Skip to main content

Advertisement

Log in

Expression of Toll-like receptor 3 in the human cerebellar cortex in rabies, herpes simplex encephalitis, and other neurological diseases

  • Short Communication
  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

There is recent in vitro evidence that human neurons express the innate immune response receptor, Toll-like receptor-3 (TLR-3), and that expression is enhanced in viral infections. The authors examined the immunohistochemical expression of TLR-3 in the cerebellar cortex of postmortem human brains. Purkinje cells were found to express TLR-3 in all cases of rabies (4 of 4) and herpes simplex encephalitis (2 of 2) as well as in cases of amyotrophic lateral sclerosis (1 of 2), stroke (1 of 2), and Alzheimer’s disease (3 of 3). In cases of viral infection, direct viral infection was not necessary for enhanced neuronal TLR-3 expression, suggesting that soluble factors likely play an important role in inducing TLR-3 expression. In addition to neurons, occasional Bergmann glia expressed TLR-3 in some cases. This study has provided evidence that human brain neurons can express TLR-3 in vivo and suggests that neurons may play an important role in initiating an inflammatory reaction in a variety of neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001). Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732–738.

    Article  CAS  PubMed  Google Scholar 

  • Boulanger LM, Shatz CJ (2004). Immune signalling in neural development, synaptic plasticity and disease. Nat Rev Neurosci 5: 521–531.

    Article  CAS  PubMed  Google Scholar 

  • Bsibsi M, Ravid R, Gveric D, van Noort JM (2002). Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61: 1013–1021.

    CAS  PubMed  Google Scholar 

  • Conzelmann KK (2005). Transcriptional activation of alpha/beta interferon genes: interference by nonsegmented negative-strand RNA viruses. J Virol 79: 5241–5248.

    Article  CAS  PubMed  Google Scholar 

  • Corriveau RA, Huh GS, Shatz CJ (1998). Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 21: 505–520.

    Article  CAS  PubMed  Google Scholar 

  • Farina C, Krumbholz M, Giese T, Hartmann G, Aloisi F, Meinl E (2005). Preferential expression and function of Toll-like receptor 3 in human astrocytes. J Neuroimmunol 159: 12–19.

    Article  CAS  PubMed  Google Scholar 

  • Finberg RW, Kurt-Jones EA (2004). Viruses and Toll-like receptors. Microbes Infect 6: 1356–1360.

    Article  CAS  PubMed  Google Scholar 

  • Guillot L, Le GR, Bloch S, Escriou N, Akira S, Chignard M, Si-Tahar M (2005). Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem 280: 5571–5580.

    Article  CAS  PubMed  Google Scholar 

  • Huh GS, Boulanger LM, Du H, Riquelme PA, Brotz TM, Shatz CJ (2000). Functional requirement for class I MHC in CNS development and plasticity. Science 290: 2155–2159.

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Hirota J, Mombaerts P (2003). Combinatorial co-expression of neural and immune multigene families in mouse vomeronasal sensory neurons. Curr Biol 13: 394–400.

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki Y, Tobita M (2002) Pathology. In: Rabies. Jackson AC and Wunner WH (eds). San Diego: Academic Press, pp 283–306.

    Google Scholar 

  • Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP (2005). TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175: 4320–4330.

    CAS  PubMed  Google Scholar 

  • Jackson AC (2002) Pathogenesis. In: Rabies. Jackson AC and Wunner WH (eds). San Diego: Academic Press, pp 245–282.

    Google Scholar 

  • Jackson AC, Melanson M, Rossiter JP (2002). Familial herpes simplex encephalitis [letter]. Ann Neurol 51: 406–407.

    Article  PubMed  Google Scholar 

  • Jackson AC, Ye H, Ridaura-Sanz C, Lopez-Corella E (2001). Quantitative study of the infection in brain neurons in human rabies. J Med Virol 65: 614–618.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs BL, Langland JO (1996). When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology 219: 339–349.

    Article  CAS  PubMed  Google Scholar 

  • Karpala AJ, Doran TJ, Bean AG (2005). Immune responses to dsRNA: implications for gene silencing technologies. Immunol Cell Biol 83: 211–216.

    Article  CAS  PubMed  Google Scholar 

  • Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G, Bronson R, Arnold MM, Knipe DM, Finberg RW (2004). Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci U S A 101: 1315–1320.

    Article  CAS  PubMed  Google Scholar 

  • Lafon M, Prehaud C, Megret F, Lafage M, Mouillot G, Roa M, Moreau P, Rouas-Freiss N, Carosella ED (2005). Modulation of HLA-G expression in human neural cells after neurotropic viral infections. J Virol 79: 15226–15237.

    Article  CAS  PubMed  Google Scholar 

  • Le Bon A, Tough DF (2002). Links between innate and adaptive immunity via type I interferon. Curr Opin Immunol 14: 432–436.

