Skip to main content
Log in

Dopamine transporters in the cerebellum of mutant mice

  • Original Article
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

In the central nervous system, dopamine is known to play a critical role in motor and cognitive functions. Although the cerebellum plays a role in the control of movement and posture and in cognitive functions, it has not been considered to be a dopaminergic region and the dopamine present was thought to represent a precursor of noradrenaline. However, recent evidence suggests that in the cerebellum there is a small dopaminergic element, whose properties are similar to the well characterized system of striatum. In order to better understand the functional role of this system and to delineate its specific interactions within the cerebellum, the distribution and properties of dopamine transporter (DAT) in the cerebellum ofreeler andPurkinje cell degeneration (Nna1 pcd) mutant mice, which are characterized by severe loss of different cell populations and abnormalities in synapse formation, have been studied. Kinetic studies revealed that [3H] dopamine is transported into cerebellar synaptosomes prepared from normal mice with affinities similar to that into striatal synaptosomes but with much lower maximal velocities. Inreeler cerebellar synaptosomes the number of transport sites is significantly reduced. InNna1 pcd cerebellar synaptosomes the kinetic properties of transport of [3H] dopamine are similar to the normal. However,in vitro quantitative DAT autoradiography revealed a significantly increased binding in cerebellar nuclei, a decreased binding in molecular layer and an unaltered binding in the granule cell layer. These observations confirm a dopaminergic innervation of the cerebellum and contribute to our understanding of the intracerebellar distribution of the dopaminergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kizer JS, Palkovits M, Brownstein MJ. The projections of the A8, A9 and A10 dopaminergic cell bodies: Evidence for a nigral-hypothalamic-median eminence dopaminergic pathway. Brain Res. 1976;108:363–70.

    Article  PubMed  CAS  Google Scholar 

  2. Panagopoulos NT, Papadopoulos GC, Matsokis NA. Dopaminergic innervation and binding in rat cerebellum. Neurosci Lett. 1991;130:208–12.

    Article  PubMed  CAS  Google Scholar 

  3. Ikai Y, Takada M, Shinonaga Y, Mizuno N. Dopaminergic and non dopaminergic neurons in the ventral tegmental area of the rat project, respectively, to the cerebellar cortex and deep cerebellar nuclei. Neuroscience. 1992;51:719–28.

    Article  PubMed  CAS  Google Scholar 

  4. Melchitzky DS, Lewis DA. Tyrosine Hydroxylase-and dopamine transporter-immunoreactive axons in the primate cerebellum. Evidence for lobular-and laminarspecific dopamine innervation. Neuropsychopharmacol. 2000;22:466–72.

    Article  CAS  Google Scholar 

  5. Efthimiopoulos S, Giompres P, Valcana T. Kinetics of dopamine and noradrenaline transport in synaptosomes from cerebellum, striatum and frontal cortex of normal and reeler mice. J Neurosci Res. 1991;29:510–9.

    Article  PubMed  CAS  Google Scholar 

  6. Dethy S, Manto M, Bastianelli E, Gangji V, Laute MA, Goldman S, Hildebrand J. Cerebellar spongiform degeneration induced by acute lithium intoxication in the rat. Neurosci Lett. 1997;224:25–8.

    Article  PubMed  CAS  Google Scholar 

  7. Boyson SJ, McGonigle P, Mollinof PB. Quantitative auto-radiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain. J Neurosci. 1986;6:3177–88.

    PubMed  CAS  Google Scholar 

  8. Dubois A, Savasta M, Curet O, Scatton B. Autoradiographic distribution of the D1 agonist [3H]SKF38393 in the rat brain and spinal cord. Comparison with the distribution of D2 receptors. Neuroscience. 1986;19:125–37.

    Article  PubMed  CAS  Google Scholar 

  9. Camps M, Kelly PH, Palacios JM. Autoradiographic localization of dopamine D1and D2 receptors in brain of several mammalian species. J Neural Trans. 1990;80:105–27.

