Skip to main content
Log in

Mechanisms of dendritic maturation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The highly complex geometry of dendritic trees is crucial for neural signal integration and the proper wiring of neuronal circuits. The morphogenesis of dendritic trees is regulated by innate genetic factors, neuronal activity, and external molecular cues. How each of these factors contributes to dendritic maturation has been addressed in the developing nervous systems of animals ranging from insects to mammals. The results of such investigations have shown that the contribution of intrinsic and extrinsic factors and activity, however, appear to be weighted differentially in different types of neurons, in different brain areas, and especially in different species. Moreover, it appears that dozens of molecules have been found to regulate dendritic maturation, but it is almost certain that each molecule plays only a specific role in this formidable cooperative venture. This article reviews our current knowledge and understanding of the role of various factors in the establishment of the architecture of mature dendritic trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ramon y Cajal (1897) Las leyes de la morfologia y dinamismo de las celulas nerviosas. Revista Trim. Microgr. 1.

  2. Rall W., Burke R.E., Holmes W.R., Jack J.J., Redman S.J., and Segev I. (1992) Matching dendritic neuron models to experimental data. Physiol. Rev. 72, S159–186.

    PubMed  CAS  Google Scholar 

  3. Koch C. and Segev I. (2000) The role of single neurons in information processing. Nat. Neurosci. 3, 1171–1177.

    Article  PubMed  CAS  Google Scholar 

  4. Mainen Z.F. and Sejnowski T.J. (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382, 363–366.

    Article  PubMed  CAS  Google Scholar 

  5. Vetter P., Roth A., and Häusser M. (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J. Neurophysiol. 85, 926–937.

    PubMed  CAS  Google Scholar 

  6. Cline H.T. (2001) Dendritic arbor development and synaptogenesis. Curr. Opin. Neurobiol. 11, 118–126.

    Article  PubMed  CAS  Google Scholar 

  7. Cohen-Cory S. (2002) The developing synapse: Construction and modulation of synaptic structures and circuits. Science 298, 770–776.

    Article  PubMed  CAS  Google Scholar 

  8. Garner C.C., Zhai R.G., Gundelfinger E.D., and Ziv N.E. (2002) Molecular mechanisms of CNS synaptogenesis. Trends Neurosci. 25, 243–251.

    Article  PubMed  CAS  Google Scholar 

  9. Segal M. and Andersen P. (2000) Dendritic spines shaped by synaptic activity. Curr. Opin. Neurobiol. 10, 582–586.

    Article  PubMed  CAS  Google Scholar 

  10. Wong W.T. and Wong R.O.L. (2000) Rapid dendritic movements during synapse formation and rearrangement. Curr. Opin. Neurobiol. 10, 118–124.

    Article  PubMed  CAS  Google Scholar 

  11. Sernagor E., Eglen S.J., and Wong R.O. (2001) Development of retinal ganglion cell structure and function. Prog. Retin. Eye Res. 20, 139–174.

    Article  PubMed  CAS  Google Scholar 

  12. Trachtenberg J.T., Chen B.E., Knott G.W., Feng G., Sanes J.R., Welker E., et al. (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794.

    Article  PubMed  CAS  Google Scholar 

  13. Grutzendler J., Kasthuri N., and Gan W.B. (2002) Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816.

    Article  PubMed  CAS  Google Scholar 

  14. Libersat F. and Duch C. (2002) Morphometric analysis of dendritic remodeling in an identified motoneuron during postembryonic development. J. Comp. Neurol. 450, 153–166.

    Article  PubMed  Google Scholar 

  15. Mizrahi A. and Libersat F. (2002) Afferent input regulates the formation of distal dendritic branches. J. Comp. Neurol. 452, 1–10.

    Article  PubMed  Google Scholar 

  16. Scott E.K., Reuter J.E., and Luo L. (2003) Dendritic development of Drosophila high order visual system neurons is independent of sensory experience. BMC Neurosci. 4, 1–6.

