Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transforming growth factor α promotes sequential conversion of mature astrocytes into neural progenitors and stem cells

Abstract

An instability of the mature cell phenotype is thought to participate to the formation of gliomas, primary brain tumors deriving from astrocytes and/or neural stem cells. Transforming growth factor α (TGFα) is an erbB1 ligand overexpressed in the earliest stages of gliomas, and exerts trophic effects on gliomal cells and astrocytes. Here, we questioned whether prolonged TGFα exposure affects the stability of the normal mature astrocyte phenotype. We first developed astrocyte cultures devoid of residual neural stem cells or progenitors. We demonstrate that days of TGFα treatment result in the functional conversion of a population of mature astrocytes into radial glial cells, a population of neural progenitors. TGFα-generated radial glial cells support embryonic neurons migration, and give birth to cells of the neuronal lineage, expressing neuronal markers and the electrophysiological properties of neuroblasts. Lengthening TGFα treatment to months results in the delayed appearance of cells with neural stem cells properties: they form floating cellular spheres that are self-renewing, can be clonally derived from a single cell and differentiated into cells of the neuronal lineage. This study uncovers a novel population of mature astrocytes capable, in response to a single epigenetic factor, to regress progressively into a neural stem-like cell stage via an intermediate progenitor stage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ et al. (2002). Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1: 269–277.

    Article  CAS  Google Scholar 

  • Bahrey HL, Moody WJ . (2003). Voltage-gated currents, dye and electrical coupling in the embryonic mouse neocortex. Cereb Cortex 13: 239–251.

    Article  Google Scholar 

  • Bignami A, Dahl D . (1974). Astrocyte-specific protein and radial glia in the cerebral cortex of newborn rat. Nature 252: 55–56.

    Article  CAS  Google Scholar 

  • Burrows RC, Wancio D, Levitt P, Lillien L . (1997). Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex. Neuron 19: 251–267.

    Article  CAS  Google Scholar 

  • Chanas-Sacre G, Thiry M, Pirard S, Rogister B, Moonen G, Mbebi C et al. (2000). A 295-kDA intermediate filament-associated protein in radial glia and developing muscle cells in vivo and in vitro. Dev Dyn 219: 514–525.

    Article  CAS  Google Scholar 

  • Dai C, Holland EC . (2003). Astrocyte differentiation states and glioma formation. Cancer J 9: 72–81.

    Article  CAS  Google Scholar 

  • Dihne M, Block F, Korr H, Topper R . (2001). Time course of glial proliferation and glial apoptosis following excitotoxic CNS injury. Brain Res 902: 178–189.

    Article  CAS  Google Scholar 

  • Doetsch F . (2003). The glial identity of neural stem cells. Nat Neurosci 6: 1127–1134.

    Article  CAS  Google Scholar 

  • Feldman DH, Thinschmidt JS, Peel AL, Papke RL, Reier PJ . (1996). Differentiation of ionic currents in CNS progenitor cells: dependence upon substrate attachment and epidermal growth factor. Exp Neurol 140: 206–217.

    Article  CAS  Google Scholar 

  • Feng L, Hatten ME, Heintz N . (1994). Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12: 895–908.

    Article  CAS  Google Scholar 

  • Figiel M, Maucher T, Rozyczka J, Bayatti N, Engele J . (2003). Regulation of glial glutamate transporter expression by growth factors. Exp Neurol 183: 124–135.

    Article  CAS  Google Scholar 

  • Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet MC et al. (1999). Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23: 247–256.

    Article  CAS  Google Scholar 

  • Frisen J, Johansson CB, Torok C, Risling M, Lendahl U . (1995). Rapid, widespread, and long lasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. J Cell Biol 131: 453–464.

    Article  CAS  Google Scholar 

  • Fukuda S, Kato F, Tozuka Y, Yamaguchi M, Miyamoto Y, Hisatsune T . (2003). Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J Neurosci 23: 9357–9366.

    Article  CAS  Google Scholar 

  • Fukuda S, Kondo T, Takebayashi H, Taga T . (2004). Negative regulatory effect of an oligodendrocytic bHLH factor OLIG2 on the astrocytic differentiation pathway. Cell Death Differ 11: 196–202.

    Article  CAS  Google Scholar 

  • Gregg C, Weiss S . (2003). Generation of functional radial glial cells by embryonic and adult forebrain neural stem cells. J Neurosci 23: 11587–11601.

    Article  CAS  Google Scholar 

  • Hack MA, Sugimori M, Lundberg C, Nakafuku M, Gotz M . (2004). Regionalization and fate specification in neurospheres: the role of Olig2 and Pax6. Mol Cell Neurosci 25: 664–678.