    Article  CAS  Google Scholar 

  10. Panagopoulos NT, Matsokis NA, Valkana T. Cerebellar and striatal dopamine receptors: effects of reeler and weaver murine mutations. J Neurosci Res. 1993;35:409–506.

    Article  Google Scholar 

  11. Khan ZU, Gutierrez A, Martin R, Penafiel A, Rivera A, de la Calle A. Differential regional and cellular distribution of dopamine D2-like receptors: An immunocytochemical study of subtype-specific antibodies in rat and human brain. J Comp Neurol. 1998;402:353–71.

    Article  PubMed  CAS  Google Scholar 

  12. Barili P, Bronzetti E, Ricci A, Zaccheo D, Amenta F. Microanatomical localization of dopamine receptor protein immunoreactivity in the rat cerebellar cortex. Brain Res. 2000;854:130–8.

    Article  PubMed  CAS  Google Scholar 

  13. Mansur A, Meador-Woodruff JH, Zhou QY, Civelli O, Akil H, Watson SJ. A comparison of D1 receptor binding and mRNA in rat brain using receptor autoradiography and in situ hybridization techniques. Neuroscience. 1991;45:359–71.

    Article  Google Scholar 

  14. Mengod G, Villaro MT, Landwehrmeyer GB, et al. Visualization of dopamine D1, D2 and D3 receptor mRNAs in human and rat brain. Neurochem Int. 1992;20(Suppl.):33S-43S.

    Article  PubMed  CAS  Google Scholar 

  15. Laurier LG, O’Dowd BF, George SR. Heterogeneous tissue-specific transcription of dopamine receptor subtype messenger RNA in rat brain. Brain Res Mol Brain Res. 1994;25:344–50.

    Article  PubMed  CAS  Google Scholar 

  16. Mariani J, Crepel F, Mikoshiba K, Changeux JP, Sotelo C. Anatomical, physiological and biochemical studies of the cerebellum from Reeler mutant mouse. Philos Trans R Soc Lond Biol. 1977;281:1–28.

    Article  PubMed  CAS  Google Scholar 

  17. Caviness VS jr, Rakic P. Mechanisms of cortical development. A view from mutations in mice. Annu Rev Neurosci. 1978;1:297–326.

    Article  PubMed  Google Scholar 

  18. Goffinet AM. Events governing organization of postmigratory neurons: Studies on brain development in normal and reeler mice. Brain Res. 1984;319:261–96.

    PubMed  CAS  Google Scholar 

  19. D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature. 1995;374:719–23.

    Article  PubMed  CAS  Google Scholar 

  20. Miyata T, Nakajima K, Aruga J, et al. Distribution of the reeler gene-related antigen in the developing cerebellum: An immunohistochemical study with an allogenic antibody CR-50 on normal and reeler mice. J Comp Neurol. 1996;372:215–28.

    Article  PubMed  CAS  Google Scholar 

  21. Schiffmann SN, Bernier B, Goffinet AM. Reelin mRNA expression during mouse brain development. Eur J Neurosci. 1997;9:1055–71.

    Article  PubMed  CAS  Google Scholar 

  22. Landis SC, Mullen RJ. The development and degeneration of Purkinje cells inpcd mutant mice. J Comp Neurol. 1978;177:125–44.

    Article  PubMed  CAS  Google Scholar 

  23. Roffler-Tarlov S, Beart PM, O’Gorman S, Sidman RL. Neurochemical and morphological consequences of axon terminal degeneration in cerebellar deep nuclei of mice with inherited Purkinje cell degeneration. Brain Res. 1979;168:75–95.

    Article  PubMed  CAS  Google Scholar 

  24. Gheti B, Norton J, Triarchou LC. Nerve cell atrophy and loss in the inferior olivary complex of ‘Purkinje cell degeneration’ mutant mice. J Comp Neurol. 1987;260:409–22.

    Article  Google Scholar 

  25. LeMarec N, Lalonde R. Treadmill performance of mice with cerebellar lesions: 1. Purkinje cell degeneration mutant mice. Behav Neurosci. 1998;112:225–32.

