Semin Reprod Med 2007; 25(5): 305-312
DOI: 10.1055/s-2007-984736
Published in 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Gonadotropin-Releasing Hormone Neuronal Migration

Gerald A. Schwarting1 , Margaret E. Wierman2 , Stuart A. Tobet3
  • 1Shriver Center and Department of Cell Biology, University of Massachusetts Medical School, Waltham, Massachusetts
  • 2Department of Medicine, University of Colorado in Denver Health Science Center, Aurora, Colorado, and Research Service Veterans Administration Medical Center, Denver, Colorado
  • 3Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
Further Information

Publication History

Publication Date:
20 August 2007 (online)

ABSTRACT

Neurons that synthesize and secrete the decapeptide gonadotropin-releasing hormone-1 (GnRH-1) to control the reproductive axis originate in the olfactory placode/vomeronasal organ of the olfactory system of mammals and migrate along vomeronasal nerves to the cribriform plate, which marks the boundary between the peripheral olfactory system and the forebrain. Migrating GnRH-1 neurons follow a branch of the vomeronasal nerve caudally into the hypothalamus, where they extend processes to the median eminence and halt their migration. The release of GnRH-1 into the capillaries of the median eminence starts the cascade that activates pituitary gonadotropin (luteinizing hormone and follicle-stimulating hormone) production and secretion. Failure of these neurons to complete their migration results in failure of the reproductive axis. In some cases, failed migration is linked to the loss of the sense of smell (anosmia). The mechanisms that regulate migration of GnRH-1 neurons along this complex pathway are incompletely understood. Recent studies have revealed an important role for a series of strategically located soluble factors that regulate different aspects of GnRH-1 neuron migration at specific locations along their migratory route. This review focuses on the different mechanisms used by these factors to regulate migration of GnRH-1 neurons.