    Article  PubMed  Google Scholar 

  • Loconto J, Papes F, Chang E, Stowers L, Jones EP, Takada T, Kumanovics A, Fischer LK, Dulac C (2003). Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell 112: 607–618.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Corella E, Jackson AC (1996). Rabies without Negri bodies: detection of rabies virus at autopsy by immunohistochemistry and in situ hybridization. Patologia (Mexico) 34: 39–41.

    Google Scholar 

  • Maier S, Geraghty DE, Weiss EH (1999). Expression and regulation of HLA-G in human glioma cell lines. Transplant Proc 31: 1849–1853.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Funami K, Tanabe M, Oshiumi H, Shingai M, Seto Y, Yamamoto A, Seya T (2003). Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol 171: 3154–3162.

    CAS  PubMed  Google Scholar 

  • McGeer PL, McGeer EG (2002a). Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 26: 459–470.

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, McGeer EG (2002b). Local neuroinflammation and the progression of Alzheimer’s disease. J NeuroVirol 8: 529–538.

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, McGeer EG (2004). Inflammation and the degenerative diseases of aging. Ann N Y Acad Sci 1035: 104–116.

    Article  CAS  PubMed  Google Scholar 

  • McKimmie CS, Fazakerley JK (2005). In response to pathogens, glial cells dynamically and differentially regulate Toll-like receptor gene expression. J Neuroimmunol 169: 116–125.

    Article  CAS  PubMed  Google Scholar 

  • McKimmie CS, Johnson N, Fooks AR, Fazakerley JK (2005). Viruses selectively upregulate Toll-like receptors in the central nervous system. Biochem Biophys Res Commun 336: 925–933.

    Article  CAS  PubMed  Google Scholar 

  • Miettinen M, Sareneva T, Julkunen I, Matikainen S (2001). IFNs activate toll-like receptor gene expression in viral infections. Genes Immun 2: 349–355.

    Article  CAS  PubMed  Google Scholar 

  • Picard AC (1984). Human rabies acquired outside of Canada—Quebec. Can Dis Wkly Rep 10: 177–178.

    Google Scholar 

  • Pleasure SJ, Page C, Lee VM (1992). Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J Neurosci 12: 1802–1815.

    CAS  PubMed  Google Scholar 

  • Prehaud C, Megret F, Lafage M, Lafon M (2005). Viral infection switches TLR-3-positive human neurons to become strong producers of beta interferon. J Virol 79: 12893–12904.

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, Akira S (2003). Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol 171: 4304–4310.

    CAS  PubMed  Google Scholar 

  • Sen GC, Sarkar SN (2005). Transcriptional signaling by double-stranded RNA: role of TLR3. Cytokine Growth Factor Rev 16: 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Siren J, Pirhonen J, Julkunen I, Matikainen S (2005). IFN-alpha regulates TLR-dependent gene expression of IFN-alpha, IFN-beta, IL-28, and IL-29. J Immunol 174: 1932–1937.

    CAS  PubMed  Google Scholar 

  • Takeda K, Akira S (2004). TLR signaling pathways. Semin Immunol 16: 3–9.

    Article  CAS  PubMed  Google Scholar 

  • TenOever BR, Sharma S, Zou W, Sun Q, Grandvaux N, Julkunen I, Hemmi H, Yamamoto M, Akira S, Yeh WC, Lin R, Hiscott J (2004). Activation of TBK1 and IKKɛ kinases by vesicular stomatitis virus infection and the role of viral ribonucleoprotein in the development of interferon antiviral immunity. J Virol 78: 10636–10649.

    Article  CAS  PubMed  Google Scholar 

  • Wang ZW, Sarmento L, Wang Y, Li XQ, Dhingra V, Tseggai T, Jiang B, Fu ZF (2005). Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. J Virol 79: 12554–12565.

    Article  CAS  PubMed  Google Scholar 

  • Webster WA, Casey GA, Charlton KM, Picard AC, McLaughlin B (1985). Human rabies acquired outside of Canada. Can Dis Wkly Rep 11: 13–14.

    Google Scholar 

  • Yamada T, Horisberger MA, Kawaguchi N, Moroo I, Toyoda T (1994). Immunohistochemistry using antibodies to alpha-interferon and its induced protein, MxA, in Alzheimer’s and Parkinson’s disease brain tissues. Neurosci Lett 181: 61–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Lafon.

Additional information

Alan C. Jackson was on sabbatical leave from Queen’s University.

This work was supported by institutional grants from Institut Pasteur (M. Lafon) and Canadian Institutes of Health Research grant MOP-64376 (A.C. Jackson).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, A.C., Rossiter, J.P. & Lafon, M. Expression of Toll-like receptor 3 in the human cerebellar cortex in rabies, herpes simplex encephalitis, and other neurological diseases. Journal of NeuroVirology 12, 229–234 (2006). https://doi.org/10.1080/13550280600848399

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280600848399

Keywords

Navigation