Skip to main content
Log in

Slow inactivation in voltage-gated sodium channels

Molecular substrates and contributions to channelopathies

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Slow inactivation in voltage-gated sodium channels is a biophysical process that governs the availability of sodium channels over extended periods of time. Slow inactivation, therefore, plays an important role in controlling membrane excitability, firing properties, and spike frequency adaptation. Defective slow inactivation is associated with several diseases of cell excitability, such as hyperkalemic periodic paralysis, myotonia, idiopathic ventricular fibrillation and long-QT syndrome. These associations underscore the physiological importance of this phenomenon. Nevertheless, our understanding of the molecular substrates for slow inactivation is still fragmentary. This review covers the current state of knowledge concerning the molecular underpinnings of slow inactivation, and its relationship with other biophysical processes of voltage-gated sodium channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogart, R. B., Cribbs, L. L., Muglia, L. K., Kephart, D. D., and Kaiser, M. W. (1989) Molecular cloning of a putative tetrodotoxin-resistant rat heart Na+ channel isoform, Proc. Natl. Acad. Sci. 86, 8170–8174.

    PubMed  CAS  Google Scholar 

  2. Trimmer, J., Cooperman, S., Tomiko, S., Zhou, J., Crean, S., Boyle, M., et al. (1989) Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 3, 33–49.

    PubMed  CAS  Google Scholar 

  3. George, A. L., Komisarof, J., Kallen, R. G., and Barchi, R. L. (1992) Primary structure of the adult human skeletal muscle voltage-dependent sodium channel, Ann. Neurol. 31, 313–337.

    Google Scholar 

  4. Gellens, M. E., George, A. L., Jr., Chen, L., Chahine, M., Horn, R., Barchi, R. L., and Kallen, R. G. (1992) Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc. Natl. Acad. Sci. 89, 554–558.

    PubMed  CAS  Google Scholar 

  5. Fozzard, H. A. and Hanck, D. A. (1996) Structure and function of voltage-dependent sodium channels: comparison of brain II and cardiac isoforms, Physiol. Rev. 76, 887–926.

    PubMed  CAS  Google Scholar 

  6. Isom, L. L., DeJongh, K. S., and Catterall, W. A. (1994) Auxiliary subunits of voltage-gated ion channels, Neuron 12, 1183–1194.

    PubMed  CAS  Google Scholar 

  7. Sato, C., Sato, M., Iwasaki, A., Doi, T., and Engel, A. (1998) The sodium channel has four domains surrounding a central pore, J. Struct. Biol. 121, 314–325.

    PubMed  CAS  Google Scholar 

  8. Guy, H. R. and Conti, F. (1990) Pursuing the structure and function of voltage-gated channels. Trends Neurosci. 13, 201–206.

    PubMed  CAS  Google Scholar 

  9. Guy, H. R. and Durell, S. R. (1994) Using sequence homology to analyze the structure and function of voltage-gated ion channel proteins. Soc. Gen. Physiol. Ser. 49, 197–212.

    PubMed  CAS  Google Scholar 

  10. Catterall, W. A. (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13–25.

    PubMed  CAS  Google Scholar 

  11. Marban, E., Yamagishi, T., and Tomaselli, G. F. (1998) Structure and function of voltage-gated sodium channels, J. Physiol. (London) 508, 647–657.

    CAS  Google Scholar 

  12. Ji, S., George, A. L., Horn, R., and Barchi, R. L. (1996) Paramyotonia congenita mutations reveal different roles for segments S3 and S4 of domain D4 in hSkM1 sodium channel gating. J. Gen. Physiol. 107, 183–194.

    PubMed  CAS  Google Scholar 

  13. Kontis, K. J., Rounaghi, A., and Goldin, A. L. (1997) Sodium channel activation gating is affected by substitutions of voltage sensor positive charges in all four domains, J. Gen. Physiol. 110, 391–401.

    PubMed  CAS  Google Scholar 

  14. Cha, A., Ruben, P. C., George, A. L., Fujimoto, E., and Bezanilla, F. (1999) Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation. Neuron 22, 73–87.

    PubMed  CAS  Google Scholar 

  15. Groome, J. R., Fujimoto, E., George, A. L., and Ruben, P. C. (1999) Differential effects of homologous S4 mutations in human skeletal muscle sodium channels on deactivation gating from open and inactivated states, J. Physiol. 516, 687–698.

