Skip to main content
Log in

Activation of climbing fibers

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Cells in the inferior olive are the sole source of climbing fibers to the cerebellum. In this article, we review some of the discharge properties of olivary cells that are important for understanding its functional role in cerebellar processing. It is generally believed that climbing fiber input supplies the cerebellum with information related to movement errors in order to improve motor performance. As a whole, olivary properties are not consistent with this function. The properties are consistent with the hypothesis that the olive is important for associating arbitrary sensory stimuli with somatosensory events. Although such associations would not be useful for improving the accuracy of motor commands, they may be useful for organizing appropriate behaviors to cope with the predicted event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Armstrong DM. Functional significance of connections of the inferior olive. Physiol Rev 1974; 54(2): 358–417.

    PubMed  CAS  Google Scholar 

  2. Armstrong DM, Campbell NC, Edgley SA, Schild RF, Trott JR. Investigations of the Olivocerebellar and Spino-Olivary Pathways. In: Palay SL, Chan-Palay V, editors. The Cerebellum — New Vistas. Berlin: Springer-Verlag, 1982.

    Google Scholar 

  3. Ito M. The Cerebellum and Neural Control. New York: Raven, 1984.

    Google Scholar 

  4. Courville J, De Montigny C, Lamarre Y. The Inferior Oliveary Nucleus: Anatomy and Physiology. New York: Raven, 1980.

    Google Scholar 

  5. Gellman R, Houk JC, Gibson AR. Somatosensory properties of the inferior olive of the cat. J Comp Neurol 1983; 215(2): 228–243.

    PubMed  CAS  Google Scholar 

  6. Oscarsson O, Sjolund B. The ventral spino-olivocerebellar system in the cat. I. Identification of five paths and their termination in the cerebellar anterior lobe. Exp Brain Res 1977; 28(5): 469–486.

    PubMed  CAS  Google Scholar 

  7. Oscarsson O, Sjolund B. The ventral spino-olivocerebellar system in the cat. II. Termination zones in the cerebellar posterior lobe. Exp Brain Res 1977; 28(5): 487–503.

    PubMed  CAS  Google Scholar 

  8. Oscarsson O, Sjolund B. The ventral spino-olivocerebellar system in the cat. III. Functional characteristics of the five paths. Exp Brain Res 1977; 28(5): 505–520.

    PubMed  CAS  Google Scholar 

  9. Eccles JC, Llinas R, Sasaki K. Intracellularly recorded responses of the cerebellar Purkinje cells. Exp Brain Res 1966; 1(2): 161–183.

    PubMed  CAS  Google Scholar 

  10. Courville J, Faraco-Cantin F. On the origin of the climbing fibers of the cerebellum. An experimental study in the cat with an autoradiographic tracing method. Neuroscience 1978; 3(9): 797–809.

    PubMed  CAS  Google Scholar 

  11. Groenewegen HJ, Voogd J, Freedman SL. The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum. J Comp Neurol 1979; 183(3): 551–601.

    PubMed  CAS  Google Scholar 

  12. Shinoda Y, Sugihara I, Wu HS, Sugiuchi Y. The entire trajectory of single climbing and mossy fibers in the cerebellar nuclei and cortex. Prog Brain Res 2000; 124: 173–186.

    Article  PubMed  CAS  Google Scholar 

  13. Schild RF. On the inferior olive of the albino rat. J Comp Neurol 1970; 140(3): 255–260.

    PubMed  CAS  Google Scholar 

  14. Eccles JC, Ito M, Szentagothai J. The Cerebellum as a Neuronal Machine. New York: Springer, 1967.

    Google Scholar 

  15. Eccles JC, Llinas R, Sasaki K. The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol 1966; 182(2): 268–296.

    PubMed  CAS  Google Scholar 

  16. Jasmin L, Courville J, Bakker DA. Afferent projections from forelimb muscles to the external and main cuneate nuclei in the cat. A study with transganglionic transport of horseradish peroxidase. Anat Embryol 1985; 171(3): 275–284.

