Skip to main content
Log in

Revisiting the function of PSA-NCAM in the nervous system

Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Since its first description the polysialylated form of NCAM (PSA-NCAM) is thought to be a major regulator of cell-cell interactions in the nervous system. Over the past few years many crucial questions have been answered concerning PSA biosynthesis and function. Among these are the identification and cloning of the key enzymes that are responsible for its synthesis and the fact that expression of PSA is not restricted to developmental stages but maintained in the adult nervous system. In the adult, PSA has been shown to be not only a marker of structural plasticity but seems to be a major player in these processes. Originally suggested to be a purely anti-adhesive factor, modulating cell-cell interactions in general and by this allowing plasticity, there is now increasing evidence that this might not be the whole story. Instead, it appears possible that PSA-NCAM interacts with secreted signaling molecules and by this fulfills a more instructive function in brain plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Rougon G. (1993) Structure, metabolism and cell biology of polysialic acids. Eur. J. Cell. Biol. 61, 197–207.

    PubMed  CAS  Google Scholar 

  2. Rutishauser U. and Landmesser L. (1996) Polysialic acid in the vertebrate nervous system: a promoter of plasticity in cell-cell interactions. Trends Neurosci. 19, 422–427.

    PubMed  CAS  Google Scholar 

  3. Goridis C. and Brunet J. F. (1992) NCAM: structural diversity, function and regulation of expression. Semin. Cell. Biol. 3, 189–197.

    Article  PubMed  CAS  Google Scholar 

  4. Kiss J. Z. and Rougon G. (1997) Cell biology of polysialic acid. Curr. Opin. Neurobiol. 7, 640–646.

    Article  PubMed  CAS  Google Scholar 

  5. Finne J., Finne U., Deagostini-Bazin H., and Goridis C. (1983) Occurrence of alpha 2–8 linked polysialosyl units in a neural cell adhesion molecule. Biochem. Biophys. Res. Commun. 112, 482–487.

    Article  PubMed  CAS  Google Scholar 

  6. Rougon G., Dubois C., Buckley N., Magnani J. L., and Zollinger W. (1986) A monoclonal antibody against meningococcus group B polysaccharides distinguishes embryonic from adult N-CAM. J. Cell Biol. 103, 2429–2437.

    Article  PubMed  CAS  Google Scholar 

  7. Cremer H., Lange R., Christoph A., Plomann M., Vopper G., Roes J., et al. (1994) Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367, 455–459.

    Article  PubMed  CAS  Google Scholar 

  8. Yoshida Y., Kojima N., and Tsuji S. (1995) Molecular cloning and characterization of a third type of N-glycan alpha 2,8-sialytransferase from mouse lung. J. Biochem. (Tokyo) 118, 658–664.

    CAS  Google Scholar 

  9. Livingston B. D. and Paulson J. C. (1993) Polymerase chain reaction cloning of a developmentally regulated member of the sialyltransferase gene family. J. Biol. Chem. 268, 11,504–11,507.

    CAS  Google Scholar 

  10. Eckhardt M., Muhlenhoff M., Bethe A., Koopman J., Frosch M., and Gerardy-Schahn R. (1995) Molecular characterization of eukaryotic polysialyltransferase-1. Nature 373, 715–718.

    Article  PubMed  CAS  Google Scholar 

  11. Nakayama J., Fukuda M. N., Fredette B., Ranscht B., and Fukuda M. (1995) Expression cloning of a human polysialyltransferase that forms the polysialylated neural cell adhesion molecule present in embryonic brain. Proc. Natl. Acad. Sci. USA 92, 7031–7035.

    Article  PubMed  CAS  Google Scholar 

  12. Phillips G. R., Krushel L. A., and Crossin K. L. (1997) Developmental expression of two rat sialyltransferases that modify the neural cell adhesion molecule, NCAM. Brain. Res. Dev. Brain Res. 102, 143–155.

    Article  PubMed  CAS  Google Scholar 

  13. Ong E., Nakayama J., Angata K., Reyes L., Katsuyama T., Arai Y., and Fukuda M. (1998) Developmental regulation of polysialic acid synthesis in mouse directed by two polysialyltransferases, PST and STX. Glycobiology 8, 415–424.

