Skip to main content
Log in

Mechanisms of methamphetamine-induced dopaminergic neurotoxicity

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Methamphetamine (METH) is a powerful stimulant of abuse with potent addictive and neurotoxic properties. More than 2.5 decades ago, METH-induced damage to dopaminergic neurons was described. Since then, numerous advancements have been made in the search for the underlying mechanisms whereby METH causes these persistent dopaminergic deficits. Although our understanding of these mechanisms remains incomplete, combinations of various complex processes have been described around a central theme involving reactive species, such as reactive oxygen and/or nitrogen species (ROS and RNS, respectively). For example, METH-induced hyperthermia, aberrant dopamine (DA), or glutamate transmission; or mitochondrial disruption leads to the generation of reactive species with neurotoxic consequences. This review will describe the current understanding of how high-dose METH administration leads to the production of these toxic reactive species and consequent permanent dopaminergic deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wilson JM, Kalasinsky KS, Levey AI, et al. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users.Nat Med. 1996;2:699–703.

    Article  PubMed  CAS  Google Scholar 

  2. Hotchkiss AJ, Gibb JW. Long-term effects of multiple doses of metham phetamine on tryptophan hydroxylase and tyrosine hydroxylase in rat brain.J Pharmacol Exp Ther. 1980;214:257–262.

    PubMed  CAS  Google Scholar 

  3. Hotchkiss AJ, Morgan ME, Gibb JW. The long-term effects of multiple doses of methamphetamine on neostriatal tryptophan hydroxylase, tyrosine hydroxylase, choline acetyltransferase and glutamate decarboxylase activities.Life Sci. 1979;25:1373–1378.

    Article  PubMed  CAS  Google Scholar 

  4. Woolverton WL, Ricaurte GA, Forno L, Seiden LS. Long-term effects of chronic methamphetamine administration in rhesus monkeys.Brain Res. 1989;486:73–78.

    Article  PubMed  CAS  Google Scholar 

  5. Cubells JF, Rayport S, Rajendran G, Sulzer D. Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress.J Neurosci. 1994;14:2260–2271.

    PubMed  CAS  Google Scholar 

  6. Fleckenstein AE, Hanson GR. Impact of psychostimulants on vesicular monoamine transporter function.Eur J Pharmacol. 2003;479:283–289.

    Article  PubMed  CAS  Google Scholar 

  7. Fumagalli F, Gainetdinov RR, Wang YM, Valenzano KJ, Miller GW, Caron MG. Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice.J Neurosci. 1999;19:2424–2431.

    PubMed  CAS  Google Scholar 

  8. Riddle EL, Topham MK, Haycock JW, Hanson GR, Fleckenstein AE. Differential trafficking of the vesicular monoamine transporter-2 by methamphetamine and cocaine.Eur J Pharmacol. 2002;449:71–74.

    Article  PubMed  CAS  Google Scholar 

  9. Rau KS, Birdsall E, Hanson JE, et al. Buproprion increases striatal vesicular monoamine transport.Neuropharmacology 2005;49:820–830.

    Article  PubMed  CAS  Google Scholar 

  10. Truong JG, Wilkins DG, Baudys J, et al. Age-dependent metham phetamine-induced alterations in vesicular monoamine transporter-2 function: implications for neurotoxicity.J Pharmacol Exp Ther. 2005;314:1087–1092.

    Article  PubMed  CAS  Google Scholar 

  11. Sandoval V, Riddle EL, Hanson GR, Fleckenstein AE. Methylphenidate alters vesicular monoamine transport and prevents methamphetamine-induced dopaminergic deficits.J Pharmacol Exp Ther. 2003;304:1181–1187.

    Article  PubMed  CAS  Google Scholar 

  12. Brown JM, Riddle EL, Sandoval V, et al. A single methamphetamine administration rapidly decreases vesicular dopamine uptake.J Pharmacol Exp Ther. 2002;302:497–501.

    Article  PubMed  CAS  Google Scholar 

  13. Truong JG, Newman AH, Hanson GR, Fleckenstein AE. Dopamine D2 receptor activation increases vesicular dopamine uptake and redistributes vesicular monoamine transporter-2 protein.Eur J Pharmacol. 2004;504:27–32.

