Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Association of Per1 and Npas2 with autistic disorder: support for the clock genes/social timing hypothesis

Abstract

Clock gene anomalies have been suggested as causative factors in autism. We screened eleven clock/clock-related genes in a predominantly high-functioning Autism Genetic Resource Exchange sample of strictly diagnosed autistic disorder progeny and their parents (110 trios) for association of clock gene variants with autistic disorder. We found significant association (P<0.05) for two single-nucleotide polymorphisms in per1 and two in npas2. Analysis of all possible combinations of two-marker haplotypes for each gene showed that in npas2 40 out of the 136 possible two-marker combinations were significant at the P<0.05 level, with the best result between markers rs1811399 and rs2117714, P=0.001. Haplotype analysis within per1 gave a single significant result: a global P=0.027 for the markers rs2253820–rs885747. No two-marker haplotype was significant in any of the other genes, despite the large number of tests performed. Our findings support the hypothesis that these epistatic clock genes may be involved in the etiology of autistic disorder. Problems in sleep, memory and timing are all characteristics of autistic disorder and aspects of sleep, memory and timing are each clock-gene-regulated in other species. We identify how our findings may be relevant to theories of autism that focus on the amygdala, cerebellum, memory and temporal deficits. We outline possible implications of these findings for developmental models of autism involving temporal synchrony/social timing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. APA. Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), 4th edn American Psychiatric Association: Washington, DC, 1994.

  2. Chakrabarti S, Fombonne E . Pervasive developmental disorders in preschool children. JAMA 2001; 285: 3093–3099.

    Article  CAS  PubMed  Google Scholar 

  3. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E et al. Autism as a strongly genetic disorder – evidence from a British twin study. Psychol Med 1995; 25: 63–77.

    Article  CAS  PubMed  Google Scholar 

  4. Santangelo SL, Tsatsanis K . What is known about autism – genes, brain, and behavior. Am J Pharmacogenomics 2005; 5: 71–92.

    Article  CAS  PubMed  Google Scholar 

  5. Pickles A, Bolton P, Macdonald H, Bailey A, Le Couteur A, Sim CH et al. Latent-class analysis of recurrence risks for complex phenotypes with selection and measurement error – a twin and family history study of autism. Am J Hum Genet 1995; 57: 717–726.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fombonne E . The epidemiology of autism: a review. Psychol Med 1999; 29: 769–786.

    Article  CAS  PubMed  Google Scholar 

  7. Palferman S, Matthews N, Turner M, Moore J, Hervas A, Aubin A et al. A genomewide screen for autism: strong evidence for linkage to chromosomes 2q, 7q, and 16p. Am J Hum Genet 2001; 69: 570–581.

    Article  Google Scholar 

  8. Auranen M, Vanhala R, Varilo T, Ayers K, Kempas E, Ylisaukko-oja T et al. A genomewide screen for autism-spectrum disorders: evidence for a major susceptibility locus on chromosome 3q25–27. Am J Hum Genet 2002; 71: 777–790.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alarcon M, Yonan AL, Gilliam TC, Cantor RM, Geschwind DH . Quantitative genome scan and ordered-subsets Analysis of autism endophenotypes support language QTLs. Mol Psychiatry 2005; 10: 747–757.

    Article  CAS  PubMed  Google Scholar 

  10. Buxbaum JD, Silverman JM, Smith CJ, Kilifarski M, Reichert J, Hollander E et al. Evidence for a susceptibility gene for autism on chromosome 2 and for genetic heterogeneity. Am J Hum Genet 2001; 68: 1514–1520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shao YJ, Raiford KL, Wolpert CM, Cope HA, Ravan SA, Ashley-Koch AA et al. Phenotypic homogeneity provides increased support for linkage on chromosome 2 in autistic disorder. Am J Hum Genet 2002; 70: 1058–1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Philippe A, Martinez M, Guilloud-Bataille M, Gillberg C, Rastam M, Sponheim E et al. Genome-wide scan for autism susceptibility genes. Hum Mol Genet 1999; 8: 805–812.