    Article  PubMed  CAS  Google Scholar 

  14. Hildebrandt H., Becker C., Murau M., Gerardy-Schahn R., and Rahmann H. (1998) Heterogeneous expression of the polysialyltransferases ST8Sia II and ST8Sia IV during postnatal rat brain development. J. Neurochem. 71, 2339–2348.

    Article  PubMed  CAS  Google Scholar 

  15. Seki T. and Arai Y. (1993) Distribution and possible roles of the highly polysialylated neural cell adhesion molecule (NCAM-H) in the developing and adult central nervous system. Neurosci. Res. 17, 265–290.

    Article  PubMed  CAS  Google Scholar 

  16. Eckhardt M., Bukalo O., Chazal G., Wang L., Goridis C., Schachner M., et al. (2000) Mice deficient in the polysialyltransferase ST8SiaIV/PST-1 allow discrimination of the roles of neural cell adhesion molecule protein and polysialic acid in neural development and synaptic plasticity. J. Neurosci. 20, 5234–5244.

    PubMed  CAS  Google Scholar 

  17. Raff M. C., Miller R. H., and Noble M. (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303, 390–396.

    Article  PubMed  CAS  Google Scholar 

  18. Wang C., Rougon G., and Kiss J. Z. (1994) Requirement of polysialic acid for the migration of the O-2A glial progenitor cell from neurohypophyseal explants. J. Neurosci. 14, 4446–4457.

    PubMed  CAS  Google Scholar 

  19. Ono K., Yasui Y., Rutishauser U., and Miller R. H. (1997) Focal ventricular origin and migration of oligodendrocyte precursors into the chick optic nerve. Neuron 19, 283–292.

    Article  PubMed  CAS  Google Scholar 

  20. Wang C., Pralong W. F., Schulz M. F., Rougon G., Aubry J. M., Pagliusi S., et al. (1996) Functional N-methyl-D-aspartate receptors in O-2A glial precursor cells: a critical role in regulating polysialic acid-neural cell adhesion molecule expression and cell migration. J. Cell Biol. 135, 1565–1581.

    Article  PubMed  CAS  Google Scholar 

  21. Altman J. (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J. Comp. Neurol. 137, 433–457.

    Article  PubMed  CAS  Google Scholar 

  22. Kishi K. (1987) Golgi studies on the development of granule cells of the rat olfactory bulb with reference to migration in the subependymal layer. J. Comp. Neurol. 258, 112–124.

    Article  PubMed  CAS  Google Scholar 

  23. Luskin M. B. (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189.

    Article  PubMed  CAS  Google Scholar 

  24. Lois C. and Alvarez-Buylla A. (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148.

    Article  PubMed  CAS  Google Scholar 

  25. O’Rourke N. A. (1996) Neuronal chain gangs: homotypic contacts support migration into the olfactory bulb. Neuron 16, 1061–1064.

    Article  PubMed  CAS  Google Scholar 

  26. Goldman S. A. and Luskin M. B. (1998) Strategies utilized by migrating neurons of the postnatal vertebrate forebrain. Trends. Neurosci. 21, 107–114.

    Article  PubMed  CAS  Google Scholar 

  27. Bonfanti L. and Theodosis D. T. (1994) Expression of polysialylated neural cell adhesion molecule by proliferating cells in the subependymal layer of the adult rat, in its rostral extension and in the olfactory bulb. Neuroscience. 62, 291–305.

    Article  PubMed  CAS  Google Scholar 

  28. Rousselot P., Lois C., and Alvarez-Buylla A. (1995) Embryonic (PSA) N-CAM reveals chains of migrating neuroblasts between the lateral ventricle and the olfactory bulb of adult mice. J. Comp. Neurol. 351, 51–61.

    Article  PubMed  CAS  Google Scholar 

  29. Chazal G., Durbec P., Jankovski A., Rougon G., and Cremer H. (2000) Consequences of neural cell adhesion molecule deficiency on cell migration in the rostral migratory stream of the mouse. J. Neurosci. 20, 1446–1457.

    PubMed  CAS  Google Scholar 

  30. Tomasiewicz H., Ono K., Yee D., Thompson C., Goridis C., Rutishauser U., and Magnuson T. (1993) Genetic deletion of a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects in the central nervous system. Neuron 11, 1163–1174.

    Article  PubMed  CAS  Google Scholar 

  31. Ono K., Tomasiewicz H., Magnuson T., and Rutishauser U. (1994) N-CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid. Neuron 13, 595–609.