    Article  PubMed  CAS  Google Scholar 

  14. Kuczenski R, Segal D. Concomitant characterization of behavioral and striatal neurotransmitter response to amphetamine using in vivo microdialysis.J Neurosci. 1989;9:2051–2065.

    PubMed  CAS  Google Scholar 

  15. Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A. Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport.J Neurosci. 1995;15:4102–4108.

    PubMed  CAS  Google Scholar 

  16. Fleckenstein AE, Metzger RR, Wilkins DG, Gibb JW, Hanson GR. Rapid and reversible effects of methamphetamine on dopamine transporters.J Pharmacol Exp Ther. 1997;282:834–838.

    PubMed  CAS  Google Scholar 

  17. Cervinski MA, Foster JD, Vaughan RA. Psychoactive substrates stimulate dopamine transporter phosphorylation and down-regulation by cocaine-sensitive and protein kinase C-dependent mechanisms.J Biol Chem. 2005;280:40442–40449.

    Article  PubMed  CAS  Google Scholar 

  18. Saunders C, Ferrer JV, Shi L, et al. Amphetamine-induced loss of human dopamine transporter activity; an internalization-dependent and cocaine-sensitive mechanism.Proc Natl Acad Sci USA. 2000;97:6850–6855.

    Article  PubMed  CAS  Google Scholar 

  19. Kokoshka JM, Vaughan RA, Hanson GR, Fleckenstein AE. Nature of methamphetamine-induced rapid and reversible changes in dopamine transporters.Eur J Pharmacol. 1998;361:269–275.

    Article  PubMed  CAS  Google Scholar 

  20. Baucum AJ, 2nd, Rau KS, Riddle EL, Hanson GR, Fleckenstein AE. Methamphetamine increases dopamine transporter higher molecular weight complex formation via a dopamine- and hyperthermia-associated mechanism.J Neurosci. 2004;24:3436–3443.

    Article  PubMed  CAS  Google Scholar 

  21. Giovanni A, Liang LP, Hastings TG, Zigmond MJ. Estimating hydroxyl radical content in rat brain using systemic and intraventricular salicylate: impact of methamphetamine.J Neurochem. 1995;64:1819–1825.

    PubMed  CAS  Google Scholar 

  22. Fleckenstein AE, Wilkins DG, Gibb JW, Hanson GR. Interaction between hyperthermia and oxygen radical formation in the 5-hydroxytryptaminergic response to a single methamphetamine administration.J Pharmacol Exp Ther. 1997;283:281–285.

    PubMed  CAS  Google Scholar 

  23. Yamamoto BK, Zhu W. The effects of methamphetamine on the production of free radicals and oxidative stress.J Pharmacol Exp Ther. 1998;287:107–114.

    PubMed  CAS  Google Scholar 

  24. LaVoie MJ, Hastings TG. Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine.J Neurosci. 1999;19:1484–1491.

    PubMed  CAS  Google Scholar 

  25. Wagner GC, Carelli RM, Jarvis MF. Pretreatment with ascorbic acid attenuates the neurotoxic effects of methamphetamine in rats.Res Commun Chem Pathol Pharmacol. 1985;47:221–228.

    PubMed  CAS  Google Scholar 

  26. De Vito MJ, Wagner GC. Methamphetamine-induced neuronal damage: a possible role for free radicals.Neuropharmacology. 1989;28:1145–1150.

    Article  PubMed  Google Scholar 

  27. Colado MI, Green AR. The spin trap reagent alpha-phenyl-N-tertbutyl nitrone prevents ‘ecstasy’-induced neurodegeneration of 5-hydroxytryptamine neurones.Eur J Pharmacol. 1995;280:343–346.

    Article  PubMed  CAS  Google Scholar 

  28. Cadet JL, Sheng P, Ali S, Rothman R, Carlson E, Epstein C. Attenuation of methamphetamine-induced neurotoxicity in copper/zinc superoxide dismutase transgenic mice.J Neurochem. 1994;62:380–383.