    Article  CAS  PubMed  Google Scholar 

  13. Cook EH, Courchesne RY, Cox NJ, Lord C, Gonen D, Guter SJ et al. Linkage-disequilibrium mapping of autistic disorder, with 15q11–13 markers. Am J Hum Genet 1998; 62: 1077–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Buxbaum JD, Silverman JM, Smith CJ, Greenberg DA, Kilifarski M, Reichert J et al. Association between a GABRB3 polymorphism and autism. Mol Psychiatry 2002; 7: 311–316.

    Article  CAS  PubMed  Google Scholar 

  15. Gharani N, Benayed R, Mancuso V, Brzustowicz LM, Millonig JH . Association of the homeobox transcription factor, ENGRAILED 2, 3, with autism spectrum disorder. Mol Psychiatry 2004; 9: 474–484.

    Article  CAS  PubMed  Google Scholar 

  16. Benayed R, Gharani N, Rossman I, Mancuso V, Lazar G, Kamdar S et al. Support for the homeobox transcription factor gene ENGRAILED 2 as an autism spectrum disorder susceptibility locus. Am J Hum Genet 2005; 77: 851–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cook EH, Courchesne R, Lord C, Cox NJ, Yan S, Lincoln A et al. Evidence of linkage between the serotonin transporter and autistic disorder. Mol Psychiatry 1997; 2: 247–250.

    Article  PubMed  Google Scholar 

  18. Yirmiya N, Pilowsky T, Nemanov L, Arbelle S, Feinsilver T, Fried I et al. Evidence for an association with the serotonin transporter promoter region polymorphism and autism. Am J Med Genet 2001; 105: 381–386.

    Article  CAS  PubMed  Google Scholar 

  19. Tordjman S, Gutknecht L, Carlier M, Spitz E, Antoine C, Slama F et al. Role of the serotonin transporter gene in the behavioral expression of autism. Mol Psychiatry 2001; 6: 434–439.

    Article  CAS  PubMed  Google Scholar 

  20. Kim SJ, Cox N, Courchesne R, Lord C, Corsello C, Akshoomoff N et al. Transmission disequilibrium mapping at the serotonin transporter gene (SLC6A4) region in autistic disorder. Mol Psychiatry 2002; 7: 278–288.

    Article  CAS  PubMed  Google Scholar 

  21. Wimpory D, Nicholas B, Nash S . Social timing, clock genes and autism: a new hypothesis. J Intellect Disabil Res 2002; 46: 352–358.

    Article  CAS  PubMed  Google Scholar 

  22. Newson E . The social development of the young autistic child. Autism – Its Nature, Implications and Consequences. National Autistic Society: London, 1984.

    Google Scholar 

  23. Segawa M . Circadian rhythm in early infantile autism. Shinke Kenya No Shinpo 1985; 29: 140–153.

    Google Scholar 

  24. Richdale AL, Prior MR . The sleep–wake rhythm in children with autism. Eur Child Adoles Psychiatry 1995; 4: 175–186.

    Article  CAS  Google Scholar 

  25. Boucher J . ‘Lost in a sea of time’: time parsing and autism. In: Hoerl C, Cormack T (eds). Time and Memory. Clarendon Press: Oxford, 2001.

    Google Scholar 

  26. Boucher J . Time parsing, normal language acquisition, and language-related developmental disorders. In: Perkins M, Howard S (eds). New Directions in Language Development and Disorders. Kluwer Academic/Plenum Publishers: London, 2000, pp 13–23.

    Chapter  Google Scholar 

  27. Brock J, Brown CC, Boucher J, Rippon G . The temporal binding deficit hypothesis of autism. Dev Psychopathol 2002; 14: 209–224.

    Article  PubMed  Google Scholar 

  28. Welsh JP, Ahn ES, Placantonakis DG . Is autism due to brain desynchronization? Int J Dev Neurosci 2005; 23: 253–263.

    Article  PubMed  Google Scholar 

  29. Courchesne E, Townsend J, Akshoomoff NA, Saitoh O, Yeungcourchesne R, Lincoln AJ et al. Impairment in shifting attention in autistic and cerebellar patients. Behav Neurosci 1994; 108: 848–865.

    Article  CAS  PubMed  Google Scholar 

  30. Wimpory D, Nash S . Musical interaction play therapy. Child Lang Teaching Ther 1999; 15: 17–28.

    Google Scholar 

  31. Happe F, Frith U . The weak coherence account: detail-focused cognitive style in autism spectrum disorders. J Autism Dev Disord 2006; 36: 5–25.