    Article  Google Scholar 

  17. Uylings H.B.M., Ruiz-Marcos A., and van Pelt J. (1986) The metric analysis of three-dimensional dendritic tree patterns: A methodological review. J. Neurosci. Meth. 18, 127–151.

    Article  CAS  Google Scholar 

  18. Sholl D.A. (1953) Dendritic organization in the neurons of the visual cortex and motor cortices of the cat. J. Anat. (Lond) 87, 387–406.

    Article  CAS  Google Scholar 

  19. Acebes A. and Ferrus A. (2000) Cellular and molecular features of axon collaterals and dendrities. Trends Neurosci. 23, 557–565.

    Article  PubMed  CAS  Google Scholar 

  20. Smith T.G.J., Marks W.B., Lange G.D., Sheriff W.H.J., and Neale E.A. (1989) A fractal analysis of cell images. J. Neurosci. Meth. 27, 173–180.

    Article  Google Scholar 

  21. Caserta F., Eldred W.D., Fernandez E., Hausman R.E., Stanford L.R., Bulderev S.V., et al. (1995) Determination of fractal dimension of physiologically characterized neurons in two and three dimensions. J. Neurosci. Meth. 56, 133–144.

    Article  CAS  Google Scholar 

  22. Smith T.G.J., Lange G.D., and Marks W.B. (1996) Fractal methods and results in cellular morphology—dimensions, lacunarity and multifractals. J. Neurosci. Meth. 69, 123–136.

    Article  Google Scholar 

  23. Mizrahi A., Ben-Ner E., Glusman G., Katz M., Kedem K., and Libersat F. (2000) Comparative analysis of dendritic architecture of identified neurons using the Hausdorff distance metric. J. Comp. Neurol. 422, 415–428.

    Article  PubMed  CAS  Google Scholar 

  24. Mendenhall B. and Murphey R.K. (1974) The morphology of cricket giant interneurons. J. Neurobiol. 5, 565–580.

    Article  PubMed  CAS  Google Scholar 

  25. Scott E.K., Raabe T., and Luo L. (2002) Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila. J. Comp. Neurol. 454, 470–481.

    Article  PubMed  Google Scholar 

  26. Weeks J.C. and Truman J.W. (1986) Steroid control of neuron and muscle development during the metamorphosis of an insect. J. Neurobiol. 3, 249–267.

    Article  Google Scholar 

  27. Duch C. and Levine R.B. (2000) Remodeling of membrane properties and dendritic architecture accompany the postembryonic conversion of a “slow” into a “fast” motoneuron. J. Neurosci. 20, 6950–6961.

    PubMed  CAS  Google Scholar 

  28. Duch C. and Levine R.B. (2002) Changes of calcium signaling during postembryonic dendritic growth in Manduca sexta. J. Neurophysiol. 87, 1415–1425.

    PubMed  CAS  Google Scholar 

  29. Consoulas C., Duch C., Bayline R.J., and Levine R.B. (2000) Behavioral transformations during metamorphosis: Remodeling of neural and motor systems. Brain Res. Bull. 5, 571–583.

    Article  Google Scholar 

  30. Consoulas C., Restifo L.L., and Levine R.B. (2002) Dendritic remodeling and growth of motoneurons during metamorphosis of Drosophila melanogaster. J. Neurosci. 22, 4906–4917.

    PubMed  CAS  Google Scholar 

  31. Goodman C.S. (1978) Isogenic grasshoppers: Genetic variability in the morphology of identified neurons. J. Comp. Neurol. 182, 681–705.

    Article  PubMed  CAS  Google Scholar 

  32. Prugh J., Della Croce K., and Levine R.B. (1992) Effects of the steroid hormone, 20-hydroxyecdysone, on the growth of neurites by identified insect motoneurons in vitro. Dev. Biol. 154, 331–347.

    Article  PubMed  CAS  Google Scholar 

  33. Kraft R., Levine R.B., and Restifo L.L. (1998) The steroid hormone 20-hydroxyecdysone enhances neurite growth of Drosophila mushroom body neurons isolated during metamorphosis. J. Neurosci. 18, 8886–8899.