    Article  PubMed  CAS  Google Scholar 

  29. Cadet JL, Brannock C. Free radicals and the pathobiology of brain dopamine systems.Neurochem Int. 1998;32:117–131.

    Article  PubMed  CAS  Google Scholar 

  30. Thomas DM, Walker PD, Benjamins JA, Geddes TJ, Kuhn DM. Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation.J Pharmacol Exp Ther. 2004;311:1–7.

    Article  PubMed  CAS  Google Scholar 

  31. Thomas DM, Dowgiert J, Geddes TJ, Francescutti-Verbeem D, Liu X, Kuhn DM. Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines.Neurosci Lett. 2004;367:349–354.

    Article  PubMed  CAS  Google Scholar 

  32. Hald A, Lotharius J. Oxidative stress and inflammation in Parkinson's disease: is there a causal link?Exp Neurol. 2005;193:279–290.

    Article  PubMed  CAS  Google Scholar 

  33. Thomas DM, Kuhn DM. Attenuated microglial activation mediates tolerance to the neurotoxic effects of methamphetamine.J Neurochem. 2005;92:790–797.

    Article  PubMed  CAS  Google Scholar 

  34. Graham DG. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones.Mol Pharmacol. 1978;14:633–643.

    PubMed  CAS  Google Scholar 

  35. Chiueh CC, Miyake J, Peng MT. Role of dopamine autoxidation, hydroxyl radical generation, and calcium overload in underlying mechanisms involved in MPTP-induced parkinsonism.Adv Neurol. 1993;60:251–258.

    PubMed  CAS  Google Scholar 

  36. Zhang F, Dryhurst G. Oxidation chemistry of dopamine: Possible insights into the age-dependent loss of dopaminergic nigrostriatal neurons.Bioorg Chem. 1993;21:392–410.

    Article  CAS  Google Scholar 

  37. Stephans SE, Yamamoto BK. Methamphetamine-induced neurotoxicity: roles for glutamate and dopamine efflux.Synapse. 1994;17:203–209.

    Article  PubMed  CAS  Google Scholar 

  38. Nash JF, Yamamoto BK. Methamphetamine neurotoxicity and striatal glutamate release: comparison to 3,4-methylenedioxym ethamphetamine.Brain Res. 1992;581:237–243.

    Article  PubMed  CAS  Google Scholar 

  39. Schinder AF, Olson EC, Spitzer NC, Montal M. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity.J Neurosci. 1996;16:6125–6133.

    PubMed  CAS  Google Scholar 

  40. Garthwaite J, Boulton CL. Nitric oxide signaling in the central nervous system.Annu Rev Physiol. 1995;57:683–706.

    Article  PubMed  CAS  Google Scholar 

  41. Wang JQ, Lau YS. Dose-related alterations in nitric oxide synthase mRNA expression induced by amphetamine and the full D1 dopamine receptor agonist SKF-82958 in mouse striatum.Neurosci Lett. 2001;311:5–8.

    Article  PubMed  CAS  Google Scholar 

  42. Burrows KB, Gudelsky G, Yamamoto BK. Rapid and transient inhibition of mitochondrial function following methamphetamine or 3,4-methylenedioxymethamphetamine administration.Eur J Pharmacol. 2000;398:11–18.

    Article  PubMed  CAS  Google Scholar 

  43. Brown JM, Yamamoto BK. Effects of amphetamines on mitochondrial function: role of free radicals and oxidative stress.Pharmacol Ther. 2003;99:45–53.

    Article  PubMed  CAS  Google Scholar 

  44. Stephans SE, Whittingham TS, Douglas AJ, Lust WD, Yamamoto BK. Substrates of energy metabolism attenuate methamphetamine-induced neurotoxicity in striatum.J Neurochem. 1998;71:613–621.

    PubMed  CAS  Google Scholar 

  45. Burrows KB, Nixdorf WL, Yamamoto BK. Central administration of methamphetamine synergizes with metabolic inhibition to deplete striatal monoamines.J Pharmacol Exp Ther. 2000;292:853–860.

    PubMed  CAS  Google Scholar 

  46. Albers DS, Zeevalk GD, Sonsalla PK. Damage to dopaminergic nerve terminals in mice by combined treatment of intrastriatal malonate with systemic methamphetamine or MPTP.Brain Res. 1996;718:217–220.