    Article  CAS  Google Scholar 

  26. LeMarec N, Lalonde R. Sensorimotor learning and retention during equilibrium tests in Purkinje cell degeneration mutant mice. Brain Res. 1997;768:310–6.

    Article  CAS  Google Scholar 

  27. Goodlett RC, Hamre KM, West JR. Dissociation of spatial navigation and visual guidance performance in Purkinje cell degeneration (pcd) mutant mice. Behav Brain Res. 1992;47:129–41.

    Article  PubMed  CAS  Google Scholar 

  28. Fernandez-Gonzalez A, La Spanda AR, Treadaway J, et al.Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene,Nna1 Science. 2002;295:1904–6.

    Article  CAS  Google Scholar 

  29. Torres GE, Gainetdinov RR, Caron MG. Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci. 2003;4:13–25.

    Article  PubMed  CAS  Google Scholar 

  30. Delis F, Mitsacos A, Giompres P. Dopamine receptor and transporter levels are altered in the brain ofPurkinje cell degeneration mutant mice. Neuroscience. 2004;225:255–68.

    Article  CAS  Google Scholar 

  31. Ballmaier M, Zoli M, Leo G, Agnati LF, Spano P. Preferential alterations in the mesolimbic dopamine pathway of heterozygous reeler mice: An emerging animalbased model of schizophrenia. Eur J Neurosci. 2002;15:1197–205.

    Article  PubMed  Google Scholar 

  32. Nishikawa S, Goto S, Yamada K, Hamasaki T, Ushio Y. Lack of Reelin causes malpositioning of nigral dopaminergic neurons: evidence from comparison of normal andreln Tl mutant mice. J Comp Neurol. 2003;461:166–73.

    Article  PubMed  CAS  Google Scholar 

  33. Zanisher N, Doolen S. Chronic and acute regulation of Na+/Cl--dependent neurotransmitter transporters: Drugs, substrates, presynaptic receptors and signaling systems. Pharmacol Ther. 2001;92:21–55.

    Article  Google Scholar 

  34. Batini C, Compoint C, Buisseret-Delmas C, Daniel H, Guegan M. Cerebellar nuclei and the nucleocortical projections in the rat: retrograde tracing coupled to GABA and glutamate immunohistochemistry. J Comp Neurol. 1992;315:74–84.

    Article  PubMed  CAS  Google Scholar 

  35. Snider RS, Maiti A, Snider SR. Cerebellar pathways to ventral midbrain and nigra. Exp Neurol. 1976;53:714–28.

    Article  PubMed  CAS  Google Scholar 

  36. Perciavalle V, Berretta F, Raffaelle R. Projections from the intracerebellar nuclei to the ventral midbrain tegmentum in the rat. Neuroscience. 1989;29:109–19.

    Article  PubMed  CAS  Google Scholar 

  37. Rice ME, Cragg SJ, Greenfield SA. Characteristics of electrically-evoked somatodendritic dopamine release in substantia nigra and ventral tegmental area in vitro. J Neurophysiol. 1997;77:853–62.

    PubMed  CAS  Google Scholar 

  38. Hurley MJ, Mash DC, Jener P. Markers for dopaminergic neurotransmission in the cerebellum in normal individuals and patients with Parkinson’s disease examined by RT-PCR. Eur J Neurosci. 2003;18:2668–72.

    Article  PubMed  Google Scholar 

  39. Takada M, Sugimoto T, Hattori T. MPTP neurotoxicity to cerebellar Purkinje cells in mice. Neurosci Lett. 1993;150:49–52.

    Article  PubMed  CAS  Google Scholar 

  40. Le Marek N, Hebert C, Amdiss F, Botez MI, Reader TA. Regional distribution of 5-HT transporters in the brain of wild type and ‘Purkinje cell degeneration’ mutant mice: A quantitative autoradiographic study with [3H]citalopram. J Chem Neuroanat. 1998;15:155–71.