    Article  PubMed  CAS  Google Scholar 

  32. Hu H. (2000) Polysialic acid regulates chain formation by migrating olfactory interneuron precursors. J. Neurosci. Res. 61, 480–492.

    Article  PubMed  CAS  Google Scholar 

  33. Hu H., Tomasiewicz H., Magnuson T., and Rutishauser U. (1996) The role of polysialic acid in migration of olfactory bulb interneuron precursors in the subventricular zone. Neuron 16, 735–743.

    Article  PubMed  CAS  Google Scholar 

  34. Durbec P. and Rougon G. (2001) Transplantation of mammalian olfactory progenitors into chick hosts reveals migration and differentiation potentials dependent on cell commitment. Mol. Cell Neurosci. 17, 561–576.

    Article  PubMed  CAS  Google Scholar 

  35. Wichterle H., Garcia-Verdugo J. M., and Alvarez-Buylla A. (1997) Direct evidence for homotypic, glia-independent neuronal migration. Neuron 18, 779–791.

    Article  PubMed  CAS  Google Scholar 

  36. Schwanzel-Fukuda M. and Pfaff D. W. (1989) Origin of luteinizing hormone-releasing hormone neurons. Nature 338, 161–164.

    Article  PubMed  CAS  Google Scholar 

  37. Wray S., Grant P., and Gainer H. (1989) Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc. Natl. Acad. Sci. USA 86, 8132–8136.

    Article  PubMed  CAS  Google Scholar 

  38. Schwanzel-Fukuda M., Crossin K. L., Pfaff D. W., Bouloux P. M., Hardelin J. P., and Petit C. (1996) Migration of luteinizing hormone-releasing hormone (LHRH) neurons in early human embryos. J. Comp. Neurol. 366, 547–557.

    Article  PubMed  CAS  Google Scholar 

  39. Yoshida K., Rutishauser U., Crandall J. E., and Schwarting G. A. (1999) Polysialic acid facilitates migration of luteinizing hormone-releasing hormone neurons on vomeronasal axons. J. Neurosci. 19, 794–801.

    PubMed  CAS  Google Scholar 

  40. Murakami S., Seki T., Rutishauser U., and Arai Y. (2000) Enzymatic removal of polysialic acid from neural cell adhesion molecule perturbs the migration route of luteinizing hormone-releasing hormone neurons in the developing chick forebrain. J. Comp. Neurol. 420, 171–181.

    Article  PubMed  CAS  Google Scholar 

  41. Tessier-Lavigne M. and Goodman C. S. (1996) The molecular biology of axon guidance. Science 274, 1123–1133.

    Article  PubMed  CAS  Google Scholar 

  42. Doherty P., Cohen J., and Walsh F. S. (1990) Neurite outgrowth in response to transfected N-CAM changes during development and is modulated by polysialic acid. Neuron 5, 209–219.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang H., Miller R. H., and Rutishauser U. (1992) Polysialic acid is required for optimal growth of axons on a neuronal substrate. J. Neurosci. 12, 3107–3114.

    PubMed  CAS  Google Scholar 

  44. Tang J., Landmesser L., and Rutishauser U. (1992) Polysialic acid influences specific pathfinding by avian motoneurons. Neuron 8, 1031–1044.

    Article  PubMed  CAS  Google Scholar 

  45. Tang J., Rutishauser U., and Landmesser L. (1994) Polysialic acid regulates growth cone behavior during sorting of motor axons in the plexus region. Neuron 13, 405–414.

    Article  PubMed  CAS  Google Scholar 

  46. Acheson A., Sunshine J. L., and Rutishauser U. (1991) NCAM polysialic acid can regulate both cell-cell and cell-substrate interactions. J. Cell Biol. 114, 143–153.

    Article  PubMed  CAS  Google Scholar 

  47. Yin X., Watanabe M., and Rutishauser U. (1995) Effect of polysialic acid on the behavior of retinal ganglion cell axons during growth into the optic tract and tectum. Development 121, 3439–3446.

    PubMed  CAS  Google Scholar 

  48. Rutishauser U., Acheson A., Hall A. K., Mann D. M., and Sunshine J. (1988) The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions. Science 240, 53–57.

    Article  PubMed  CAS  Google Scholar 

  49. Monnier P. P., Beck S. G., Bolz J., and Henke-Fahle S. (2001) The polysialic acid moiety of the neural cell adhesion molecule is involved in intraretinal guidance of retinal ganglion cell axons. Dev. Biol. 229, 1–14.