    Article  PubMed  CAS  Google Scholar 

  47. Mark KA, Soghomonian JJ, Yamamoto BK. High-dose methamphetamine acutely activates the striatonigral pathway to increase striatal glutamate and mediate long-term dopamine toxicity.J Neurosci. 2004;24:11449–11456.

    Article  PubMed  CAS  Google Scholar 

  48. Bowyer JF, Holson RR, Miller DB, O'Callaghan JP. Phenobarbital and dizocilpine can block methamphetamine-induced neurotoxicity in mice by mechanisms that are independent of thermoregulation.Brain Res. 2001;919:179–183.

    Article  PubMed  CAS  Google Scholar 

  49. Sonsalla PK, Nicklas WJ, Heikkila RE. Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity.Science. 1989;243:398–400.

    Article  PubMed  CAS  Google Scholar 

  50. Albers DS, Sonsalla PK. Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents.J Pharmacol Exp Ther. 1995;275:1104–1114.

    PubMed  CAS  Google Scholar 

  51. Pu C, Vorhees CV. Protective effects of MK-801 on methamphetamine-induced depletion of dopaminergic and serotonergic terminals and striatal astrocytic response: an immunohistochemical study.Synapse. 1995;19:97–104.

    Article  PubMed  CAS  Google Scholar 

  52. Ali SF, Jr, Newport GD, Jr, Holson RR, Jr, Slikker W, Jr, Bowyer JF. Low environmental temperatures or pharmacologic agents that produce hypothermia decrease methamphetamine neurotoxicity in mice.Brain Res. 1994;658:33–38.

    Article  PubMed  CAS  Google Scholar 

  53. Fuller RW, Hemrick-Luecke SK, Ornstein PL. Protection against amphetamine-induced neurotoxicity toward striatal dopamine neurons in rodents by LY274614, an excitatory amino acid antagonist.Neuropharmacology. 1992;31:1027–1032.

    Article  PubMed  CAS  Google Scholar 

  54. Battaglia G, Fornai F, Busceti CL, et al. Selective blockade of mGlu5 metabotropic glutamate receptors is protective against methamphetamine neurotoxicity.J Neurosci. 2002;22:2135–2141.

    PubMed  CAS  Google Scholar 

  55. Rodrigues RJ, Alfaro TM, Rebola N, Oliveira CR, Cunha RA. Co-localization and functional interaction between adenosine A2A and metabotropic group 5 receptors in glutamatergic nerve terminals of the rat striatum.J Neurochem. 2005;92:433–441.

    Article  PubMed  CAS  Google Scholar 

  56. Betarbet R, Greenamyre JT. Differential expression of glutamate receptors by the dopaminergic neurons of the primate striatum.Exp Neurol. 1999;159:401–408.

    Article  PubMed  CAS  Google Scholar 

  57. Kiss JP, Zsilla G, Vizi ES. Inhibitory effect of nitric oxide on dopamine transporter: interneuronal communication without receptors.Neurochem Int. 2004;45:485–489.

    Article  PubMed  CAS  Google Scholar 

  58. Beckman JS, Beckman TW, Chen J, Parshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide.Proc Natl Acad Sci USA. 1990;87:1620–1624.

    Article  PubMed  CAS  Google Scholar 

  59. O'Dell SJ, Weihmuller FB, Marshall JF. Methamphetamine-induced dopamine overflow and injury to striatal dopamine terminals: attenuation by dopamine D1 or D2 antagonists.J Neurochem. 1993;60:1792–1799.

    Article  PubMed  Google Scholar 

  60. Sonsalla PK, Gibb JW, Hanson GR. Roles of D1 and D2 dopamine receptor subtypes in mediating the methamphetamine-induced changes in monoamine systems.J Pharmacol Exp Ther. 1986;238:932–937.

    PubMed  CAS  Google Scholar 

  61. Metzger RR, Haughey HM, Wilkins DG, Gibb JW, Hanson GR, Fleckenstein AE. Methamphetamine-induced rapid decrease in dopamine transporter function: role of dopamine and hyperthermia.J Pharmacol Exp Ther. 2000;295:1077–1085.