    PubMed  CAS  Google Scholar 

  17. Jasmin L, Courville J. Distribution of external cuneate nucleus afférents to the cerebellum: II. Topographical distribution and zonal pattern — an experimental study with radioactive tracers in the cat. J Comp Neurol 1987; 261(4): 497–514.

    PubMed  CAS  Google Scholar 

  18. Nyberg G, Blomqvist A. The central projection of muscle afferent fibres to the lower medulla and upper spinal cord: an anatomical study in the cat with the transganglionic transport method. J Comp Neurol 1984; 230(1): 99–109.

    PubMed  CAS  Google Scholar 

  19. van Kan PL, Gibson AR, Houk JC. Movement-related inputs to intermediate cerebellum of the monkey. [Erratum appears in J Neurophysiol 1993 Mar;69(3)]. J Neurophysiol 1993; 69(1): 74–94.

    PubMed  Google Scholar 

  20. Mackie PD, Morley JW, Rowe MJ. Signalling of static and dynamic features of muscle spindle input by external cuneate neurones in the cat. J Physiol 1999; 519 Pt 2: 559–569.

    PubMed  CAS  Google Scholar 

  21. Glickstein M, May JG, 3rd, Mercier BE. Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 1985; 235(3): 343–359.

    PubMed  CAS  Google Scholar 

  22. Glickstein M, Gerrits N, Kralj-Hans I, Mercier B, Stein J, Voogd J. Visual pontocerebellar projections in the macaque. J Comp Neurol 1994; 349(1): 51–72.

    PubMed  CAS  Google Scholar 

  23. Legg CR, Mercier B, Glickstein M. Corticopontine projection in the rat: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 1989; 286(4): 427–441.

    PubMed  CAS  Google Scholar 

  24. Brodai P. The corticopontine projection from the visual cortex in the cat. II. The projection from areas 18 and 19. Brain Res 1972; 39(2): 319–335.

    Google Scholar 

  25. Brodai P. The corticopontine projection from the visual cortex in the cat. I. The total projection and the projection from area 17. Brain Res 1972; 39(2): 297–317.

    Google Scholar 

  26. Cajal SRY. Histology of the Nervous System Volume I. Translated from the French by Swanson N, Swanson LW, 1995. New York: Oxford University Press, 1909.

    Google Scholar 

  27. Baker J, Gibson A, Glickstein M, Stein J. Visual cells in the pontine nuclei of the cat. J Physiol 1976; 255(2): 415–433.

    PubMed  CAS  Google Scholar 

  28. Andersson G, Armstrong DM. Complex spikes in Purkinje cells in the lateral vermis (b zone) of the cat cerebellum during locomotion. J Physiol 1987; 385: 107–134.

    PubMed  CAS  Google Scholar 

  29. Harvey RJ, Porter R, Rawson JA. The natural discharges of Purkinje cells in paravermal regions of lobules V and VI of the monkey’s cerebellum. J Physiol 1977; 271(2): 515–536.

    PubMed  CAS  Google Scholar 

  30. Thach WT. Discharge of cerebellar neurons related to two maintained postures and two prompt movements. II. Purkinje cell output and input. J Neurophysiol 1970; 33(4): 537–547.

    PubMed  CAS  Google Scholar 

  31. Gellman R, Gibson AR, Houk JC. Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. J Neurophysiol 1985; 54(1): 40–60.

    PubMed  CAS  Google Scholar 

  32. Dugas C, Smith AM. Responses of cerebellar Purkinje cells to slip of a hand-held object. J Neurophysiol 1992; 67(3): 483–495.

    PubMed  CAS  Google Scholar 

  33. Horn KM, Van Kan PL, Gibson AR. Reduction of rostral dorsal accessory olive responses during reaching. J Neurophysiol 1996; 76(6): 4140–4151.