    Article  PubMed  Google Scholar 

  32. Bowler DM, Gardiner JM, Grice SJ . Episodic memory and remembering in adults with Asperger syndrome. J Autism Dev Disord 2000; 30: 295–304.

    Article  CAS  PubMed  Google Scholar 

  33. Millward C, Powell S, Messer D, Jordan R . Recall for self and other in autism: children's memory for events experienced by themselves and their peers. J Autism Dev Disord 2000; 30: 15–28.

    Article  CAS  PubMed  Google Scholar 

  34. Salmond CH, Ashburner J, Connelly A, Friston KJ, Gadian DG, Vargha-Khadem F . The role of the medial temporal lobe in autistic spectrum disorders. Eur J Neurosci 2005; 22: 764–772.

    Article  CAS  PubMed  Google Scholar 

  35. Boucher J, Lewis V . Memory impairments and communication in relatively able autistic children. J Child Psychol Psychiatry Allied Disciplines 1989; 30: 99–122.

    Article  CAS  Google Scholar 

  36. Boucher J, Pons F, Lind S, Williams D . Temporal cognition in children with autistic spectrum disorders: tests of diachronic thinking. J Autism Dev Disord 2006; 1–17 [E-pub ahead of print].

  37. Brown C, Gruber T, Boucher J, Rippon G, Brock J . Gamma abnormalities during perception of illusory figures in autism. Cortex 2005; 41: 364–376.

    Article  PubMed  Google Scholar 

  38. Grice SJ, Spratling MW, Karmiloff-Smith A, Halit H, Csibra G, de Haan M et al. Disordered visual processing and oscillatory brain activity in autism and Williams Syndrome. Neuroreport 2001; 12: 2697–2700.

    Article  CAS  PubMed  Google Scholar 

  39. Szelag E, Kowalska J, Galkowski T, Poppel E . Temporal processing deficits in high-functioning children with autism. Br J Psychol 2004; 95: 269–282.

    Article  PubMed  Google Scholar 

  40. Haist F, Adamo M, Westerfield M, Courchesne E, Townsend J . The functional neuroanatomy of spatial attention in autism spectrum disorder. Dev Neuropsychol 2005; 27: 425–458.

    Article  PubMed  Google Scholar 

  41. Townsend J, Westerfield M, Leaver E, Makeig S, Jung TP, Pierce K et al. Event-related brain response abnormalities in autism: evidence for impaired cerebello-frontal spatial attention networks. Cogn Brain Res 2001; 11: 127–145.

    Article  CAS  Google Scholar 

  42. Zwaigenbaum L, Bryson S, Rogers T, Roberts W, Brian J, Szatmari P . Behavioral manifestations of autism in the first year of life. Int J Dev Neurosci 2005; 23: 143–152.

    Article  PubMed  Google Scholar 

  43. Townsend J, Courchesne E, Covington J, Westerfield M, Harris NS, Lyden P et al. Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. J Neurosci 1999; 19: 5632–5643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Courchesne E, Townsend JP, Akshoomoff NA, Yeung-Courchesne P, Press GA, Murakami JW et al. A new finding: impairment in shifting attention in autistic and cerebellar patients. In: Broman SH, Grafman J (eds). Atypical Cognitive Deficits in Developmental Disorder: implications for Brain Function. Lawrence Erlbaum Associates: Hillsdale, NJ, 1994, pp 101–137.

    Google Scholar 

  45. Sears LL, Finn PR, Steinmetz JE . Abnormal classical eye-blink conditioning in autism. J Autism Dev Disord 1994; 24: 737–751.

    Article  CAS  PubMed  Google Scholar 

  46. Gowen E, Miall RC . Behavioural aspects of cerebellar function in adults with Asperger syndrome. Cerebellum 2005; 4: 279–289.

    Article  PubMed  Google Scholar 

  47. Inui N, Asama K . Timing of bimanual rhythmic finger tapping in adolescents with mental retardation or autism. J Hum Mov Stud 2003; 45: 59–80.

    Google Scholar 

  48. Schmitz C, Martineau J, Barthelemy C, Assaiante C . Motor control and children with autism: deficit of anticipatory function? Neurosci Lett 2003; 348: 17–20.