    PubMed  CAS  Google Scholar 

  16. Groome, J. R., Fujimoto, E., and Ruben, P. C. (2000) The delay in recovery from fast inactivation in skeletal muscle sodium channels is deactivation, Cell Mol. Neurobiol. 20, 521–527.

    PubMed  CAS  Google Scholar 

  17. Kontis, K. J. and Goldin, A. L. (1997) Sodium channel inactivation is altered by substitution of voltage sensor positive charges, J. Gen. Physiol. 110, 403–413.

    PubMed  CAS  Google Scholar 

  18. Mitrovic, N., George, A. L., Jr., and Horn, R. (1998) Independent versus coupled inactivation in sodium channels: Role of the domain 2 S4 segment, J. Gen. Physiol. 111, 451–462.

    PubMed  CAS  Google Scholar 

  19. Mitrovic, N., George, A. L., Jr., and Horn, R. (2000) Role of domain 4 in sodium channel slow inactivation, J. Gen. Physiol. 115, 707–717.

    PubMed  CAS  Google Scholar 

  20. Goldin, A. L. (1993) Accessory subunits and sodium channel inactivation, Curr. Opin. Neurobiol. 3, 272–277.

    PubMed  CAS  Google Scholar 

  21. Goldin, A., Barchi, R., Caldwell, J., Hofman, F., Howe, J., Hunter, J., et al. (2000) Nomenclature of voltage-gated sodium channels, Neuron 271, 15,950–15,962.

    Google Scholar 

  22. Catterall, W. A. (1993) Structure and function of voltage-gated ion channels, Trends Neurosci. 16, 500–506.

    PubMed  CAS  Google Scholar 

  23. Nuss, H. B., Chiamvimonvat, N., Perez-Garcia, M. T., Tomaselli, G. F., and Marban, E. (1995) Functional association of the β1 subunit with human cardiac (hH1) and rat skeletal muscle (μ1) sodium channel α subunits expressed in Xenopus oocytes, J. Gen. Physiol. 106, 1171–1191.

    PubMed  CAS  Google Scholar 

  24. Makielski, J. C., Limberis, J. T., Chang, S. Y., Fan, Z., and Kyle, J. W. (1996) Coexpression of β1 with cardiac sodium channel α-subunits in oocytes decreases lidocaine block, Mol. Pharm. 49, 30–39.

    CAS  Google Scholar 

  25. Isom, L. L., Jongh, K. S. D., Patton, D. E., Reber, B. F. X., Offord, J., Charbonneau, H., et al. (1992) Primary structure and functional expression of the β1 subunit of the rat brain sodium channel, Science 256, 839–842.

    PubMed  CAS  Google Scholar 

  26. Chen, C. and Cannon, S. C. (1995) Modulation of Na+ channel inactivation by the β1 subunit: a deletion analysis, Pflugers Arch. 431, 186–195.

    PubMed  CAS  Google Scholar 

  27. Yang, J. S., Bennett, P. B., Makita, N., George, A. L., Jr., and Barchi, R. L. (1993) Expression of the sodium channel β1 subunit in rat skeletal muscle is selectively associated with the tetrodotoxin-sensitive α-subunit isoform. Neuron 11, 915–922.

    PubMed  CAS  Google Scholar 

  28. Patton, D., Isom, L. L., Catterall, W. A., and Goldin, A. L. (1994) The adult rat brain β1 subunit modifies activation and inactivation gating of multiple sodium channel α subunits, J. Biol. Chem. 269, 17649–17655.

    PubMed  CAS  Google Scholar 

  29. Makita, N., Bennett, P. B., and George, A. L. (1994) Voltage-gated Na+ channel β1 subunit mRNA expressed in adult human skeletal musole, heart and brain is encoded by a single gene, J. Biol. Chem. 269, 7571–7578.

    PubMed  CAS  Google Scholar 

  30. McCormick, K. A., Isom, L. I., Ragsdales, D., Smith, D., Scheuer, T., and Catterall, W. (1998) Molecular determinants of Na+ channel function in the extracellular domain of β1 subunit. J. Biol. Chem. 273, 3954–3962.

    PubMed  CAS  Google Scholar 

  31. Featherstone, D. E., Richmond, J. E., and Ruben, P. C. (1996) Interaction between fast and slow inactivation in Skm1 sodium channels. Biophys. J. 71, 3098–3109.