    PubMed  CAS  Google Scholar 

  62. Gerfen CR, Engber TM, Mahan LC, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons.Science. 1990;250:1429–1432.

    Article  PubMed  CAS  Google Scholar 

  63. Le Moine C, Normand E, Block B. Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene.Proc Natl Acad Sci USA 1991;88:4205–4209.

    Article  PubMed  Google Scholar 

  64. Di Monte DA, Royland JE, Jakowec MW, Langston JW. Role of nitric oxide in methamphetamine neurotoxicity: protection by 7-nitroindazole, an inhibitor of neuronal nitric oxide synthase.J Neurochem. 1996;67:2443–2450.

    PubMed  Google Scholar 

  65. Itzhak Y, Ali SF. The neuronal nitric oxide synthase inhibitor, 7-nitroindazole, protects against methamphetamine-induced neurotoxicity in vivo.J Neurochem. 1996;67:1770–1773.

    PubMed  CAS  Google Scholar 

  66. Imam SZ, Newport GD, Itzhak Y, et al. Peroxynitrite plays a role in methamphetamine-induced dopaminergic neurotoxicity: evidence from mice lacking neuronal nitric oxide synthase gene or overexpressing copper-zinc superoxide dismutase.J Neurochem. 2001;76:745–749.

    Article  PubMed  CAS  Google Scholar 

  67. Fiorentini C, Gardoni F, Spano PF, Di Luca M, Missale C. Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate N-methyl-D-aspartate receptors.J Biol Chem. 2003;278:20196–20202.

    Article  PubMed  CAS  Google Scholar 

  68. Cepeda C, Buchwald NA, Levine MS. Neuromodulatory actions of dopamine in the neostriatum are dependent on the excitatory amino acid receptor subtypes activated.Proc Natl Acad Sci USA. 1993;90:9576–9580.

    Article  PubMed  CAS  Google Scholar 

  69. Xu W, Zhu JP, Angulo JA. Induction of striatal pre- and postsynaptic damage by methamphetamine requires the dopamine receptors.Synapse. 2005;58:110–121.

    Article  PubMed  CAS  Google Scholar 

  70. Broening HW, Morford LL, Vorhees CV. Interactions of dopamine D1 and D2 receptor antagonists with D-methamphetamine-induced hyperthermia and striatal dopamine and serotonin reductions.Synapse. 2005;56:84–93.

    Article  PubMed  CAS  Google Scholar 

  71. Bowyer JF, Jr, Gough B, Jr, Slikker W, Jr, Lipe GW, Newport GD, Holson RR. Effects of a cold environment or age on methamphetamine-induced dopamine release in the caudate putamen of female rats.Pharmacol Biochem Behav. 1993;44:87–98.

    Article  PubMed  CAS  Google Scholar 

  72. Farfel GM, Seiden LS. Role of hypothermia in the mechanism of protection against serotonergic toxicity. II. Experiments with methamphetamine, p-chloroamphetamine, fenfluramine, dizocilpine and dextromethorphan.J Pharmacol Exp Ther. 1995;272:868–875.

    PubMed  CAS  Google Scholar 

  73. Gudermann T, Numberg B, Schultz G. Receptors and G-proteins as primary components of transmembrane signal transduction. Part 1. G-protein-coupled receptors: structure and function.J Mol Med. 1995;73:51–63.

    Article  PubMed  CAS  Google Scholar 

  74. Johnson JA, Lima JJ. Drug receptor/effector polymorphisms and pharmacogenetics: current status and challenges.Pharmacogenetics. 2003;13:525–534.

    Article  PubMed  Google Scholar 

  75. Reichmann H. Neuroprotection in idiopathic Parkinson's disease.J Neurol. 2002;249:21–23.

    Article  CAS  Google Scholar 

  76. Truong JG, Rau KS, Hanson GR, Fleckenstein AE. Pramipexole increases vesicular dopamine uptake: implications for treatment of Parkinson's neurodegeneration.Eur J Pharmacol. 2003;474:223–226.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen R. Hanson.

Additional information

Published: June 16, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riddle, E.L., Fleckenstein, A.E. & Hanson, G.R. Mechanisms of methamphetamine-induced dopaminergic neurotoxicity. AAPS J 8, 48 (2006). https://doi.org/10.1007/BF02854914

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1007/BF02854914

Keywords

Navigation