    Article  CAS  PubMed  Google Scholar 

  49. Bebko JM, Weiss JA, Demark JL, Gomez P . Discrimination of temporal synchrony in intermodal events by children with autism and children with developmental disabilities without autism. J Child Psychol and Psychiatry 2006; 47: 88–98.

    Article  Google Scholar 

  50. Feldstein S, Konstantareas M, Oxman J, Webster CD . The Chronography of interactions with autistic speakers – an initial report. J Commun Disord 1982; 15: 451–460.

    Article  CAS  PubMed  Google Scholar 

  51. Tantam D, Holmes D, Cordess C . Nonverbal expression in autism of asperger type. J Autism Dev Disord 1993; 23: 111–133.

    Article  CAS  PubMed  Google Scholar 

  52. Trevarthen C, Daniel S . Disorganized rhythm and synchrony: early signs of autism and Rett syndrome. Brain Dev 2005; 27: S25–S34.

    Article  PubMed  Google Scholar 

  53. Limoges E, Mottron L, Bolduc C, Berthiaume C, Godbout R . Atypical sleep architecture and the autism phenotype. Brain 2005; 128: 1049–1061.

    Article  PubMed  Google Scholar 

  54. Elia M, Ferri R, Musumeci SA, Del Gracco S, Bottitta M, Scuderi C et al. Sleep in subjects with autistic disorder: a neurophysiological and psychological study. Brain Dev 2000; 22: 88–92.

    Article  CAS  PubMed  Google Scholar 

  55. Kulman G, Lissoni P, Rovelli F, Roselli MG, Brivio F, Sequeri P . Evidence of pineal endocrine hypofunction in autistic children. Neuroendocrinol Lett 2000; 21: 31–34.

    PubMed  Google Scholar 

  56. Nir I, Meir D, Zilber N, Knobler H, Hadjez J, Lerner Y . Brief report: circadian melatonin, thyroid-stimulating hormone, prolactin, and cortisol levels in serum of young adults with autism. J Autism Dev Disord 1995; 25: 641–654.

    Article  CAS  PubMed  Google Scholar 

  57. Tordjman S, Anderson GM, Pichard N, Charbuy H, Touitou Y . Nocturnal excretion of 6-sulphatoxymelatonin in children and adolescents with autistic disorder. Biol Psychiatry 2005; 57: 134–138.

    Article  CAS  PubMed  Google Scholar 

  58. Anderson GM . Genetics of childhood disorders: XLV. Autism, part 4: Serotonin in autism. J Am Acad Child Adolesc Psychiatry 2002; 41: 1513–1516.

    Article  PubMed  Google Scholar 

  59. Cook EH, Leventhal BL . The serotonin system in Autism. Curr Opin Pediatr 1996; 8: 348–354.

    Article  CAS  PubMed  Google Scholar 

  60. Allada R, White NE, So WV, Hall JC, Rosbash M . A mutant Drosophila homolog of mammalian clock disrupts circadian rhythms and transcription of period and timeless. Cell 1998; 93: 791–804.

    Article  CAS  PubMed  Google Scholar 

  61. Darlington TK, Wager-Smith K, Ceriani MF, Staknis D, Gekakis N, Steeves TDL et al. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 1998; 280: 1599–1603.

    Article  CAS  PubMed  Google Scholar 

  62. Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 1998; 280: 1564–1569.

    Article  CAS  PubMed  Google Scholar 

  63. Hogenesch JB, Gu YZ, Jain SJ, Bradfield CA . The basic–helix–loop–helix–PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA 1998; 95: 5474–5479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rutila JE, Suri V, Le M, So WV, Rosbash M, Hall JC . CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 1998; 93: 805–814.

    Article  CAS  PubMed  Google Scholar 

  65. Ebisawa T, Uchiyama M, Kajimura N, Mishima K, Kamei Y, Katoh M et al. Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep 2001; 2: 342–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM et al. An hPer2 phosphorylation site mutation in familiar advanced sleep phase syndrome. Science 2001; 291: 1040–1043.

    Article  CAS  PubMed  Google Scholar 

  67. Franken P, Dudley CA, Estill SJ, Barakat M, Thomason R, O’Haran BF et al. NPAS2 as a transcriptional regulator of non-rapid eye movement sleep: genotype and sex interactions. Proc Natl Acad Sci USA 2006; 103: 7118–7123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Garcia JA, Zhang D, Estill SJ, Michnoff C, Rutter J, Reick M et al. Impaired cued and contextual memory in NPAS2-deficient mice. Science 2000; 288: 2226–2230.