REFERENCES

  • 1 Wade N. The Nobel Duel. New York; Anchor Press/Doubleday 1981
  • 2 Schwanzel-Fukuda M, Pfaff D W. Origin of luteinizing hormone-releasing hormone neurons.  Nature. 1989;  338 161-164
  • 3 Wray S, Nieburgs A, Elkabes S. Spatiotemporal cell expression of luteinizing hormone-releasing hormone in the prenatal mouse: evidence for an embryonic origin in the olfactory placode.  Brain Res Dev Brain Res. 1989;  46 309-318
  • 4 Wray S, Grant P, Gainer H. Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode.  Proc Natl Acad Sci USA. 1989;  86 8132-8136
  • 5 Kim K H, Patel L, Tobet S A, King J C, Rubin B S, Stopa E G. Gonadotropin-releasing hormone immunoreactivity in the adult and fetal human olfactory system.  Brain Res. 1999;  826 220-229
  • 6 Tobet S A, Chickering T W, Sower S A. Relationship of gonadotropin-releasing hormone (GnRH) neurons to the olfactory system in developing lamprey (Petromyzon marinus).  J Comp Neurol. 1996;  376 97-111
  • 7 Gonzalez-Martinez D, Hu Y, Bouloux P M. Ontogeny of GnRH and olfactory neuronal systems in man: novel insights from the investigation of inherited forms of Kallmann's syndrome.  Front Neuroendocrinol. 2004;  25 108-130
  • 8 Tsai P S, Gill J C. Mechanisms of disease: insights into X-linked and autosomal-dominant Kallmann syndrome.  Nat Clin Pract Endocrinol Metab. 2006;  2 160-171
  • 9 Bhagavath B, Podolsky R H, Ozata M et al.. Clinical and molecular characterization of a large sample of patients with hypogonadotropic hypogonadism.  Fertil Steril. 2006;  85 706-713
  • 10 Demski L S, Northcutt R G. The terminal nerve: a new chemosensory system in vertebrates?.  Science. 1983;  220 435-437
  • 11 Whitlock K E, Illing N, Brideau N J, Smith K M, Twomey S. Development of GnRH cells: Setting the stage for puberty.  Mol Cell Endocrinol. 2006;  254-255 39-50
  • 12 King J C, Tobet S A, Snavely F L, Arimura A A. LHRH immunopositive cells and their projections to the median eminence and organum vasculosum of the lamina terminalis.  J Comp Neurol. 1982;  209 287-300
  • 13 Witkin J W, Paden C M, Silverman A J. The luteinizing hormone-releasing hormone (LHRH) system in the rat brain.  Neuroendocrinology. 1982;  35 429-438
  • 14 Stopa E G, Koh E T, Svendsen C N, Rogers W T, Schwaber J S, King J C. Computer-assisted mapping of immunoreactive mammalian gonadotropin-releasing hormone in adult human basal forebrain and amygdala.  Endocrinology. 1991;  128 3199-3207
  • 15 Tarozzo G, Peretto P, Fasolo A. Cell migration from the olfactory placode and ontogeny of the neuroendocrine compartments.  Zoolog Sci. 1995;  12 367-383
  • 16 Tobet S A, Schwarting G A. Minireview: recent progress in gonadotropin-releasing hormone neuronal migration.  Endocrinology. 2006;  147 1159-1165
  • 17 Wierman M E, Pawlowski J E, Allen M P, Xu M, Linseman D A, Nielsen-Preiss S. Molecular mechanisms of gonadotropin-releasing hormone neuronal migration.  Trends Endocrinol Metab. 2004;  15 96-102
  • 18 Fueshko S M, Key S, Wray S. GABA inhibits migration of luteinizing hormone-releasing hormone neurons in embryonic olfactory explants.  J Neurosci. 1998;  18 2560-2569
  • 19 Bless E P, Westaway A W, Schwarting G A. Effects of gamma-aminobutyric acid A receptor manipulation on migrating gonadotropin-releasing hormone neurons through the entire migratory route in vivo and in vitro.  Endocrinology. 2000;  141 1254-1262
  • 20 Bless E P, Walker H J, Yu K W et al.. Live view of gonadotropin-releasing hormone containing neuron migration.  Endocrinology. 2005;  146 463-468
  • 21 Giacobini P, Kopin A S, Beart P M, Mercer L D, Fasolo A, Wray S. Cholecystokinin modulates migration of gonadotropin-releasing hormone-1 neurons.  J Neurosci. 2004;  24 4737-4748
  • 22 Tobet S A, Crandall J E, Schwarting G A. Relationship of migrating luteinizing hormone-releasing hormone neurons to unique olfactory system glycoconjugates in embryonic rats.  Dev Biol. 1993;  155 471-482
  • 23 Bless E, Raitcheva D, Henion T R, Tobet S, Schwarting G A. Lactosamine modulates the rate of migration of GnRH neurons during mouse development.  Eur J Neurosci. 2006;  24 654-660