    PubMed  CAS  Google Scholar 

  32. O'Reilly, J. P., Wang, S. Y., Kallen, R. G., and Wang, G. K. (1999) Comparison of slow inactivation in human heart and rat skeletal muscle Na+ channel chimaeras, J. Physiol. 515, 61–73.

    PubMed  Google Scholar 

  33. Vilin, Y. Y., Fujimoto, E., and Ruben, P. C. (2001) A single residue differentiates between human cardiac and skeletal muscle Na+ channel slow inactivation. Biophys. J. 80, 2221–2230.

    PubMed  CAS  Google Scholar 

  34. Richmond, J. E., Featherstone, D. E., Hartmann, H. A., and Ruben, P. C. (1998) Slow inactivation in human cardiac sodium channels. Biophys. J. 74, 2945–2952.

    PubMed  CAS  Google Scholar 

  35. Toib, A., Lyakhov, V., and Marom, S. (1998) Interaction between duration of activity and time course of recovery from slow inactivation in mammalian brain Na+ channels, J. Neurosc. 18, 1893–1903.

    CAS  Google Scholar 

  36. Ellerkmann, R. K., Riazanski, V., Elger, C. E., Urban, B. W., and Beck, H. (2001) Slow recovery from inactivation regulates the availability of voltage-dependent-dependent dependent Na+ channels in hippocampal granule cells, hilar neurons and basket cells, J. Physiol. (London) 532, 385–397.

    CAS  Google Scholar 

  37. Veldkamp, M. W., Viswanathan, P. C., Bezzina, C., Baartscheer, A., Wilde, A. A. M., and Balser, J. R. (2000) Two distinct congential arrhythmias evoked by a multidysfunctional Na+ channel, Circ. Res. 86, e91-e97.

    PubMed  CAS  Google Scholar 

  38. Kambouris, N. G., Hastings, L. A., Stepanovic, S., Marban, E., Tomaselli, G. F., and Balser, J. R. (1998) Mechanistic link between lidocaine block and inactivation probed by outer pore mutations in the rat μ1 skeletal muscle sodium channel, J. Physiol. 512, 693–705.

    PubMed  CAS  Google Scholar 

  39. Todt, H., Dudley, S. C., Kyle, J. W., French, R. J., and Fozzard, H. A. (1999) Ultra-slow inactivation in μ1 Na+ channels is produced by a structural rearrangement of the outer vestibule. Biophys. J. 76, 1335–1345.

    PubMed  CAS  Google Scholar 

  40. Hilbert, K., Sandtner, Kudlacek, O., Glaaser, I. W., Weisz, E., Kyles, J. W., et al. (2001) The selectivity filter of the voltage-gated sodium channel is involved in channels activation, J. Biol. Chem. 276, 27,831–27,839.

    Google Scholar 

  41. Vilin, Y. Y., Makita, N., George, A. L., Jr., and Ruben, P. C. (1999) Structural determinants of slow inactivation in human cardiac and skeletal muscle sodium channels. Biophys. J. 77, 1384–1393.

    PubMed  CAS  Google Scholar 

  42. Sawczuk, A., Powers, R. K., and Binder, M. C. (1995) Spike frequency adaptation studied in hypoglossal motoneurons of the rat, J. Neurophysiol. 73, 1799–1810.

    PubMed  CAS  Google Scholar 

  43. Chang, S. Y., Satin, J., and Fozzard, H. A. (1996) Modal behavior of the μ1 Na+ channel and effects of co-expression of the β1-subunit. Biophys. J. 70, 2581–2592.

    PubMed  CAS  Google Scholar 

  44. Fleig, A., Ruben, P. C., and Rayner, M. D. (1994) Kinetic mode switch of rat brain IIA Na channels in Xenopus oocytes excised macropatches, Pflugers Arch. 427, 399–405.

    PubMed  CAS  Google Scholar 

  45. Hebert, T. E., Monette, R., Dunn, R. J., and Drapeau, P. (1994) Voltage dependencies of the fast and slow gating models of RIIA sodium channels. Proceedings of the Royal Society of London 256, 253–261.

    CAS  Google Scholar 

  46. Schreibmayer, W., Wallner, M., and Lotan, I. (1994) Mechanism of modulation of single sodium channels from skeletal muscle by the β1-subunit from rat brain. Pflugers Arch. 426, 360–362.