    Article  CAS  PubMed  Google Scholar 

  69. Alt S, Ringo J, Talyn B, Bray W, Dowse H . The period gene controls courtship song cycles in Drosophila melanogaster. Anim Behav 1998; 56: 87–97.

    Article  CAS  PubMed  Google Scholar 

  70. Kyriacou CP, Hall JC . Circadian-rhythm mutations in Drosophila melanogaster affect short-term fluctuations in the males courtship song. Proc Natl Acad Sci USA 1980; 77: 6729–6733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ritchie MG, Halsey EJ, Gleason JM . Drosophila song as a species-specific mating signal and the behavioural importance of Kyriacou & Hall cycles in D. melanogaster song. Anim Behav 1999; 58: 649–657.

    Article  CAS  PubMed  Google Scholar 

  72. Sakai T, Tamura T, Kitamoto T, Kidokoro Y . A clock gene, period, plays a key role in long-term memory formation in Drosophila. Proc Natl Acad Sci USA 2004; 101: 16058–16063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Toichi M, Kamio Y . Long-term memory and levels-of-processing in autism. Neuropsychologia 2002; 40: 964–969.

    Article  PubMed  Google Scholar 

  74. Toichi M, Kamio Y . Long-term memory in high-functioning autism: controversy on episodic memory in autism reconsidered. J Autism Dev Disord 2003; 33: 151–161.

    Article  PubMed  Google Scholar 

  75. Looby P, Loudon ASI . Gene duplication and complex circadian clocks in mammals. Trends Genet 2005; 21: 46–53.

    Article  CAS  PubMed  Google Scholar 

  76. Berson DM, Dunn FA, Takao M . Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002; 295: 1070–1073.

    Article  CAS  PubMed  Google Scholar 

  77. Lee C, Etchegaray JP, Cagampang FRA, Loudon ASI, Reppert SM . Posttranslational mechanisms regulate the mammalian circadian clock. Cell 2001; 107: 855–867.

    Article  CAS  PubMed  Google Scholar 

  78. Chilov D, Hofer T, Bauer C, Wenger RH, Gassmann M . Hypoxia affects expression of circadian genes PER1 and CLOCK in mouse brain. FASEB J 2001; 15: 2613–2622.

    Article  CAS  PubMed  Google Scholar 

  79. Dioum EM, Rutter J, Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA, McKnight SL . NPAS2: A gas-responsive transcription factor. Science 2002; 298: 2385–2387.

    Article  CAS  PubMed  Google Scholar 

  80. Fu LN, Pelicano H, Liu JS, Huang P, Lee CC . The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 2002; 111: 41–50.

    Article  CAS  PubMed  Google Scholar 

  81. Gery S, Komatsu N, Baldjyan L, Yu A, Koo D, Koeffler HP . The circadian gene Per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell 2006; 22: 375–382.

    Article  CAS  PubMed  Google Scholar 

  82. Rutter J, Reick M, Wu LC, McKnight SL . Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 2001; 293: 510–514.

    Article  CAS  PubMed  Google Scholar 

  83. Konopka RJ, Benzer S . Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 1971; 68: 2112–2116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Konopka RJ, Kyriacou CP, Hall JC . Mosaic analysis in the Drosophila CNS of circadian and courtship-song rhythms affected by a period clock mutation. J Neurogenet 1996; 11: 117–139.

    Article  CAS  PubMed  Google Scholar 

  85. Takano A, Uchiyama M, Kajimura N, Mishima K, Inoue Y, Kamei Y et al. A missense variation in human casein kinase I epsilon gene that induces functional alteration and shows an inverse association with circadian rhythm sleep disorders. Neuropsychopharmacology 2004; 29: 1901–1909.

    Article  CAS  PubMed  Google Scholar 

  86. Archer SN, Robilliard DL, Skene DJ, Smits M, Williams A, Arendt J et al. A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 2003; 26: 413–415.

    Article  PubMed  Google Scholar 

  87. Reick M, Garcia JA, Dudley C, McKnight SL . NPAS2: An analog of clock operative in the mammalian forebrain. Science 2001; 293: 506–509.