  • 24 Yoshida K, Rutishauser U, Crandall J E, Schwarting G A. Polysialic acid facilitates migration of luteinizing hormone-releasing hormone neurons on vomeronasal axons.  J Neurosci. 1999;  19 794-801
  • 25 Tsai P S, Moenter S M, Postigo H R et al.. Targeted expression of a dominant negative FGF receptor in GnRH neurons reduces FGF responsiveness and the size of GnRH neuronal population.  Mol Endocrinol. 2005;  19 225-236
  • 26 Giacobini P, Messina A, Wray S et al.. Hepatocyte growth factor acts as a motogen and guidance signal for gonadotropin hormone-releasing hormone-1 neuronal migration.  J Neurosci. 2007;  27 431-445
  • 27 Todman M G, Han S K, Herbison A E. Profiling neurotransmitter receptor expression in mouse gonadotropin-releasing hormone neurons using green fluorescent protein-promoter transgenics and microarrays.  Neuroscience. 2005;  132 703-712
  • 28 Tobet S A, Chickering T W, King J C et al.. Expression of γ-aminobutyric acid and gonadotropin-releasing hormone during neuronal migration through the olfactory system.  Endocrinology. 1996;  137 5415-5420
  • 29 Heger S, Seney M, Bless E P et al.. Overexpression of glutamic acid decarboxylase-67 (GAD-67) in GnRH neurons disrupts migratory fate and female reproductive function in mice.  Endocrinology. 2003;  144 2566-2579
  • 30 Schwarting G A, Kostek C, Bless E P, Ahmad N, Tobet S A. Deleted in colorectal cancer (DCC) regulates the migration of luteinizing hormone-releasing hormone neurons to the basal forebrain.  J Neurosci. 2001;  21 911-919
  • 31 Schwarting G A, Raitcheva D, Bless E P, Ackerman S L, Tobet S A. Netrin 1 mediated chemo-attraction regulates the migratory pathway of LHRH neurons.  Eur J Neurosci. 2004;  19 11-20
  • 32 Nagasawa T, Hirota S, Tachibana K et al.. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1.  Nature. 1996;  382 635-638
  • 33 Belmadani A, Tran P B, Ren D, Assimacopoulos S, Grove E A, Miller R J. The chemokine stromal cell-derived factor-1 regulates the migration of sensory neuron progenitors.  J Neurosci. 2005;  25 3995-4003
  • 34 Stumm R K, Zhou C, Ara T et al.. CXCR4 regulates interneuron migration in the developing neocortex.  J Neurosci. 2003;  23 5123-5130
  • 35 Peng H, Huang Y, Rose J et al.. Stromal cell-derived factor 1-mediated CXCR4 signaling in rat and human cortical neural progenitor cells.  J Neurosci Res. 2004;  76 35-50
  • 36 Daniel D, Rossel M, Seki T, Konig N. Stromal cell-derived factor-1 (SDF-1) expression in embryonic mouse cerebral cortex starts in the intermediate zone close to the pallial-subpallial boundary and extends progressively towards the cortical hem.  Gene Expr Patterns. 2005;  5 317-322
  • 37 Zhu Y, Yu T, Zhang X C, Nagasawa T, Wu J Y, Rao Y. Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons.  Nat Neurosci. 2002;  5 719-720
  • 38 Ma Q, Jones D, Borghesani P R et al.. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice.  Proc Natl Acad Sci USA. 1998;  95 9448-9453
  • 39 Zou Y R, Kottmann A H, Kuroda M, Taniuchi I, Littman D R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development.  Nature. 1998;  393 595-599
  • 40 Klein R S, Rubin J B, Gibson H D et al.. SDF-1 alpha induces chemotaxis and enhances Sonic hedgehog-induced proliferation of cerebellar granule cells.  Development. 2001;  128 1971-1981
  • 41 Tissir F, Wang C E, Goffinet A M. Expression of the chemokine receptor Cxcr4 mRNA during mouse brain development.  Brain Res Dev Brain Res. 2004;  149 63-71
  • 42 Schwarting G A, Henion T R, Nugent J D, Caplan B, Tobet S. Stromal cell-derived factor-1 (chemokine C-X-C motif ligand 12) and chemokine C-X-C motif receptor 4 are required for migration of gonadotropin-releasing hormone neurons to the forebrain.  J Neurosci. 2006;  26 6834-6840
  • 43 Xu M, Shorts-Cary L, Moriarty M et al.. Differential expression of chemokines and chemokine receptors in GnRH neuronal cells: role in migration and/or survival?. Paper presented at: the Endocrine Society June 2-5; 2007 Toronto, Canada;
  • 44 Ohtaki T, Shintani Y, Honda S et al.. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor.  Nature. 2001;  411 613-617
  • 45 Gottsch M L, Cunningham M J, Smith J T et al.. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse.  Endocrinology. 2004;  145 4073-4077