    PubMed  CAS  Google Scholar 

  34. Armstrong DM, Eccles JC, Harvey RJ, Matthews PB. Responses in the dorsal accessory olive of the cat to stimulation of hind limb afferents. J Physiol 1968; 194(1): 125–145.

    PubMed  CAS  Google Scholar 

  35. Crill WE. Unitary multiple-spiked responses in cat inferior olive nucleus. J Neurophysiol 1970; 33(2): 199–209.

    PubMed  CAS  Google Scholar 

  36. Llinas R, Baker R, Sotelo C. Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol 1974; 37(3): 560–571.

    PubMed  CAS  Google Scholar 

  37. Llinas R, Yarom Y. Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol 1981; 315: 549–567.

    PubMed  CAS  Google Scholar 

  38. Kolb FP, Rubia FJ. Information about peripheral events conveyed to the cerebellum via the climbing fiber system in the decerebrate cat. Exp Brain Res 1980; 38(4): 363–373.

    PubMed  CAS  Google Scholar 

  39. Lang EJ, Sugihara I, Welsh JP, Llinas R. Patterns of spontaneous Purkinje cell complex spike activity in the awake rat. J Neuro-science 1999; 19(7): 2728–2739.

    CAS  Google Scholar 

  40. Kitazawa S, Kimura T, Yin PB. Cerebellar complex spikes encode both destinations and errors in arm movements. Nature 1998; 392(6675): 494–497.

    PubMed  CAS  Google Scholar 

  41. Fu QG, Mason CR, Flament D, Coltz JD, Ebner TJ. Movement kinematics encoded in complex spike discharge of primate cerebellar Purkinje cells. Neuroreport 1997; 8(2): 523–529.

    PubMed  CAS  Google Scholar 

  42. Murphy JT, Sabah NH. Cerebellar Purkinje cell responses to afferent inputs. I. Climbing fiber activation. Brain Res 1971; 25(3): 449–467.

    PubMed  CAS  Google Scholar 

  43. Robinson FR, Fraser MO, Hollerman JR, Tomko DL. Yaw direction neurons in the cat inferior olive. J Neurophysiol 1988; 60(5): 1739–1752.

    PubMed  CAS  Google Scholar 

  44. Eccles JC, Sabah NH, Schmidt RF, Taborikova H. Cutaneous mechanoreceptors influencing impulse discharges in cerebellar cortex. III. In Purkinje cells by climbing fiber input. Exp Brain Res 1972; 15(5): 484–497.

    PubMed  CAS  Google Scholar 

  45. Rushmer DS, Woollacott MH, Robertson LT, Laxer KD. Somatotopic organization of climbing fiber projections from low threshold cutaneous afferents to pars intermedia of cerebellar cortex in the cat. Brain Res 1980; 181(1): 17–30.

    PubMed  CAS  Google Scholar 

  46. Rushmer DS, Roberts WJ, Augter GK. Climbing fiber responses of cerebellar Purkinje cells to passive movement of the cat forepaw. Brain Res 1976; 106(1): 1–20.

    PubMed  CAS  Google Scholar 

  47. Spence SJ, Saint-Cyr JA. Comparative topography of projections from the mesodiencephalic junction to the inferior olive, vestibular nuclei, and upper cervical cord in the cat. J Comp Neurol 1988; 268(3): 357–374.

    PubMed  CAS  Google Scholar 

  48. Berkley KJ, Hand PJ. Projections to the inferior olive of the cat. II. Comparisons of input from the gracile, cuneate and the spinal trigeminal nuclei. J Comp Neurol 1978; 180(2): 253–264.

    PubMed  CAS  Google Scholar 

  49. Boesten AJ, Voogd J. Projections of the dorsal column nuclei and the spinal cord on the inferior olive in the cat. J Comp Neurol 1975; 161(2): 215–237.