    Article  CAS  PubMed  Google Scholar 

  88. Williams DL, Goldstein G, Minshew NJ . The profile of memory function in children with autism. Neuropsychology 2006; 20: 21–29.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Franken P, Lopez-Molina L, Marcacci L, Schibler U, Tafti M . The transcription factor DBP affects circadian sleep consolidation and rhythmic EEG activity. J Neurosci 2000; 20: 617–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ripperger JA, Shearman LP, Reppert SM, Schibler U . CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev 2000; 14: 679–689.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Barnes JW, Tischkau SA, Barnes JA, Mitchell JW, Burgoon PW, Hickok JR et al. Requirement of mammalian timeless for circadian rhythmicity. Science 2003; 302: 439–442.

    Article  CAS  PubMed  Google Scholar 

  92. Geschwind DH, Sowinski J, Lord C, Iversen P, Shestack J, Jones P et al. The autism genetic resource exchange: a resource for the study of autism and related neuropsychiatric conditions. Am J Hum Genet 2001; 69: 463–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lord C, Rutter M, Le Couteur A . Autism diagnostic interview-revised – a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994; 24: 659–685.

    Article  CAS  PubMed  Google Scholar 

  94. Lord C, Risi S, Lambrecht L, Cook EH, Leventhal BL, DiLavore PC et al. The autism diagnostic observation schedule – generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 2000; 30: 205–223.

    Article  CAS  PubMed  Google Scholar 

  95. Raven JC . Progressive Matrices: A Perceptual Test of Intelligence. Individual Form. Oxford Psychologists Press Ltd: Oxford, 1938, 1996.

    Google Scholar 

  96. Dunn LM, Dunn LL . Peabody Picture and Vocabulary Test – Third Edition. American Guidance Service: Circle Pines, MN, 1997.

    Google Scholar 

  97. Sparrow SS, Balla DA, Cicchetti DV . The Vineland Adaptive Behavior Scale. American Guidance Service: Circle Time, MN, 1984.

    Google Scholar 

  98. Wechsler D . The Wechsler Adult Intelligence Scale, 3rd edn. Psychological Corporation, Harcourt Brace: San Antonio, CA, 1997.

    Google Scholar 

  99. Mottron L . Matching strategies in cognitive research with individuals with high-functioning autism: current practices, instrument biases, and recommendations. J Autism Dev Disord 2004; 34: 19–27.

    Article  PubMed  Google Scholar 

  100. Riva A, Kohane IS . SNPper: retrieval and analysis of human SNPs. Bioinformatics 2002; 18: 1681–1685.

    Article  CAS  PubMed  Google Scholar 

  101. Mansour HA, Monk TH, Nimgaonkar VL . Circadian genes and bipolar disorder. Ann Med 2005; 37: 196–205.

    Article  CAS  PubMed  Google Scholar 

  102. Myakishev MV, Khripin Y, Hu S, Hamer DH . High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers. Genome Res 2001; 11: 163–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Spielman RS, Mcginnis RE, Ewens WJ . Transmission test for linkage disequilibrium – the insulin gene region and insulin-dependent diabetes – mellitus (Iddm). Am J Hum Genet 1993; 52: 506–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Dudbridge F . Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115–121.

    Article  PubMed  Google Scholar 

  105. Zhou YD, Barnard M, Tian H, Li X, Ring HZ, Francke U et al. Molecular characterization of two mammalian bHLH-PAS domain proteins selectively expressed in the central nervous system. Proc Natl Acad Sci 1997; 94: 713–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele G, Lee CC . RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 1997; 90: 1003–1011.

    Article  CAS  PubMed  Google Scholar 

  107. Bauman M, Kemper TL . Histoanatomic observations of the brain in early infantile-autism. Neurology 1985; 35: 866–874.

    Article  CAS  PubMed  Google Scholar 

  108. Bauman ML, Kemper TL . Developmental cerebellar abnormalities – a consistent finding in early infantile-autism. Neurology 1986; 36 (Suppl 1) (abstract 4): 190.

    Google Scholar 

  109. Bauman ML, Kemper TL . Limbic and cerebellar abnormalities – consistent findings in infantile-autism. J Neuropathol Exp Neurol 1988; 47 (abstract 204): 369.