    Article  PubMed  CAS  Google Scholar 

  50. Kaplan M. S. and Hinds J. W. (1977) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197, 1092.

    Article  PubMed  CAS  Google Scholar 

  51. Seki T. and Arai Y. (1991) The persistent expression of a highly polysialylated NCAM in the dentate gyrus of the adult rat. Neurosci. Res. 12, 503–513.

    Article  PubMed  CAS  Google Scholar 

  52. Le Gal La Salle G. and Valin A. (1991) [Reexpression of the embryonic form of NCAM in the rat hippocampus after status epilepticus induced by neurotoxic agent]. C. R. Acad. Sci. III 312, 43–47.

    PubMed  Google Scholar 

  53. Bonfanti L., Olive S., Poulain D. A., and Theodosis D. T. (1992) Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: an immunohistochemical study. Neuroscience 49, 419–436.

    Article  PubMed  CAS  Google Scholar 

  54. Cremer H., Chazal G., Goridis C., and Represa A. (1997) NCAM is essential for axonal growth and fasciculation in the hippocampus. Mol. Cell Neurosci. 8, 323–335.

    Article  PubMed  CAS  Google Scholar 

  55. Seki T. and Rutishauser U. (1998) Removal of polysialic acid-neural cell adhesion molecule induces aberrant mossy fiber innervation and ectopic synaptogenesis in the hippocampus. J. Neurosci. 18, 3757–3766.

    PubMed  CAS  Google Scholar 

  56. Cremer H., Chazal G., Carleton A., Goridis C., Vincent J. D., and Lledo P. M. (1998) Long-term but not short-term plasticity at mossy fiber synapses is impaired in neural cell adhesion molecule-deficient mice. Proc. Natl. Acad. Sci. USA 95, 13,242–13,247.

    Article  CAS  Google Scholar 

  57. Bartsch U., Kirchhoff F., and Schachner M. (1990) Highly sialylated N-CAM is expressed in adult mouse optic nerve and retina. J. Neurocytol. 19, 550–566.

    Article  PubMed  CAS  Google Scholar 

  58. Charles P., Hernandez M. P., Stankoff B., Aigrot M. S., Colin C., Rougon G., et al. (2000) Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc. Natl. Acad. Sci. USA. 97, 7585–7590.

    Article  PubMed  CAS  Google Scholar 

  59. Malenka R. C. and Nicoll R. A. (1999) Long-term potentiation: a decade of progress?, Science 285, 1870–1874.

    Article  PubMed  CAS  Google Scholar 

  60. Luthl A., Laurent J. P., Figurov A., Muller D., and Schachner M. (1994) Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. Nature 372, 777–779.

    Article  PubMed  CAS  Google Scholar 

  61. Muller D., Wang C., Skibo G., Toni N., Cremer H., Calaora V., et al. (1996) PSA-NCAM is required for activity-induced synaptic plasticity. Neuron 17, 413–422.

    Article  PubMed  CAS  Google Scholar 

  62. Holst B. D., Vanderlish P. W., Krushel L. A., Zhou W., Langdon R. B., McWhirter J. R., et al. (1998) Allosteric modulation of AMPA-type glutamate receptors increases activity of the promoter for the neural cell adhesion molecule, N-CAM. Proc. Natl. Acad. Sci. USA 95, 2597–2602.

    Article  PubMed  CAS  Google Scholar 

  63. Nicoll R. A. and Malenka R. C. (1995) Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115–118.

    Article  PubMed  CAS  Google Scholar 

  64. Becker C. G., Artola A., Gerardy-Schahn R., Becker T., Welzl H., and Schachner M. (1996) The polysialic acid modification of the neural cell adhesion molecule is involved in spatial learning and hippocampal long-term potentiation. J. Neurosci. Res. 45, 143–152.

    Article  PubMed  CAS  Google Scholar 

  65. Seki T. and Arai Y. (1999) Different polysialic acid-neural cell adhesion molecule expression patterns in distinct types of mossy fiber boutons in the adult hippocampus. J. Comp. Neurol. 410, 115–125.

    Article  PubMed  CAS  Google Scholar 

  66. Muller D., Djebbara-Hannas Z., Jourdain P., Vutskits L., Durbec P., Rougon G., and Kiss J. Z. (2000) Brain-derived neurotrophic factor restores long-term potentiation in polysialic acid-neural cell adhesion molecule-deficient hippocampus. Proc. Natl. Acad. Sci. USA 97, 4315–4320.