    PubMed  CAS  Google Scholar 

  47. Moorman, J. R., Kirsch, G. E., Brown, A. M., and Joho, R. H. (1990) Changes in sodium channel gating produced by point mutations in a cytoplasmic linker. Science 250, 688–691.

    PubMed  CAS  Google Scholar 

  48. Zhou, J., Potts, J. F., Trimmer, J. S., Agnew, W. S., and Sigworth, F. J. (1991) Multiple gating modes and the effect of modulating factors on the microliter sodium channel. Neuron 7, 775–785.

    PubMed  CAS  Google Scholar 

  49. Cannon, S. C., Brown R. H., Jr., and Corey, D. P. (1991) A sodium channel defect in hyperkalemic periodic paralysis: potassium-induced failure of inactivation. Neuron 6, 619–626.

    PubMed  CAS  Google Scholar 

  50. Lehmann-Horn, F. and Jurkat-Rott, K. (1999) Voltage-gated ion channels and hereditary disease. Physiol. Rev. 79, 1317–1372.

    PubMed  CAS  Google Scholar 

  51. Ptacek, L. J., Trimmer, J. S., Agnew, W. S., Roberts, J. W., Petajan, J. H., and Leppert, M. (1991) Paramyotonia congenita and hyperkalemic periodic paralysis map to the same sodium-channel gene locus. Am. J. Hum. Gen. 49, 851–854.

    CAS  Google Scholar 

  52. Townsend, C. and Horn, R. (1997) Effect of alkali metal cations on slow inactivation of cardiac Na+ channels. J. Gen. Physiol. 110, 23–33.

    PubMed  CAS  Google Scholar 

  53. Cummins, T. R. and Sigworth, F. J. (1996) Impaired slow inactivation in mutant sodium channels. Biophys. J. 71, 227–236.

    PubMed  CAS  Google Scholar 

  54. Hayward, L., Brown, R., and Cannon, S. (1997) Slow inactivation differs among mutant Na+ channels associated with myotonia and periodic paralysis. Biophys. J. 72, 1204–1219.

    PubMed  CAS  Google Scholar 

  55. Rudy, B. (1978) Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance. J. Physiol. (London) 283, 1–21.

    CAS  Google Scholar 

  56. Starkus, J. G. and Shrager, P. (1978) Modification of slow sodium inactivation in nerve after internal perfusion with trypsin. Am. J. Physiol., 235, C238-C244.

    PubMed  CAS  Google Scholar 

  57. Valenzuela, C. and Bennett, P. B. (1994) Gating of cardiac Na+ channels in excised membrane patches after modification by α-chymotrypsin. Biophys. J. 67, 161–171.

    PubMed  CAS  Google Scholar 

  58. Salgado, V. L., Yeh, J. Z., and Narahashi, T. (1985) Voltage-dependent removal of sodium channel inactivation by N-bromoacetamide and pronase. Biophys. J. 47, 567–571.

    PubMed  CAS  Google Scholar 

  59. Hille, B. (1992) Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  60. Ruff, R. L., Simoncini, L., and Stuhmer, W. (1988) Slow sodium channel inactivation in mammalian muscle: a possible role in regulating excitability. Muscle and Nerve 11, 502–510.

    PubMed  CAS  Google Scholar 

  61. Wang, S. and Wang, G. K. (1997) A mutation in segment I-S6 alters slow inactivation of sodium channels. Biophys. J. 72, 1633–1640.

    PubMed  CAS  Google Scholar 

  62. West, J. W., Patton, D. E., Scheuer, T., Wang, Y., Goldin, A. L., and Catterall, W. A. (1992) A cluster of hydrophobic amino acid residues required for fast Na+ channel inactivation. Proc. Natl. Acad. Sci. 89, 10910–10914.

    PubMed  CAS  Google Scholar 

  63. Vedantham, V. and Cannon, S. C. (1998) Slow inactivation does not affect movement of the fast inactivation gate in voltage-gated Na+ channels. J. Gen. Physiol. 111, 83–93.

    PubMed  CAS  Google Scholar 

  64. Ruben, P. C., Starkus, J. G., and Rayner, M. D. (1992) Steady-state availability of sodium channels. Interactions between activation and slow inactivation. Biophys. J. 61, 941–955.