    Article  CAS  Google Scholar 

  • Hadjantonakis AK, Gertsenstein M, Ikawa M, Okabe M, Nagy A . (1998). Generating green fluorescent mice by germline transmission of green fluorescent ES cells. Mech Dev 76: 79–90.

    Article  CAS  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ . (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391: 85–100.

    Article  CAS  Google Scholar 

  • Harris H . (2004). Tumour suppression: putting on the brakes. Nature 427: 201.

    Article  CAS  Google Scholar 

  • Imura T, Kornblum HI, Sofroniew MV . (2003). The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J Neurosci 23: 2824–2832.

    Article  CAS  Google Scholar 

  • Imura T, Nakano I, Kornblum HI, Sofroniew MV . (2006). Phenotypic and functional heterogeneity of GFAP-expressing cells in vitro: differential expression of LeX/CD15 by GFAP-expressing multipotent neural stem cells and non-neurogenic astrocytes. Glia 53: 277–293.

    Article  Google Scholar 

  • Jung M, Kramer EM, Muller T, Antonicek H, Trotter J . (1998). Novel pluripotential neural progenitor lines exhibiting rapid controlled differentiation to neurotransmitter receptor-expressing neurons and glia. Eur J Neurosci 10: 3246–3256.

    Article  CAS  Google Scholar 

  • Junier MP . (2000). What role(s) for TGFalpha in the central nervous system? Prog Neurobiol 62: 443–473.

    Article  CAS  Google Scholar 

  • Kressin K, Kuprijanova E, Jabs R, Seifert G, Steinhauser C . (1995). Developmental regulation of Na+ and K+ conductances in glial cells of mouse hippocampal brain slices. Glia 15: 173–187.

    Article  CAS  Google Scholar 

  • Kriegstein AR, Gotz M . (2003). Radial glia diversity: a matter of cell fate. Glia 43: 37–43.

    Article  Google Scholar 

  • Laywell ED, Rakic P, Kukekov VG, Holland EC, Steindler DA . (2000). Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci USA 97: 13883–13888.

    Article  CAS  Google Scholar 

  • Leavitt BR, Hernit-Grant CS, Macklis JD . (1999). Mature astrocytes transform into transitional radial glia within adult mouse neocortex that supports directed migration of transplanted immature neurons. Exp Neurol 157: 43–57.

    Article  CAS  Google Scholar 

  • Lee DC, Fenton SE, Berkowitz EA, Hissong MA . (1995). Transforming growth factor alpha: expression, regulation, and biological activities. Pharmacol Rev 47: 51–85.

    CAS  PubMed  Google Scholar 

  • Lillien L . (1995). Changes in retinal cell fate induced by overexpression of EGF receptor. Nature 377: 158–162.

    Article  CAS  Google Scholar 

  • Lin RC, Matesic DF, Marvin M, McKay RD, Brustle O . (1995). Re-expression of the intermediate filament nestin in reactive astrocytes. Neurobiol Dis 2: 79–85.

    Article  CAS  Google Scholar 

  • Liu B, Neufeld AH . (2004). Activation of epidermal growth factor receptors directs astrocytes to organize in a network surrounding axons in the developing rat optic nerve. Dev Biol 273: 297–307.

    Article  CAS  Google Scholar 

  • Marshall CA, Novitch BG, Goldman JE . (2005). Olig2 directs astrocyte and oligodendrocyte formation in postnatal subventricular zone cells. J Neurosci 25: 7289–7298.

    Article  CAS  Google Scholar 

  • Miller S, Sehati N, Romano C, Cotman CW . (1996). Exposure of astrocytes to thrombin reduces levels of the metabotropic glutamate receptor mGluR5. J Neurochem 67: 1435–1447.

    Article  CAS  Google Scholar 

  • Muroyama Y, Fujiwara Y, Orkin SH, Rowitch DH . (2005). Specification of astrocytes by bHLH protein SCL in a restricted region of the neural tube. Nature 438: 360–363.

    Article  CAS  Google Scholar 

  • Norenberg MD . (1994). Astrocyte responses to CNS injury. J Neuropathol Exp Neurol 53: 213–220.

    Article  CAS  Google Scholar 

  • Pekny M, Eliasson C, Chien CL, Kindblom LG, Liem R, Hamberger A et al. (1998). GFAP-deficient astrocytes are capable of stellation in vitro when cocultured with neurons and exhibit a reduced amount of intermediate filaments and an increased cell saturation density. Exp Cell Res 239: 332–343.

    Article  CAS  Google Scholar 

  • Prevot V, Lomniczi A, Corfas G, Ojeda SR . (2005). erbB-1 and erbB-4 receptors act in concert to facilitate female sexual development and mature reproductive function. Endocrinology 146: 1465–1472.