    PubMed  CAS  Google Scholar 

  34. Montague P.R. and Friedlander M.J. (1989) Expression of an intrinsic growth strategy by mammalian retinal neurons. PNAS 18, 7223–7227.

    Article  Google Scholar 

  35. Montague P.R. and Friedlander M.J. (1991) Morphogenesis and territorial coverage by isolated mammalian retinal ganglion cells. J. Neurosci. 5, 1440–1457.

    Google Scholar 

  36. Banker G.A. and Cowan W.M. (1979) Further observations on hippocampal neurons in dispersed cell culture. J. Comp. Neurol. 187, 469–493.

    Article  PubMed  CAS  Google Scholar 

  37. Threadgill R., Bobb K., and Gosh A. (1997) Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron 19, 625–634.

    Article  PubMed  CAS  Google Scholar 

  38. Spatkowski G. and Schilling K. (2003) Postnatal dendritic morphogenesis of cerebellar basket and stellate cells in vitro. J. Neurosci. Res. 72, 317–326.

    Article  PubMed  CAS  Google Scholar 

  39. Baptista C.A., Hatten M.E., Blazeski R., and Mason C.A. (1994) Cell-cell interactions influence survival and differentiation of purified Purkinje cells in vitro. Neuron 12, 243–260.

    Article  PubMed  CAS  Google Scholar 

  40. Spitzer N.C. (2002) Activity-dependent neuronal differentiation prior to synapse formation: The functions of calcium transients. J. Physiol. Paris 96, 73–80.

    Article  PubMed  CAS  Google Scholar 

  41. Weliky M. and Katz L.C. (1999) Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo. Science 285, 599–604.

    Article  PubMed  CAS  Google Scholar 

  42. Feller M.B. (1999) Spontaneous correlated activity in developing neural circuits. Neuron 22, 653–656.

    Article  PubMed  CAS  Google Scholar 

  43. Yuste R. (1997) Introduction: Spontaneous activity in the developing central nervous system. Semin. Cell Dev. Biol. 8, 1–4.

    Article  PubMed  CAS  Google Scholar 

  44. O’Donavan M. and Chub N. (1997) Population behavior and self-organization in the genesis of spontaneous rhythmic activity by developing spinal networks. Semin. Cell Dev. Biol. 8, 21–28.

    Article  Google Scholar 

  45. Milner L.D. and Landmesser L.T. (1999) Cholinergic and GABAergic inputs drive patterned spontaneous motoneuron activity before target contact. J. Neurosci. 19, 3007–3022.

    PubMed  CAS  Google Scholar 

  46. Garaschuk O., Hanse E., and Konnerth A. (1998) Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J. Physiol. (Lond.) 50, 219–236.

    Article  Google Scholar 

  47. Rubel E.W. and Fritsch B. (2002) Auditory system development: Primary auditory neurons and their targets. Annu. Rev. Neurosci. 25, 51–101.

    Article  PubMed  CAS  Google Scholar 

  48. Feller M.B., Wellis D.P., Stellwagen D., Werblin F.S., and Shatz C.J. (1996) Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272, 1182–1187.

    Article  PubMed  CAS  Google Scholar 

  49. Yuste R., Nelson D.A., Rubin W.W., and Katz L.C. (1995) Neuronal domains in developing neocortex: Mechanisms of coactivation. Neuron 11, 118–126.

    Google Scholar 

  50. Zhang L.I., Tao H.W., and Poo M. (2000) Visual input induces long-term potentiation of developing retinotectal synapses. Nat. Neurosci. 3, 708–715.

    Article  PubMed  CAS  Google Scholar 

  51. Volman S.F. and Camhi J.F. (1988) The role of afferent activity in behavioral and neuronal plasticity in an insect. J. Comp. Physiol. A 162, 781–791.

    Article  PubMed  CAS  Google Scholar 

  52. Murphey R.K., Medenhall B., Palka J., and Edwards J.S. (1975) Deafferentation slows growths of specific dendrites of identified giant interneurons. J. Comp. Neurol. 159, 407–418.