    PubMed  CAS  Google Scholar 

  65. Patton, D. E., West, J. W., Catterall, W. A., and Goldin, A. L. (1992) Amino acid residues required for fast Na+ channel inactivation: charge neutralizations and deletions in the III–IV linker. Proc. Natl. Acad. Sci. 89, 10905–10909.

    PubMed  CAS  Google Scholar 

  66. Bezanilla, F., Taylor, R. E., and Fernandez, J. M. (1982) Distribution and kinetics of membrane dielectric polarization. 1. Long-term inactivation of gating currents. J. Gen. Physiol. 79, 21–40.

    PubMed  CAS  Google Scholar 

  67. Rayner, M. D. and Starkus, J. G. (1989) The steady-state distribution of gating charge in crayfish giant axons. Biophys. J. 55, 1–19.

    PubMed  CAS  Google Scholar 

  68. Zagotta, W. N., Hoshi, T., and Aldrich, R. W. (1990) Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250, 568–571.

    PubMed  CAS  Google Scholar 

  69. Yellen, G., Sodickson, D., Chen, T. Y., and Jurman, M. E. (1994) An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding. Biophys. J. 66, 1068–1075.

    PubMed  CAS  Google Scholar 

  70. Liu, Y., Jurman, M. E., and Yellen, G. (1996) Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron 16, 859–867.

    PubMed  CAS  Google Scholar 

  71. Kiss, L., LoTurco, J., and Korn, S. J. (1999) Contribution of the selectivity filter to inactivation in potassium channels. Biophys. J. 76, 253–263.

    PubMed  CAS  Google Scholar 

  72. Loots, E. and Isacoff, E. Y. (1998) Protein rearrangements underlying slow inactivation of the Shaker K+ channel. J. Gen. Physiol. 112, 377–389.

    PubMed  CAS  Google Scholar 

  73. Boland, L. M., Juraman, M. E., and Yellen, G. (1994) Cysteines in the Shaker K+ channel are not essential for channel activity or zinc modulation. Biophys. J. 66, 694–699.

    PubMed  CAS  Google Scholar 

  74. Cha, A. and Bezanilla, F. (1997) Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence. Neuron 19, 1127–1140.

    PubMed  CAS  Google Scholar 

  75. Loots, E. and Isacoff, E. Y. (2000) Molecular coupling of S4 to a K+ channel's slow inactivation gate. J. Gen. Physiol. 116, 623–635.

    PubMed  CAS  Google Scholar 

  76. Ruff, R. L. (1996) Single-channel basis of slow inactivation of Na+ channels in rat skeletal muscle. Am. J. Physiol. 271, C971–981.

    PubMed  CAS  Google Scholar 

  77. Sheets, M. F., Kyle, J. W., and Hanck, D. A. (2000) The role of the putative inactivation lid in sodium channel gating current immobilization. J. Gen. Physiol. 115, 609–619.

    PubMed  CAS  Google Scholar 

  78. Struyk, A. F., Scoggan, K. A., Bulman, D. E., and Cannon, S. C. (2000) The human skeletal muscle Na+ channel mutation R669H associated with hypokalemic periodic paralysis enhances slow inactivation. J. Neurosci. 20, 8610–8617.

    PubMed  CAS  Google Scholar 

  79. Cannon, S. C. (1996) Ion-channel defects and aberrant excitability in myotonia and periodic paralysis. Trends Neurosci. 19, 3–10.

    PubMed  CAS  Google Scholar 

  80. Cannon, S. C., Brown, R.H., Jr., and Corey, D. P. (1993) Theoretical reconstruction of myotonia and paralysis caused by incomplete inactivation of sodium channels. Biophys. J. 65, 270–288.

    PubMed  CAS  Google Scholar 

  81. Hayward, L. L., Brown, R. H., Jr., and Cannon, S. C. (1996) Inactivation defects caused by myotonia-associated mutations in the sodium channel III–IV linker. J. Gen. Physiol. 107, 559–576.

    PubMed  CAS  Google Scholar 

  82. Cannon, S. C. and Strittmatter, S. M. (1993) Functional expression of sodium channel mutations identified in families with periodic paralysis. Neuron 10, 317–326.