    Article  CAS  Google Scholar 

  • Raff M . (2003). Adult stem cell plasticity: fact or artifact? Annu Rev Cell Dev Biol 19: 1–22.

    Article  CAS  Google Scholar 

  • Rakic P . (2003). Elusive radial glial cells: historical and evolutionary perspective. Glia 43: 19–32.

    Article  Google Scholar 

  • Reynolds BA, Tetzlaff W, Weiss S . (1992). A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12: 4565–4574.

    Article  CAS  Google Scholar 

  • Scherer SS . (1997). The biology and pathobiology of Schwann cells. Curr Opin Neurol 10: 386–397.

    Article  CAS  Google Scholar 

  • Seaberg RM, Smukler SR, van der Kooy D . (2005). Intrinsic differences distinguish transiently neurogenic progenitors from neural stem cells in the early postnatal brain. Dev Biol 278: 71–85.

    Article  CAS  Google Scholar 

  • Sharif A, Duhem-Tonnelle V, Allet C, Baroncini M, Loyens A, Kerr-Conte J et al. (2006a). Characterization of ligand-activated erbB signalling pathways in human astrocytes, [Abstract # 733.11]. Meeting of the Society for Neuroscience. Atlanta, USA, October 2006.

    Google Scholar 

  • Sharif A, Prevot V, Renault-Mihara F, Allet C, Studler JM, Canton B et al. (2006b). Transforming growth factor alpha acts as a gliatrophin for mouse and human astrocytes. Oncogene 25: 4076–4085.

    Article  CAS  Google Scholar 

  • Sharif A, Renault F, Beuvon F, Castellanos R, Canton B, Barbeito L et al. (2004). The expression of PEA-15 (phosphoprotein enriched in astrocytes of 15 kDa) defines subpopulations of astrocytes and neurons throughout the adult mouse brain. Neuroscience 126: 263–275.

    Article  CAS  Google Scholar 

  • Singh SK, Clarke ID, Hide T, Dirks PB . (2004). Cancer stem cells in nervous system tumors. Oncogene 23: 7267–7273.

    Article  CAS  Google Scholar 

  • Sun Y, Goderie SK, Temple S . (2005). Asymmetric distribution of EGFR receptor during mitosis generates diverse CNS progenitor cells. Neuron 45: 873–886.

    Article  CAS  Google Scholar 

  • Sutherland ML, Delaney TA, Noebels JL . (1996). Glutamate transporter mRNA expression in proliferative zones of the developing and adult murine CNS. J Neurosci 16: 2191–2207.

    Article  CAS  Google Scholar 

  • Tropepe V, Sibilia M, Ciruna BG, Rossant J, Wagner EF, van der Kooy D . (1999). Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol 208: 166–188.

    Article  CAS  Google Scholar 

  • Verkhratsky A, Steinhauser C . (2000). Ion channels in glial cells. Brain Res Brain Res Rev 32: 380–412.

    Article  CAS  Google Scholar 

  • Wagner B, Natarajan A, Grunaug S, Kroismayr R, Wagner EF, Sibilia M . (2006). Neuronal survival depends on EGFR signaling in cortical but not midbrain astrocytes. EMBO J 25: 752–762.

    Article  CAS  Google Scholar 

  • Wechsler-Reya R, Scott MP . (2001). The developmental biology of brain tumors. Annu Rev Neurosci 24: 385–428.

    Article  CAS  Google Scholar 

  • Zhou R, Wu X, Skalli O . (2001). TGF-alpha induces a stationary, radial–glia like phenotype in cultured astrocytes. Brain Res Bull 56: 37–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Leprince and Dr Heintz for their generous gifts of RC2 and BLBP antibodies, respectively and to Dr Dusart for providing us with actin-GFP transgenic mice. We warmly thank Professor Glowinski, Dr Abrous, Dr Barneoud and Dr Mallat for their constant support, Dr Koulakoff and Dr Eichmann for generously sharing their knowledge and equipments, and Amelia Dias-Morais, Anne Loyens and Eric Etienne for expert technical help. This research was supported by the Association pour la Recherche contre le Cancer (ARC, Grant# 3500 to HC, and study fellowship to AS) and the Fondation pour la Recherche Médicale (FRM grant to VP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-P Junier.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharif, A., Legendre, P., Prévot, V. et al. Transforming growth factor α promotes sequential conversion of mature astrocytes into neural progenitors and stem cells. Oncogene 26, 2695–2706 (2007). https://doi.org/10.1038/sj.onc.1210071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210071

Keywords

This article is cited by

Search

Quick links