    PubMed  CAS  Google Scholar 

  50. Gerrits NM, Voogd J, Magras IM. Vestibular afferents of the inferior olive and the vestibulo-olivo-cerebellar climbing fiber pathway to the flocculus in the cat. Brain Res 1985; 332(2): 325–336.

    PubMed  CAS  Google Scholar 

  51. Saint-Cyr JA, Courville J. Projection from the vestibular nuclei to the inferior olive in the cat: an autoradiographic and horseradish peroxidase study. Brain Res 1979; 165(2): 189–200.

    PubMed  CAS  Google Scholar 

  52. de Zeeuw CI, Wylie DR, Stahl JS, Simpson JI. Phase relations of Purkinje cells in the rabbit flocculus during compensatory eye movements. J Neurophysiol 1995; 74(5): 2051–2064.

    PubMed  Google Scholar 

  53. Ghelarducci B, Ito M, Yagi N. Impulse discharges from flocculus Purkinje cells of alert rabbits during visual stimulation combined with horizontal head rotation. Brain Res 1975; 87(1): 66–72.

    PubMed  CAS  Google Scholar 

  54. Leonard CS, Simpson JI. Simple spike modulation of floccular Purkinje cells during the reversible blockade of their climbing fiber afferents. In: Keller EL, Zee DS, editors. Adaptive Processes in the Visual and Oculomotor Systems. Oxford, UK: Pergamon, 1986.

    Google Scholar 

  55. Precht W, Simpson JI, Llinas R. Responses of Purkinje cells in rabbit nodulus and uvula to natural vestibular and visual stimuli. Pflugers Archiv — Eur J Physiol 1976; 367(1): 1–6.

    CAS  Google Scholar 

  56. Takeda T, Maekawa K. The origin of the pretecto-olivary tract. A study using the horseradish peroxidase method. Brain Res 1976; 117(2): 319–325.

    PubMed  CAS  Google Scholar 

  57. Maekawa K, Takeda T. Afferent pathways from the visual system to the cerebellar flocculus of the rabbit. In: Baker R, Berthoz A, editors. Control of Gaze by Brainstem Neurons. Amsterdam: Elsevier/ North Holland Biomed Press, 1977: 187–196.

    Google Scholar 

  58. Soodak RE, Simpson JI. The accessory optic system of rabbit. I. Basic visual response properties. J Neurophysiol 1988; 60(6): 2037–2054.

    PubMed  CAS  Google Scholar 

  59. Barmack NH, Simpson JI. Effects of microlesions of dorsal cap of inferior olive of rabbits on optokinetic and vestibuloocular reflexes. J Neurophysiol 1980; 43(1): 182–206.

    PubMed  CAS  Google Scholar 

  60. Barmack NH, Hess DT. Multiple-unit activity evoked in dorsal cap of inferior olive of the rabbit by visual stimulation. J Neurophysiol 1980; 43(1): 151–164.

    PubMed  CAS  Google Scholar 

  61. Stone LS, Lisberger SG. Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. II. Complex spikes. J Neurophysiol 1990; 63(5): 1262–1275.

    PubMed  CAS  Google Scholar 

  62. Simpson JI, Belton T, Suh M, Winkelman B. Complex spike activity in the flocculus signals more than the eye can see. Ann New York Acad Sciences 2002; 978: 232–236.

    CAS  Google Scholar 

  63. Bauswein E, Kolb FP, Leimbeck B, Rubia FJ. Simple and complex spike activity of cerebellar Purkinje cells during active and passive movements in the awake monkey. J Physiol 1983; 339: 379–394.