  • 46 Messager S, Chatzidaki E E, Ma D et al.. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54.  Proc Natl Acad Sci USA. 2005;  102 1761-1766
  • 47 Seminara S B, Messager S, Chatzidaki E E et al.. The GPR54 gene as a regulator of puberty.  N Engl J Med. 2003;  349 1614-1627
  • 48 Tena-Sempere M. The roles of kisspeptins and G protein-coupled receptor-54 in pubertal development.  Curr Opin Pediatr. 2006;  18 442-447
  • 49 Seminara S B. Mechanisms of disease: the first kiss-a crucial role for kisspeptin-1 and its receptor, G-protein-coupled receptor 54, in puberty and reproduction.  Nat Clin Pract Endocrinol Metab. 2006;  2 328-334
  • 50 Kuohung W, Kaiser U B. GPR54 and KiSS-1: role in the regulation of puberty and reproduction.  Rev Endocr Metab Disord. 2006;  7 257-263
  • 51 Parhar I S, Ogawa S, Sakuma Y. Laser-captured single digoxigenin-labeled neurons of gonadotropin-releasing hormone types reveal a novel G protein-coupled receptor (Gpr54) during maturation in cichlid fish.  Endocrinology. 2004;  145 3613-3618
  • 52 Sunohara N, Sakuragawa N, Satoyoshi E, Tanae A, Shapiro L J. A new syndrome of anosmia, ichthyosis, hypogonadism, and various neurological manifestations with deficiency of steroid sulfatase and arylsulfatase C.  Ann Neurol. 1986;  19 174-181
  • 53 Crowley Jr W F, Jameson J L. Gonadotropin-releasing hormone deficiency: perspectives from clinical investigation.  Endocr Rev. 1992;  13 635-640
  • 54 Schwanzel-Fukuda M, Bick D, Pfaff D W. Luteinizing hormone-releasing hormone (LH-RH) expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome.  Brain Res Mol Brain Res. 1989;  6 311-326
  • 55 Franco B, Guioli S, Pragliola A et al.. A gene deleted in Kallmann's syndrome shares homology with neural cell adhesion and axonal path-finding molecules.  Nature. 1991;  353 529-536
  • 56 Soussi-Yanicostas N, Faivre-Sarrailh C, Hardelin J P, Levilliers J, Rougon G, Petit C. Anosmin-1 underlying the X chromosome-linked Kallmann syndrome is an adhesion molecule that can modulate neurite growth in a cell-type specific manner.  J Cell Sci. 1998;  111 2953-2965
  • 57 Soussi-Yanicostas N, de Castro F, Julliard A K, Perfettini I, Chedotal A, Petit C. Anosmin-1, defective in the X-linked form of Kallmann syndrome, promotes axonal branch formation from olfactory bulb output neurons.  Cell. 2002;  109 217-228
  • 58 Oliveira L M, Seminara S B, Beranova M et al.. The importance of autosomal genes in Kallmann syndrome: genotype-phenotype correlations and neuroendocrine characteristics.  J Clin Endocrinol Metab. 2001;  86 1532-1538
  • 59 Dode C, Levilliers J, Dupont J M et al.. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome.  Nat Genet. 2003;  33 463-465
  • 60 Gill J C, Moenter S M, Tsai P S. Developmental regulation of gonadotropin-releasing hormone neurons by fibroblast growth factor signaling.  Endocrinology. 2004;  145 3830-3839
  • 61 Sato N, Katsumata N, Kagami M et al.. Clinical assessment and mutation analysis of Kallmann syndrome 1 (KAL1) and fibroblast growth factor receptor 1 (FGFR1, or KAL2) in five families and 18 sporadic patients.  J Clin Endocrinol Metab. 2004;  89 1079-1088
  • 62 Pitteloud N, Hayes F J, Boepple P A et al.. The role of prior pubertal development, biochemical markers of testicular maturation, and genetics in elucidating the phenotypic heterogeneity of idiopathic hypogonadotropic hypogonadism.  J Clin Endocrinol Metab. 2002;  87 152-160
  • 63 de Roux N. Isolated gonadotropic deficiency with and without anosmia: a developmental defect or a neuroendocrine regulation abnormality of the gonadotropic axis.  Horm Res. 2005;  64(suppl 2) 48-55
  • 64 Pitteloud N, Quinton R, Pearce S et al.. Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism.  J Clin Invest. 2007;  117 457-463
  • 65 Semple R K, Achermann J C, Ellery J et al.. Two novel missense mutations in g protein-coupled receptor 54 in a patient with hypogonadotropic hypogonadism.  J Clin Endocrinol Metab. 2005;  90 1849-1855
  • 66 Diaz G A. CXCR4 mutations in WHIM syndrome: a misguided immune system?.  Immunol Rev. 2005;  203 235-243

Stuart A TobetPh.D. 

Department of Biomedical Sciences, Colorado State University

Fort Collins, CO 80523

Email: stuart.tobet@colostate.edu

    >