    Article  Google Scholar 

  41. Strazielle C, Lalonde R, Hebert C, Reader TA. Regional brain distribution of noradrenaline uptake studies, and of α1-, α2- and ß-adrenergic receptors inpcd mutant mice: a quantitative autoradiographic study. J Neurosci. 1999;94:287–304.

    Article  CAS  Google Scholar 

  42. Wise RA. Catecholamine theories of reward: a critical review. Brain Res. 1978;152:215–47.

    Article  PubMed  CAS  Google Scholar 

  43. Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ. Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science. 1987;237:1219–23.

    Article  PubMed  CAS  Google Scholar 

  44. Wise RA, Bozarth MA. A psychomotor stimulant theory of addiction. Psychol Rev. 1987;94:469–92.

    Article  PubMed  CAS  Google Scholar 

  45. Letchworth SR, Sexton T, Childers SR, Vrana KE, Vaughan RA, Davies HM, Porrino LJ. Regulation of rat dopamine transporter mRNA and protein by chronic cocaine administration. J Neurochem. 1999;73:1982–9.

    PubMed  CAS  Google Scholar 

  46. Wang H-Y, Runyan S, Yadin E, Friedman E. Prenatal exposure to cocaine selectively reduces D1 dopamine receptor-mediated activation of striatal Gs proteins. J Pharmacol Exp Ther. 1995;273:492–8.

    PubMed  CAS  Google Scholar 

  47. Friedman E, Yadin E, Wang H-Y. Effect of prenatal cocaine on dopamine receptor-G protein coupling in mesocortical regions of the rabbit brain. Neuroscience. 1996;70:739–47.

    Article  PubMed  CAS  Google Scholar 

  48. Tilakaratne N, Cai GP, Friedman E. Attenuation of cocaine-induced genomic and functional responses in prenatal cocaine-exposed rabbits. Pharmacol Biochem Behav. 2001;69:225–32.

    Article  PubMed  CAS  Google Scholar 

  49. Zhen X, Torres C, Wang H-Y, Friedman E. Prenatal exposure to cocaine disrupts D1A dopamine receptor function via selective inhibition of protein phosphatase I pathway in rabbit frontal cortex. J Neurosci. 2001;21:9160–7.

    PubMed  CAS  Google Scholar 

  50. Jones LB, Stanwood GD, Reinoso BS, Washington RA, Wang H-Y, Friedman E, Levitt P. In utero cocaine-induced dysfunction of dopamine D1 receptor signaling and abnormal differentiation of cerebral cortical neurons. J Neurosci. 2000;20:4606–14.

    PubMed  CAS  Google Scholar 

  51. Kosofsky BE, Wilkins AS, Gressens P, Evrard P. Transplacental cocaine exposure — a mouse model demonstrating neuroanatomic and behavioral abnormalities. J Child Neurol. 1994;9:234–41.

    Article  PubMed  CAS  Google Scholar 

  52. Barabam SC, Wenzel HJ, Castro PA, Schwartzkroin PA. Hippocampal dysplasia in rats exposed to cocaine in utero. Brain Res Dev Brain Res. 1999;117:213–7.

    Article  Google Scholar 

  53. Lidow MS, Song ZM. Primates exposed to cocaine in utero display reduced density and number of cerebral cortical neurons. J Comp Neurol. 2001;435:263–75.

    Article  PubMed  CAS  Google Scholar 

  54. Klitenick MA, Tham CS, Fibiger HC. Cocaine and d-amphetamine increase c-fos expression in the rat cerebellum. Synapse. 1995;19:29–36.

    Article  PubMed  CAS  Google Scholar 

  55. Couceyro P, Pollock KM, Drews K, Douglass J. Cocaine differentially regulates activator protein-1 mRNA levels and DNA-binding complexes in the rat striatum and cerebellum. Mol Pharmacol. 1994;46:667–76.

    PubMed  CAS  Google Scholar 

  56. Bortollozi A, Duffard R, Antonelli M, Evangelista De Buffard AM. Increased sensitivity in dopamine D2-like brain receptors from 2,4-dichlorophenoxyacetic acid (2,4-D)-exposed and amphetamine-challenged rats. Ann NY Acad Sci. 2002;965:314–23.

