. Jaiswal RK, Moodie SA, Wolfman A, Landreth G . The mitogen-activated protein kinase cascade is activated by B-Raf in response to nerve growth factor through interaction with p21ras. Mol Cell Biol 1994; 14: 6944–6953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. York RD, Yao H, Dillon T, Ellig CL, Eckert SP, McCleskey EW et al. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 1998; 392: 622–626.

    Article  CAS  PubMed  Google Scholar 

  51. Kao S, Jaiswal RK, Kolch W, Landreth GE . Differential activation of the MAPK cascade by epidermal growth factor and nerve growth factor in PC12 cells. J Biol Chem 2001; 276: 18169–18177.

    Article  CAS  PubMed  Google Scholar 

  52. Kolch W . To be or not to be: a question of B-Raf? Trends Neurosci 2001; 24: 498–500.

    Article  CAS  PubMed  Google Scholar 

  53. Marshall CJ . Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 1995; 80: 179–185.

    Article  CAS  PubMed  Google Scholar 

  54. Yamamori B, Kuroda S, Shimizu K, Fukui K, Ohtsuka T, Takai Y et al. Purification of a Ras-dependent mitogen-activated protein kinase from bovine brain cytosol and its identification as a complex of B-Raf and 14-3-3 proteins. J Biol Chem 1995; 270: 11723–11726.

    Article  CAS  PubMed  Google Scholar 

  55. Zwartkruis FJ, Wolthuis RM, Nabben NM, Franke B, Bos JL . Extracellular signal-regulated activation of Rap1 fails to interfere in Ras effector signaling. EMBO J 1998; 17: 5905–5912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dugan LL, Kim JS, Zhang Y, Bart RD, Sun Y, Holtzman DM et al. Differential effects of cAMP in neurons and astrocytes. Role of B-raf. J Biol Chem 1999; 274: 25842–25848.

    Article  CAS  PubMed  Google Scholar 

  57. Dwivedi Y, Rizavi HS, Mondal A, Payappagoudar GV, Conley RR, Pandey GN . Altered expression of Rap1 in postmortem brain of suicide victims. Neuropsycopharmacology 2004; 29(Suppl): 179.

    Google Scholar 

  58. Ohtsuka T, Shimizu K, Yamamori B, Kuroda S, Takai Y . Activation of brain B-Raf protein kinase by Rap1B small GTP-binding protein. J Biol Chem 1996; 271: 1258–1261.

    Article  CAS  PubMed  Google Scholar 

  59. Okada T, Masuda T, Shinkai M, Kariya K, Kataoka T . Post-transcriptional modifications of H-Ras is required for activation of, but not for association with B-Raf. J Biol Chem 1996; 271: 4671–4678.

    Article  CAS  PubMed  Google Scholar 

  60. Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M et al. A family of cAMP-binding proteins that directly activate Rap1. Science 1998; 282: 2275–2279.

    Article  CAS  PubMed  Google Scholar 

  61. de Rooij J, Zwartkruis FJT, Verheijen MHG, Cool RH, Nijman SMB, Wittinghofer A et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 1998; 396: 474–477.

    Article  CAS  PubMed  Google Scholar 

  62. Qiu W, Zhuang S, von Lintig FC, Boss GR, Pilz RB . Cell type-specific regulation of B-Raf kinase by cAMP and 14-3-3 proteins. J Biol Chem 2000; 275: 31921–31929.

    Article  CAS  PubMed  Google Scholar 

  63. Schmitt JM, Stork PJS . β2-adrenergic receptor activates extracellular regulated kinases (ERKs) via the small G protein Rap1 and the serine/threonine kinase B-Raf. J Biol Chem 2002; 275: 25342–25350.

    Article  Google Scholar 

  64. Zanassi P, Paolillo M, Feliciello A, Avvedimento EV, Galloand V, Schinelli S . cAMP-dependent protein kinase induces cAMP-response element-binding protein phosphorylation via an intracellular calcium release/ERK-dependent pathway in striatal neurons. J Biol Chem 2001; 276: 11487–11495.

    Article  CAS  PubMed  Google Scholar 

  65. Dwivedi Y, Rizavi HS, Shukla PK, Lyons J, Faludi G, Palkovits M et al. Protein kinase A in postmortem brain of depressed suicide victims: altered expression of specific regulatory and catalytic subunits. Biol Psychiatr 2004; 55: 234–243.