    Google Scholar 

  110. Raymond GV, Bauman ML, Kemper TL . Hippocampus in autism: a Golgi analysis. Acta Neuropathol 1996; 91: 117–119.

    Article  CAS  PubMed  Google Scholar 

  111. Hamann S . Cognitive and neural mechanisms of emotional memory. Trends Cogn Sci 2001; 5: 394–400.

    Article  CAS  PubMed  Google Scholar 

  112. Phelps EA . Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol 2004; 14: 198–202.

    Article  CAS  PubMed  Google Scholar 

  113. Zald DH . The human amygdala and the emotional evaluation of sensory stimuli. Brain Res Rev 2003; 41: 88–123.

    Article  PubMed  Google Scholar 

  114. Bauman ML, Kemper TL . Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 2005; 23: 183–187.

    Article  PubMed  Google Scholar 

  115. Kemper TL, Bauman ML . Neuropathology of infantile autism. Mol Psychiatry 2002; 7: 512–513.

    Article  Google Scholar 

  116. Ben Shalom D . Memory in autism: review and synthesis. Cortex 2003; 39: 1129–1138.

    Article  PubMed  Google Scholar 

  117. Bachevalier J, Loveland KA . The orbitofrontal-amygdala circuit and self-regulation of social–emotional behavior in autism. Neurosci Biobehav Rev 2006; 30: 97–117.

    Article  PubMed  Google Scholar 

  118. Baron-Cohen S, Ring HA, Bullmore ET, Wheelwright S, Ashwin C, Williams SCR . The amygdala theory of autism. Neurosci Biobehav Rev 2000; 24: 355–364.

    Article  CAS  PubMed  Google Scholar 

  119. Howard MA, Cowell PE, Boucher J, Broks P, Mayes A, Farrant A et al. Convergent neuroanatomical and behavioural evidence of an amygdala hypothesis of autism. Neuroreport 2000; 11: 2931–2935.

    Article  CAS  PubMed  Google Scholar 

  120. Koekkoek SKE, Hulscher HC, Dortland BR, Hensbroek RA, Elgersma Y, Ruigrok TJH et al. Cerebellar LTD and learning-dependent timing of conditioned eyelid responses. Science 2003; 301: 1736–1739.

    Article  CAS  PubMed  Google Scholar 

  121. Kotani S, Kawahara S, Kirino Y . Purkinje cell activity during learning a new timing in classical eyeblink conditioning. Brain Res 2003; 994: 193–202.

    Article  CAS  PubMed  Google Scholar 

  122. Ritvo ER, Freeman BJ, Scheibel AB, Duong T, Robinson H, Guthrie D et al. Lower Purkinje-cell counts in the cerebella of 4 autistic subjects – initial findings of the Ucla-Nsac autopsy research report. Am J Psychiatry 1986; 143: 862–866.

    Article  CAS  PubMed  Google Scholar 

  123. Courchesne E, Townsend J, Saitoh O . The brain in infantile-autism – posterior-fossa structures are abnormal. Neurology 1994; 44: 214–223.

    Article  CAS  PubMed  Google Scholar 

  124. Akshoomoff N, Pierce K, Courchesne E . The neurobiological basis of autism from a developmental perspective. Dev Psychopathol 2002; 14: 613–634.

    Article  PubMed  Google Scholar 

  125. Matsuki T, Kiyama A, Kawabuchi M, Okada M, Nagai K . A novel protein interacts with a clock-related protein, rPer1. Brain Res 2001; 916: 1–10.

    Article  CAS  PubMed  Google Scholar 

  126. Kiyama A, Isojima Y, Nagai K . Role of Per1-interacting protein of the suprachiasmatic nucleus in NGF mediated neuronal survival. Biochem Biophys Res Commun 2006; 339: 514–519.

    Article  CAS  PubMed  Google Scholar 

  127. Song DL, Joyner AL . Two Pax2/5/8-binding sites in Engrailed2 are required for proper initiation of endogenous mid-hindbrain expression. Mech Dev 2000; 90: 155–165.

    Article  Google Scholar 

  128. Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H . Control mechanism of the circadian clock for timing of cell division in vivo. Science 2003; 302: 255–259.