    Article  Google Scholar 

  57. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature. 1996;379:606–12.

    Article  PubMed  CAS  Google Scholar 

  58. Jaber M, Dumartin B, Sagne C, Haycock JW, Roubert C, Giros B, Bloch B, Caron MG. Differential regulation of tyrosine hydroxylase in the basal ganglia of mice lacking the dopamine transporter. Eur J Neurosci. 1999;11:3499–511.

    Article  PubMed  CAS  Google Scholar 

  59. Fauchey V, Jaber M, Bloch B, Le Moine C. Dopamine control of striatal gene expression during development: Relevance to knockout mice for the dopamine transporter. Eur J Neurosci. 2000;12:3415–25.

    Article  PubMed  CAS  Google Scholar 

  60. Dumartin B, Jaber M, Gonon F, Caron MG, Giros B, Bloch B. Dopamine tone regulates D1 receptor trafficking and delivery in striatal neurons in dopamine transporter-deficient mice. Proc Natl Acad Sci USA. 2000;97:1879–84.

    Article  PubMed  CAS  Google Scholar 

  61. Zhou QY, Palmiter RD. Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell. 1995;83:1197–209.

    Article  PubMed  CAS  Google Scholar 

  62. Kim DS, Szczypka MS, Palmiter RD. Dopamine-deficient mice are hypersensitive to dopamine receptor agonists. J Neurosci. 2000;20:4405–13.

    PubMed  CAS  Google Scholar 

  63. Thomas SA, Marck BT, Palmiter RD, Matsumoto AM. Restoration of norepinephrine and reversal of phenotypes in mice lacking dopamine beta-hydroxylase. J Neurochem. 1998;70:2468–76.

    PubMed  CAS  Google Scholar 

  64. Jin SH, Kim HJT, Harris DC, Thomas SA. Postnatal development of the cerebellum and the CNS adrenergic system is independent of norepinephrine and epinephrine. J Comp Neurol. 2004;477:300–9.

    Article  PubMed  CAS  Google Scholar 

  65. Robain O, Lanfumey L, Adrien J, Farkas E. Developmental changes in the cerebellar cortex after locus ceruleus lesion with 6-hydroxydopamine in the rat. Exp Neurol. 1985;88:150–64.

    Article  PubMed  CAS  Google Scholar 

  66. Podkletnova I, Rothstein JD, Helen P, Alho H. Microglial response to the neurotoxicity of 6-hydroxydopamine in neonatal rat cerebellum. Int J Dev Neurosci. 2001;19:47–52.

    Article  PubMed  CAS  Google Scholar 

  67. Podkletnova I, Alho H, Makela R, Luddens H, Helen P, Korpi ER. Neonatal 6-hydroxydopamine treatment affects GABAA receptor subunit expression during postnatal development of the rat cerebellum. Int J Dev Neurosci. 2001;18:565–72.

    Article  Google Scholar 

  68. Wagner JP, Seidler RJ, Lappi SE, McCook EC, Slotkin TA. Role of presynaptic input in the ontogeny of adrenergic cell signaling in rat brain: Beta receptors adenylate cyclase and c-fos protooncogene expression. J Pharmacol Exp Ther. 1995;273:415–26.

    PubMed  CAS  Google Scholar 

  69. Doya K. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw. 1999;12:961–74.

    Article  PubMed  Google Scholar 

  70. Sclultz W. Predictive reward signal of dopamine neurons. J Physiol. 1998;80:1–27.

    Google Scholar 

  71. Schweighofer N, Doya K, Kuroda S. Cerebellar aminergic neuromodulation: Towards a functional understanding. Brain Res Brain Res Rev. 2004;44:103–16.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Giompres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giompres, P., Delis, F. Dopamine transporters in the cerebellum of mutant mice. Cerebellum 4, 105–111 (2005). https://doi.org/10.1080/14734220510007851

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220510007851

Key words

Navigation