    PubMed  CAS  Google Scholar 

  64. Mortimer JA. Cerebellar responses to teleceptive stimuli in alert monkeys. Brain Res 1975; 83(3): 369–390.

    PubMed  CAS  Google Scholar 

  65. Matthews PBC. Mammalian Muscle Receptors and Their Central Actions. London: Edward Arnold, 1972.

    Google Scholar 

  66. Jasmin L, Courville J. Distribution of external cuneate nucleus afferents to the cerebellum: I. Notes on the projections from the main cuneate and other adjacent nuclei. An experimental study with radioactive tracers in the cat. J Comp Neurol 1987; 261(4): 481–496.

    PubMed  CAS  Google Scholar 

  67. Matsushita M, Ikeda M. Spinocerebellar projections from the cervical enlargement in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 1987; 263(2): 223–240.

    PubMed  CAS  Google Scholar 

  68. McCurdy ML, Houk JC, Gibson AR. Organization of ascending pathways to the forelimb area of the dorsal accessory olive in the cat. J Comp Neurol 1998; 392(1): 115–133.

    PubMed  CAS  Google Scholar 

  69. Ekerot CF, Gustavsson P, Oscarsson O, Schouenborg J. Climbing fibres projecting to cat cerebellar anterior lobe activated by cutaneous A and C fibres. J Physiol 1987; 386: 529–538.

    PubMed  CAS  Google Scholar 

  70. Ekerot CF, Oscarsson O, Schouenborg J. Stimulation of cat cutaneous nociceptive C fibres causing tonic and synchronous activity in climbing fibres. J Physiol 1987; 86: 539–546.

    Google Scholar 

  71. Garwicz M, Ekerot CF, Schouenborg J. Distribution of cutaneous nociceptive and tactile climbing fibre input to sagittal zones in cat cerebellar anterior lobe. Eur J Neurosci 1992; 4(4): 289–295.

    PubMed  Google Scholar 

  72. Rawson JA, Tilokskulchai K. Climbing fibre modification of cerebellar Purkinje cell responses to parallel fibre inputs. Brain Res 1982; 237(2): 492–497.

    PubMed  CAS  Google Scholar 

  73. Ekerot CF. Climbing fibres — a key to cerebellar function. J Physiol 1999; 516(Pt 3): 629.

    PubMed  CAS  Google Scholar 

  74. Rubia FJ. The projection of visceral afferents to the cerebellar cortex of the cat. Pflugers Archiv — Eur J Physiol 1970; 320(2): 97–110.

    CAS  Google Scholar 

  75. Tong G, Robertson LT, Brons J. Vagal and somatic representation by the climbing fiber system in lobule V of the cat cerebellum. Brain Res 1991; 552(1): 58–66.

    PubMed  CAS  Google Scholar 

  76. Tong G, Robertson LT, Brons J. Climbing fiber representation of the renal afferent nerve in the vermal cortex of the cat cerebellum. Brain Res 1993; 601(1–2): 65–75.

    PubMed  CAS  Google Scholar 

  77. Hennemann HE, Rubia FJ. Vagal representation in the cerebellum of the cat. Pflugers Archiv -Eur J Physiol 1978; 375(2): 119–123.

    CAS  Google Scholar 

  78. Perrin J, Crousillat J. Responses of single units in the inferior olive nucleus to stimulation of the splanchnic afferents in the cat. J Auton Nerv Syst 1980; 2(1): 15–22.

    PubMed  CAS  Google Scholar 

  79. Nishii K, Oura C, Pallie W. Ultrastructure of the mature Pacinian corpuscle in the mesentery of the cat. J Anat 1970; 106(1): 208.

    PubMed  CAS  Google Scholar 

  80. Garwicz M, Ekerot CF. Topographical organization of the cerebellar cortical projection to nucleus interpositus anterior in the cat. J Physiol 1994; 474(2): 245–260.

    PubMed  CAS  Google Scholar 

  81. Martin RJ, Apkarian AV, Hodge CJ, Jr. Ventrolateral and dorsolateral ascending spinal cord pathway influence on thalamic nociception in cat. J Neurophysiol 1990; 64(5): 1400–1412.