    Article  CAS  PubMed  Google Scholar 

  129. Yujnovsky I, Hirayama J, Doi M, Borrelli E, Sassone-Corsi P . Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK: BMAL1. Proc Natl Acad Sci USA 2006; 103: 6386–6391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Crown CL, Feldstein S, Jasnow MD, Beebe B, Jaffe J . The cross-modal coordination of interpersonal timing: six-week-olds infants’ gaze with adults’ vocal behavior. J Psycholinguist Res 2002; 31: 1–23.

    Article  PubMed  Google Scholar 

  131. Murray L, Trevarthen C . Emotional regulation of interactions between two-month olds and their mothers. In Social Perception in Infants. Ablex: Norwood, NJ, 1985.

    Google Scholar 

  132. Nadel J, Carchon I, Kervella C, Marcelli D, Reserbat-Plantey D . Expectancies for social contingency in 2-month-olds. Dev Sc 1999; 2: 164–173.

    Article  Google Scholar 

  133. Trevarthen C, Aitken KJ . Infant intersubjectivity: research, theory, and clinical applications. J Child Psychol Psychiatry 2001; 42: 3–48.

    Article  CAS  PubMed  Google Scholar 

  134. Feldman R . From biological rhythms to social rhythms: physiological precursors of mother–infant synchrony. Dev Psychol 2006; 42: 175–188.

    Article  PubMed  Google Scholar 

  135. Feldman R, Greenbaum CW, Yirmiya N, Mayes LC . Relations between cyclicity and regulation in mother – infant interaction at 3 and 9 months and cognition at 2 years. J Appl Dev Psychol 1996; 17: 347–365.

    Article  Google Scholar 

  136. Feldman R, Greenbaum CW, Yirmiya N . Mother–infant affect synchrony as an antecedent of the emergence of self-control. Dev Psychol 1999; 35: 223–231.

    Article  CAS  PubMed  Google Scholar 

  137. Jaffe J, Beebe B, Feldstein S, Crown CL, Jasnow MD . Rhythms of dialogue in infancy: coordinated timing in development – introduction. Monogr Soc Res Child Dev 2001; 66: 1–149.

    Article  Google Scholar 

  138. Kubicek LF . Organization in two mother–infant interactions involving a normal infant and his fraternal twin brother who was later diagnosed as autistic. In: Field TM, Goldberg S, Stern D, Sostek A (eds). High-Risk Infants and Children. Academic Press: New York, 1980, pp 99–110.

    Google Scholar 

  139. Wimpory DC, Hobson RP, Williams JMG, Nash S . Are infants with autism socially engaged? A study of recent retrospective parental reports. J Autism Dev Disord 2000; 30: 525–536.

    Article  CAS  PubMed  Google Scholar 

  140. Wimpory D, Chadwick P, Nash S . Musical interaction therapy for children with autism – an evaluative case-study with 2-year follow-up – brief report. J Autism Dev Disord 1995; 25: 541–552.

    Article  CAS  PubMed  Google Scholar 

  141. Trevarthen C . Autism as a neurodevelopmental disorder affecting communication and learning in early childhood: prenatal origins, post natal course and effective educational support. Prostaglandins Leukot Essent Fatty Acids 2000; 63: 41–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the North West Wales NHS Trust that salaried our Principal Investigator (PI), Dawn Wimpory, throughout the duration of this research. We are most appreciative of The Baily Thomas Charitable Fund for their financial facilitation of the project with additional funding from Autism Cymru. We gratefully acknowledge the resources provided by the Autism Genetic Resource Exchange (AGRE) Consortium and the participating AGRE families. The Autism Genetic Resource Exchange is a program of Cure Autism Now and is supported, in part, by Grant MH64547 from the National Institute of Mental Health to Daniel H Geschwind (PI). In addition, we thank Professor Vishwajit L Nimgaonkar, University of Pittsburgh School of Medicine, who supplied us with details on SNPs in clock genes that were identified in his laboratory. We particularly thank Professor William Fraser for his enthusiasm and advice, together with Professor Elizabeth Newson, OBE, for her original and inspiring clinical insight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D C Wimpory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholas, B., Rudrasingham, V., Nash, S. et al. Association of Per1 and Npas2 with autistic disorder: support for the clock genes/social timing hypothesis. Mol Psychiatry 12, 581–592 (2007). https://doi.org/10.1038/sj.mp.4001953

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001953

Keywords

This article is cited by

Search

Quick links