    PubMed  CAS  Google Scholar 

  83. Ruff, R. L. (1994) Slow Na+ channel inactivation must be disrupted to evoke prolonged depolarization-induced paralysis. Biophys. J. 66, 542–545.

    PubMed  CAS  Google Scholar 

  84. Ptacek, L. J., George, A. L., Griggs, R. C., Tawil, R., Kallen, R. G., Barchi, R. L., et al. (1991) Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell 67, 1021–1027.

    PubMed  CAS  Google Scholar 

  85. Yang, N., Ji, S., Zhou, M., Ptacek, L. J., Barchi, R. L., Korn, R., and George, A. L. (1994) Sodium channel mutations in paramyotonia congenita exhibit similar biophysical phenotypes in vitro. Proc. Natl. Acad. Sci. 91, 12,785–12,789.

    CAS  Google Scholar 

  86. Hayward, L. J., Sandoval, G. M., and Cannon, S. C. (1999) Defective slow inactivation of sodium channels contributes to familial periodic paralysis. Neurology 52, 1447–53.b

    PubMed  CAS  Google Scholar 

  87. Bendahhou, S., Cummins, T. R., Hahn, A. F., Langlois, S., Waxman, S. G., and Ptacek, L. J. (2000) A double mutation in families with periodic paralysis defines new aspects of sodium channel slow inactivation. J. Clin. Invest. 106, 431–438.

    PubMed  CAS  Google Scholar 

  88. Bendahhou, S., Cummins, T. R., Tawil, R., Waxman, S. G., and Ptacek, L. J. (1999) Activation and inactivation of the voltage-gated sodium channel: role of segment S5 revealed by a novel hyperkalaemic periodic paralysis mutation. J. Neurosci. 19, 4762–4771.

    PubMed  CAS  Google Scholar 

  89. Takahashi, M. P. and Cannon, S. C. (1999) Enhanced slow inactivation by V445M: A sodium channel mutation associated with myotonia. Biophys. J., 76, 861–868.

    PubMed  CAS  Google Scholar 

  90. Wang, Q., Shen, J., Spalwski, I., Robinson, J. L., Moss, A. J., Towbin, J. A., and Keating, M. T. (1995) SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80, 805–811.

    PubMed  CAS  Google Scholar 

  91. Bezzina, C., Veldkamp, M. W., Berg, M. P., Postma, A. V., Rook, M. B., Viersma, J.-W., et al. E., (1999) A single Na+ channel mutation causing both long-QT and Brugada syndromes. Circ. Res. 85, 1206–1213.

    PubMed  CAS  Google Scholar 

  92. Gussak, I., Antzelevitch, C., Bjerregaard, P., Towbin, J. A., and Chaitman, B. R. (1999) The Brugada syndrome: clinical, electrophysiological and genetic aspects. J. Am. Coll. Cardiol. 33, 5–15.

    PubMed  CAS  Google Scholar 

  93. Corrado, D., Buja, G., Basso, C., Nava, A., and Thiene, G. (1999) What is the Brugada syndrome? Cardiology in review 7, 191–195.

    PubMed  CAS  Google Scholar 

  94. Antzelevitch, C. (1999) Ion channels and ventricular arrhythmias: cellular and ionic mechanisms underlying the Brugada syndrome. Curr. Opin. Cardiol. 14, 274–279.

    PubMed  CAS  Google Scholar 

  95. Brugada, P. and Brugada, J. (1992) Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. J. Am. Coll. Cardiol. 20, 1391–1396.

    Article  PubMed  CAS  Google Scholar 

  96. Schwartz, P. J., Locati, E. H., Napolitano, C., and Priori, S. G. (1995) The long QT syndrome, in Cardiac Electrophysiology: From Cell to Bedside (Zipes, D. P., and Jalife, J., ed.), W. B. Saunders, Philadelphia, PA, pp. 788–811.

    Google Scholar 

  97. Dumaine, R., Wang, Q., Keating, M. T., Hartmann, H. A., Schwartz, P. J., Brown, A. M., and Kirsch, G. E. (1996) Multiple mechanisms of Na+ channel-linked long-QT syndrome. Circ. Res. 78, 916–924.

    PubMed  CAS  Google Scholar 

  98. Bennett, P. B., Yazawa, K., Makita, N., and George, A. L. (1995) Molecular mechanism for an inherited cardiac arrhythmia. Nature 376, 683–685.