    PubMed  CAS  Google Scholar 

  82. Armstrong DM, Edgley SA, Lidierth M. Complex spikes in Purkinje cells of the paravermal part of the anterior lobe of the cat cerebellum during locomotion. J Physiol 1988; 400: 405–414.

    PubMed  CAS  Google Scholar 

  83. Apps R. Movement-related gating of climbing fibre input to cerebellar cortical zones. Prog Neurobiol 1999; 57(5): 537–562.

    PubMed  CAS  Google Scholar 

  84. Nelson BJ, Adams JC, Barmack NH, Mugnaini E. Comparative study of glutamate decarboxylase immunoreactive boutons in the mammalian inferior olive. J Comp Neurol 1989; 286(4): 514–539.

    PubMed  CAS  Google Scholar 

  85. de Zeeuw CI, Holstege JC, Calkoen F, Ruigrok TJ, Voogd J. A new combination of WGA-HRP anterograde tracing and GABA immunocytochemistry applied to afferents of the cat inferior olive at the ultrastructural level. Brain Res 1988; 447(2): 369–375.

    PubMed  Google Scholar 

  86. Angaut P, Sotelo C. The dentato-olivary projection in the rat as a presumptive GABAergic link in the olivo-cerebello-olivary loop. An ultrastructural study. Neurosci Lett 1987; 83(3): 227–231.

    PubMed  CAS  Google Scholar 

  87. Angaut P, Sotelo C. Synaptology of the cerebello-olivary pathway. Double labelling with anterograde axonal tracing and GABA immunocytochemistry in the rat. Brain Res 1989; 479(2): 361–365.

    PubMed  CAS  Google Scholar 

  88. Gibson AR, Horn KM, Pong M. Inhibitory control of olivary discharge. In: Highstein SM, Thach WT, editors. The Cerebellum: Recent Developments in Cerebellar Research, Ann New York Acad Sciencesvol. 9782002.

  89. Oscarsson O. Functional organization of olivary projection to the cerebellar anterior lobe. In: Courville J, De Montigny C, Lamarre Y, editors. The Inferior Olivary Nucleus: Anatomy and Physiology. New York: Raven Press, 1980: 279–289.

    Google Scholar 

  90. Horn KM, Pong M, Gibson A. Discharge of inferior olive cells during reaching errors and perturbations. Brain Res 2004; 996(2): 148–158.

    PubMed  CAS  Google Scholar 

  91. Gibson AR, Robinson FR, Alam J, Houk JC. Somatotopic alignment between climbing fiber input and nuclear output of the cat intermediate cerebellum. J Comp Neurol 1987; 260(3): 362–377.

    PubMed  CAS  Google Scholar 

  92. Gellman R, Miles F. A new role for the cerebellum in condizioning? Trends Neurosci 1985; 8(1): 181–182.

    Google Scholar 

  93. Yeo CH, Hardiman MJ, Glickstein M. Classical conditioning of the nictitating membrane response of the rabbit. IV. Lesions of the inferior olive. Exp Brain Res 1986; 63(1): 81–92.

    PubMed  CAS  Google Scholar 

  94. Welsh JP, Harvey JA. Acute inactivation of the inferior olive blocks associative learning. Eur J Neurosci 1998; 10(11): 3321–3332.

    PubMed  CAS  Google Scholar 

  95. McCormick DA, Steinmetz JE, Thompson RF. Lesions of the inferior olivary complex cause extinction of the classically conditioned eyeblink response. Brain Res 1985; 359(1–2): 120–130.

    PubMed  CAS  Google Scholar 

  96. Medina JF, Nores WL, Mauk MD. Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses. Nature 2002; 416(6878): 330–333.

    PubMed  CAS  Google Scholar 

  97. Voneida TJ, Christie D, Bogdanski R, Chopko B. Changes in instrumentally and classically conditioned limb-flexion responses following inferior olivary lesions and olivocerebellar tractotomy in the cat. J Neurosci 1990; 10(11): 3583–3593.