    Article  CAS  Google Scholar 

  66. Manier DH, Shelton RC, Ellis TC, Peterson CS, Eiring A, Sulser F . Human fibroblasts as a relevant model to study signal transduction in affective disorders. J Affect Disord 2000; 6: 51–58.

    Article  Google Scholar 

  67. Shelton RC, Mainer DH, Peterson CS, Ellis TC, Sulser F . Cyclic AMP-dependent protein kinase in subtypes of major depression and normal volunteers. Int J Neuropsychopharmacol 1999; 2: 187–192.

    Article  CAS  PubMed  Google Scholar 

  68. Shelton RC, Mainer DH, Sulser F . cAMP-dependent protein kinase activity in major depression. Am J Psychiatr 1996; 153: 1037–1042.

    Article  CAS  PubMed  Google Scholar 

  69. Sheline YI, Warry P, Gado MH, Csernansky JC, Vannier MW . Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 1996; 93: 3908–3913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Drevets WC, Gadde KM, Krishman KR . Neuroimaging studies of mood disorders. In: Charney DS, Nestler EJ, Bunney BS (eds.), Neurobiology of Mental Illness. New York: Oxford UP, 1999, pp. 394–418.

    Google Scholar 

  71. Drevets WC, Price JL, Simpson Jr JR, Todd RD, Reich T, Vannier M et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997; 386: 824–827.

    Article  CAS  PubMed  Google Scholar 

  72. Bremner JD, Narayan M, Anderson ER, Stalb LH, Miller HL, Charney DS . Hippocampal volume reduction in major depression. Am J Psychiatr 2000; 48: 971–975.

    Google Scholar 

  73. Benes FM, Kwok EW, Vincent SL, Todtankopf MS . A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatr 1998; 15: 88–97.

    Article  Google Scholar 

  74. Rajkowska G, Halaris A, Selemon LD . Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatr 2001; 49: 741–752.

    Article  CAS  Google Scholar 

  75. Adams JP, Sweatt JD . Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu Rev Pharmacol Toxicol 2002; 42: 135–163.

    Article  CAS  PubMed  Google Scholar 

  76. Feng P, Guan Z, Yang X, Fang J . Impairments of ERK signal transduction in the brain in a rat model of depression induced by neonatal exposure of clomipramine. Brain Res 2003; 991: 195–205.

    Article  CAS  PubMed  Google Scholar 

  77. Mercier G, Lennon AM, Renouf B, Dessouroux A, Ramauge M, Courtin F et al. MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J Mol Neurosci 2004; 24: 207–216.

    Article  CAS  PubMed  Google Scholar 

  78. Wiese S, Pei G, Karch C, Troppmair J, Holtmann B, Rapp UR et al. Specific function of B-Raf in mediating survival of embryonic motoneurons and sensory neurons. Nat Neurosci 2001; 4: 137–142.

    Article  CAS  PubMed  Google Scholar 

  79. Huser M, Luckett J, Chiloeches A, Mercer K, Iwobi M, Giblett S et al. MEK kinase activity is not necessary for Raf-1 function. EMBO J 2001; 8: 1940–1951.

    Article  Google Scholar 

  80. Mikula M, Schreiber M, Husak Z, Kucerova L, Rüth J, Wieser R et al. Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. EMBO J 2001; 8: 1952–1962.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIMH R0168777, a Career Development Award (KO1MH 01836) from the NIMH, and a Young Investigator Award from the American Foundation for Suicide Prevention to Dr Y Dwivedi. We acknowledge with thanks the cooperation of John Smialek, MD, Chief Medical Examiner, and Dennis Chute, MD, Assistant Medical Examiner, in the collection of brain samples, Ms Terri U'Prichard for performing the psychological autopsies, and Boris Lapidus, MD, for the dissections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Dwivedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dwivedi, Y., Rizavi, H., Conley, R. et al. ERK MAP kinase signaling in post-mortem brain of suicide subjects: differential regulation of upstream Raf kinases Raf-1 and B-Raf. Mol Psychiatry 11, 86–98 (2006). https://doi.org/10.1038/sj.mp.4001744

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001744

Keywords

This article is cited by

Search

Quick links