    PubMed  CAS  Google Scholar 

  99. Brugada, J. and Brugada, P. (1996) What to do in patients with no structural heart disease and sudden arrhythmic death? Am. J. Cardiol. 78, 69–75.

    PubMed  CAS  Google Scholar 

  100. Aizawa, Y., Tamura, M., Chinushi, M., Naitoh, N., Uchiyama, H., Kusano, Y., Hosono, H., and Shibata, A. (1993) Idiopathic ventricular fibrillation and bradycardia-dependent intraventricular block. Am. Heart J. 126, 1473–1474.

    PubMed  CAS  Google Scholar 

  101. Brugada, J., Brugada, R., and Brugada, P. (1997) Right bundle branch block and ST segment elevation in leads V1–V3: a marker for sudden death in patients without demonstrable structural heart diesease. Circ. 96, 1–151.

    Google Scholar 

  102. Brown, A. M., Lee, K. S., and Powell, T. (1981) Sodium current in single rat heart muscle cells. J. Phisiol. (London) 318, 479–500.

    CAS  Google Scholar 

  103. Makita, N., Sharai, N., Nagashima, M., Matsuoka, R., Yamada, Y., Tohse, N., and Kitabatake, A. (1998) A de novo missense mutation of human cardiac Na+ channel exhibiting novel molecular mechanisms of long QT syndrome. FEBS Letters 423, 5–9.

    PubMed  CAS  Google Scholar 

  104. Chen, Q., Kirsch, G. E., Zhang, D., Brugada, R., Brugada, J., Brugada, P., et al. (1998) Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392, 293–296.

    PubMed  CAS  Google Scholar 

  105. Rook, M. B., Alshinawi, C. B., Groenewegen, W. A., Gelder, I. C., Ginneken, A. C. G., Jongsma, H. J., et al. (1999) Human SCN5A gene mutations alter cardiac sodium channel kinetics and are associated with the Brugada syndrome. Cardiovasc. Res. 44, 507–517.

    PubMed  CAS  Google Scholar 

  106. Attwell, D., Cohen, I., Eisner, D., Ohba, M., and Ojeda, C. (1979) The steady state TTX-sensitive (“window”) sodium current in cardiac purkinje fibers. Pflugers Arch. 379, 137–142.

    PubMed  CAS  Google Scholar 

  107. Wang, D. W., Makita, N., Kitabatake, A., Balser, J. R., and George, A. L., Jr. (2000) Enhanced Na+ channel intermediate inactivation in Brugada syndrome. Circ. Res. 87, e37-e43.

    PubMed  CAS  Google Scholar 

  108. Vilin, Y. Y., Fujimoto, E., and Ruben, P. C. (2001) A novel mechanism associated with idiopathic ventricular fibrillation (IVF) mutations R1232W and T1620M in human cardiac sodium channels. Pflugers Arch. 442, 204–211.

    PubMed  CAS  Google Scholar 

  109. Rossie, S. and Catterall, W. A. (1987) Cyclic AMP-dependent phosphorylation of voltage-sensitive sodium channels in primary cultures of rat brain neurons. J. Biol. Chem. 262, 12,735–12,744.

    CAS  Google Scholar 

  110. Rossie, S., Gordon, D., and Catterall, W. A. (1987) Identification of an intracellular domain of the sodium channel having multiple cAMP-dependent phosphorylation sites. J. Biol. Chem. 262, 17,530–17,535.

    CAS  Google Scholar 

  111. Yang, J. and Barchi, R. (1990) Phosphorylation of the rat skeletal muscle sodium channel by cyclic AMP-dependent protein kinase. J. Neurochem. 54, 954–962.

    PubMed  CAS  Google Scholar 

  112. Smith, R. D. and Goldin, A. L. (2000) Potentiation of rat brain sodium channel currents by PKA in Xenopus oocytes involves the I–II linker. Am. J. Physiol. 278, C638-C645.

    CAS  Google Scholar 

  113. Gershon, E., Weigl, L., Lotan, I., Schreibmayer, W., and Dascal, N. (1992) Protein kinase A reduces voltage-dependent Na+ current in Xenopus oocytes. J. Neurosci. 12, 3743–3752.

    PubMed  CAS  Google Scholar 

  114. Numann, R., Hauschka, S. D., Catterall, W. A., and Scheuer, T. (1994) Modulation of skeletal muscle sodium channels in a statellite cell line by protein kinase C. J. Neurosci. 14, 4226–4236.