    PubMed  CAS  Google Scholar 

  98. Pavlov. Conditioned Reflexes. London, England: Oxford University Press, 1927.

    Google Scholar 

  99. Bower JM. The organization of cerebellar cortical circuitry revisited: implications for function. Ann New York Acad Sciences 2002; 978: 135–155.

    Google Scholar 

  100. Bloedel JR, Roberts WJ. Action of climbing fibers in cerebellar cortex of the cat. J Neurophysiol 1971; 34(1): 17–31.

    PubMed  CAS  Google Scholar 

  101. Gibson AR, Gellman R. Functional implications of inferior olivary response properties. In: Glickstein M, Yeo C, Stein J, editors. Cerebellum and Neuronal Plasticity: Plenum, 1987: 119–140.

  102. Hausser M, Major G, Stuart GJ. Differential shunting of EPSPs by action potentials. Science 2001; 291(5501): 138–141.

    PubMed  CAS  Google Scholar 

  103. Jorntell H, Ekerot CF. Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron 2002; 34(5): 797–806.

    PubMed  CAS  Google Scholar 

  104. Bull MS, Berkley KJ. Differences in the neurons that project from the dorsal column nuclei to the diencephalon, pretectum, and tectum in the cat. Somatosens Res 1984; 1(3): 281–300.

    Article  PubMed  CAS  Google Scholar 

  105. Bull MS, Mitchell SK, Berkley KJ. Convergent inputs to the inferior olive from the dorsal column nuclei and pretectum in the cat. Brain Res 1990; 525(1): 1–10.

    PubMed  CAS  Google Scholar 

  106. Berkley KJ, Worden IG. [Projections to the inferior olive of the cat. I. Comparisons of input from the dorsal column nuclei, the lateral cervical nucleus, the spino-olivary pathways, the cerebral cortex and the cerebellum.]. J Comp Neurol 1978; 180(2): 237–251.

    PubMed  CAS  Google Scholar 

  107. Maekawa K, Simpson JL. Climbing fiber responses evoked in vestibulocerebellum of rabbit from visual system. J Neurophysiol 1973; 36(4): 649–666.

    PubMed  CAS  Google Scholar 

  108. Kyuhou S, Matsuzaki R. Topographical organization of the tectoolivo-cerebellar projection in the cat. Neuroscience 1991; 41(1): 227–241.

    PubMed  CAS  Google Scholar 

  109. Onodera S. Olivary projections from the mesodiencephalic structures in the cat studied by means of axonal transport of horseradish peroxidase and tritiated amino acids. J Comp Neurol 1984; 227(1): 37–49.

    PubMed  CAS  Google Scholar 

  110. Loewy AD, Burton H. Nuclei of the solitary tract: efferent projections to the lower brain stem and spinal cord of the cat. J Comp Neurol 1978; 181(2): 421–449.

    PubMed  CAS  Google Scholar 

  111. Huerta MF, Hashikawa T, Gayoso MJ, Harting JK. The trigemino-olivary projection in the cat: contributions of individual subnuclei. J Comp Neurol 1985; 241(2): 180–190.

    PubMed  CAS  Google Scholar 

  112. Akaike T. Spatial distribution of evoked potentials in the inferior olivary nucleus by stimulation of the visual afferents in the rat. Brain Res 1986; 368(1): 183–187.

    PubMed  CAS  Google Scholar 

  113. Barmack NH, Fredette BJ, Mugnaini E. Parasolitary nucleus: a source of GABAergic vestibular information to the inferior olive of rat and rabbit. J Comp Neurol 1998; 392(3): 352–372.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R. Gibson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibson, A.R., Horn, K.M. & Pong, M. Activation of climbing fibers. Cerebellum 3, 212–221 (2004). https://doi.org/10.1080/14734220410018995

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220410018995

Keywords

Navigation