    Article  PubMed  CAS  Google Scholar 

  67. Korte M., Carroll P., Wolf E., Brem G., Thoenen H., and Bonhoeffer T. (1995) Hippocampal long-term potentiation is impaired in mice lacking brain- derived neurotrophic factor. Proc. Natl. Acad. Sci. USA 92, 8856–8860.

    Article  PubMed  CAS  Google Scholar 

  68. Hatton G. I. (1990) Emerging concepts of structure-function dynamics in adult brain: the hypothalamo-neurohypophysial system. Prog. Neurobiol. 34, 437–504.

    Article  PubMed  CAS  Google Scholar 

  69. Theodosis D. T. and Poulain D. A. (1992) Neuronal-glial and synaptic remodelling in the adult hypothalamus in response to physiological stimuli. Ciba Found. Symp. 168, 209–225.

    PubMed  CAS  Google Scholar 

  70. Salm A. K., Hatton G. I., and Nilaver G. (1982) Immunoreactive glial fibrillary acidic protein in pituicytes of the rat neurohypophysis. Brain Res. 236, 471–476.

    Article  PubMed  CAS  Google Scholar 

  71. Marin F., Boya J., and Lopez-Carbonell A. (1989) Immunocytochemical localization of vimentin in the posterior lobe of the cat, rabbit and rat pituitary glands. Acta Anat. 134, 184.

    Article  PubMed  CAS  Google Scholar 

  72. Kiss J. Z. (1998) A role of adhesion molecules in neuroglial plasticity. Mol. Cell Endocrinol. 140, 89–94.

    Article  PubMed  CAS  Google Scholar 

  73. Soares S., von Boxberg Y., Ravaille-Veron M., Vincent J. D., and Nothias F. (2000) Morphofunctional plasticity in the adult hypothalamus induces regulation of polysialic acid-neural cell adhesion molecule through changing activity and expression levels of polysialyltransferases. J. Neurosci. 20, 2551–2557.

    PubMed  CAS  Google Scholar 

  74. Theodosis D. T., Bonhomme R., Vitiello S., Rougon G., and Poulain D. A. (1999) Cell surface expression of polysialic acid on NCAM is a prerequisite for activity-dependent morphological neuronal and glial plasticity. J. Neurosci. 19, 10,228–10,236.

    CAS  Google Scholar 

  75. Theodosis D. T. and Poulain D. A. (1999) Contribution of astrocytes to activity-dependent structural plasticity in the adult brain. Adv. Exp. Med. Biol. 468, 175–182.

    PubMed  CAS  Google Scholar 

  76. Moscoso L. M., Cremer H., and Sanes J. R. (1998) Organization and reorganization of neuromuscular junctions in mice lacking neural cell adhesion molecule, tenascin-C, or fibroblast growth factor-5. J. Neurosci. 18, 1465–1477.

    PubMed  CAS  Google Scholar 

  77. Vutskits L., Djebbara-Hannas Z., Zhang H., Paccaud J. P., Durbec P., Rougon G., et al. (2001) PSA-NCAM modulates BDNF-dependent survival and differentiation of cortical neurons. Eur. J. Neurosci. 13, 1391–1402.

    Article  PubMed  CAS  Google Scholar 

  78. Deckner M. L., Frisen J., Verge V. M., Hokfelt T., and Risling M. (1993) Localization of neurotrophin receptors in olfactory epithelium and bulb. Neuroreport 5, 301–304.

    Article  PubMed  CAS  Google Scholar 

  79. Zigova T., Pencea V., Wiegand S. J., and Luskin M. B. (1998) Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol. Cell Neurosci. 11, 234–245.

    Article  PubMed  CAS  Google Scholar 

  80. Wu W., Wong K., Chen J., Jiang Z., Dupuis S., Wu J. Y., and Rao Y. (1999) Directional guidance of neuronal migration in the olfactory system by the protein Slit [see comments]. Nature 400, 331–336.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold Cremer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durbec, P., Cremer, H. Revisiting the function of PSA-NCAM in the nervous system. Mol Neurobiol 24, 53–64 (2001). https://doi.org/10.1385/MN:24:1-3:053

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:24:1-3:053

Index Entries

Navigation