    PubMed  CAS  Google Scholar 

  115. Li, M., West, J. W., Numann, R., Murphy, B. j., Scheuer, T., and Catterall, W. A. (1993) Convergent regulation of sodium channels by protein kinase C and cAMP-dependent protein kinase. Science 261, 1439–1442.

    PubMed  CAS  Google Scholar 

  116. Murray, K. T., Hu, N., Daw, J. R., Shin, H. G., Watson, M. T., Mashburn, A. B., and George, A. L. (1997) Functional effects of protein kinase C activation on the human cardiac Na+ channel. Circ. Res. 80, 370–376.

    PubMed  CAS  Google Scholar 

  117. Zhou, J., Yi, J., Hu, N. N., George, A. L., Jr., and Murray, K. T. (2000) Activation of protein kinase A modulates trafficking of the human cardiac sodium channel in Xenopus oocytes. Circ. Res. 87, 33–38.

    PubMed  CAS  Google Scholar 

  118. Matsuda, J. J., Lee, H., and Shibata, E. F. (1992) Enhancement of rabbit cardiac sodium channels by β-adrenergic stimulation. Circ. Res. 70, 199–207.

    PubMed  CAS  Google Scholar 

  119. Tomaselli, G. F., Marban, E., and Yellen, G. (1989) Sodium channels from human brain RNA expressed in Xenopus oocytes. Basic electrophysiologic characteristic and their modification by diphenylhudantoin. J. Clin. Invest. 83, 1724–1732.

    Article  PubMed  CAS  Google Scholar 

  120. Willow, M., Gonoi, T., and Catterall, W. A. (1985) Voltage clamp analysis of the inhibitory actions of diphenylhydantoin and carbamazepine on voltage-sensitive sodium channels in neuroblastoma cells. Mol. Pharmacol. 27, 549–558.

    PubMed  CAS  Google Scholar 

  121. Stuart, G. J. and Sakmann, B. (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72.

    PubMed  CAS  Google Scholar 

  122. Williams, S. R. and Stuart, G. J. (1999) Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons. J. Physiol. (London) 521, 467–482.

    CAS  Google Scholar 

  123. Hausser, M., Stuart, G., Racca, C., and Sakmann, B. (1995) Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron 15, 637–647.

    PubMed  CAS  Google Scholar 

  124. Simoncini, L. and Stuhmer, W. (1987) Slow sodium channel inactivation in rat fast-twitch muscle. J. Physiol. (London) 383, 327–337.

    CAS  Google Scholar 

  125. Ruff, R. L., Simoncini, L., and Stuhmer, W. (1987) Comparison between slow sodium channel inactivation in rat slow- and fast-twitch muscle. J. Physiol. (London) 383, 339–348.

    CAS  Google Scholar 

  126. Narahashi, T. (1964) Restoration of action potential by anodal polarization in lobster giant axons. J. Cell. Comp. Physiol. 64, 73–96.

    CAS  Google Scholar 

  127. Adelman, W. J. and Palti, Y. (1969) The effects of external potassium and long duration voltage conditioning on the amplitude of sodium currents in the giant axon of the squid, Loligo peali, J. Gen. Physiol. 57, 745–758.

    Google Scholar 

  128. Schauf, C. L., Peneck, T. L., and Davis, F. A. (1976) Slow inactivation in Mixocola axons. Biophys. J. 16, 771–778.

    Article  PubMed  CAS  Google Scholar 

  129. Brismar, T. (1977) Slow mechanism for sodium permeability inactivation in myelinated nerve fiber of Xenopus laevis. J. Physiol. 270, 283–297.

    PubMed  CAS  Google Scholar 

  130. Quandt, F. N. (1987) Burst kinetics of sodium channels which lack fast inactivation in mouse neuroblastoma cells. J. Physiol. 392, 563–585.

    PubMed  CAS  Google Scholar 

  131. Hodgkin, A. L. and Huxley, A. F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 117, 500–544.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. Ruben.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilin, Y.Y., Ruben, P.C. Slow inactivation in voltage-gated sodium channels. Cell Biochem Biophys 35, 171–190 (2001). https://doi.org/10.1385/CBB:35:2:171

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:35:2:171

Index Entries

Navigation