    Article  PubMed  CAS  Google Scholar 

  53. Rakic P. and Sidman R.L. (1973) Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J. Comp. Neurol. 152, 133–161.

    Article  PubMed  CAS  Google Scholar 

  54. Rakic P. (1975) Role of cell interactions in development of dendritic patterns. Adv. Neurol. 12, 117–134.

    PubMed  CAS  Google Scholar 

  55. Mason C.A., Morrison M.E., Ward M.S., Zhand Q., and Bird D.H. (1997) Axon-target interactions in the developing cerebellum. Perspect. Dev. Neurobiol. 5, 69–82.

    PubMed  CAS  Google Scholar 

  56. Wiesel T.N. and Hubel D.H. (1963) Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body. J. Neurophysiol. 26, 978–993.

    PubMed  CAS  Google Scholar 

  57. Friedlander M.J., Stanford L.R., and Sherman S.M. (1982) Effects of monocular deprivation on the structure/function relationship of individual neurons in the cat’s lateral geniculate nucleus. J. Neurosci. 2, 321–330.

    PubMed  CAS  Google Scholar 

  58. Borges S. and Berry M. (1978) The effects of dark rearing on the development of the visual cortex of rat. J. Comp. Neurol. 180, 277–300.

    Article  PubMed  CAS  Google Scholar 

  59. Barth M., Hirsch H.V., Meinertzhagen I.A., and Heisenberg M. (1997) Experience-dependent developmental plasticity in the optic lobe of Drosophila melanogaster. J. Neurosci. 17, 1493–1504.

    PubMed  CAS  Google Scholar 

  60. Hirsch H.V.B., Potter D., Zawierucha D., Choudhri T., Glasser A., Murphey R.K., et al. (1990) Rearing in darkness changes visually-guided choice behavior in Drosophila. Visual Neurosci. 5, 281–289.

    Article  CAS  Google Scholar 

  61. Mimura K. (1986) Development of visual pattern discrimination in the fly depends on light experience. Science 232, 83–85.

    Article  PubMed  Google Scholar 

  62. Mimura K. (1987) Persistence and extinction of the effect of visual pattern deprivation in the fly. J. Exp. Biol. 46, 155–162.

    CAS  Google Scholar 

  63. Lud J.S., Holbach S.M., and Chung W.W. (1991) Postnatal development of the thalamic recipient neurons in the monkey striate cortex. II. Influence of afferent driving on spine acquisition and dendritic growth of layer 4C spiny stellate neurons. J. Comp. Neurol. 30, 29–140.

    Google Scholar 

  64. Tieman S.B., Zec N., and Tieman D.G. (1995) Dark rearing fails to affect the basal dendritic fields of layer 3 pyramidal cells in the kitten visual cortex. Brain Res. Dev. Brain Res. 84, 39–45.

    Article  PubMed  CAS  Google Scholar 

  65. Sin W.C., Haas K., Ruthazer E.S., and Cline H.T. (2002) Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Nature 419, 475–480.

    Article  PubMed  CAS  Google Scholar 

  66. McAllister A.K. (2000) Cellular and molecular mechanisms of dendrite growth. Cereb. Cortex 10, 963–973.

    Article  PubMed  CAS  Google Scholar 

  67. Wong R.O.L. and Gosh A. (2002) Activity-dependent regulation of dendritic growth and patterning. Nature Rev. Neurosci. 3, 803–812.

    Article  CAS  Google Scholar 

  68. Goodman L.A. and Model P.G. (1990) Eliminating afferent impulse activity does not alter the dendritic branching of the amphibian Mauthner cell. J. Neurobiol. 21, 283–294.

    Article  PubMed  CAS  Google Scholar 

  69. Kossel A.H., Williams C.V., Schweizer M., and Kater S.B. (1997) Afferent innervation influences the development of dendritic branches and spines via both activity-dependent and non-activity-dependent mechanisms. J. Neurosci. 17, 6314–6324.

    PubMed  CAS  Google Scholar 

  70. Frotscher M., Drakew A., and Heimrich B. (2000) Role of afferent innervation and neuronal activity in dendritic development and spine maturation of fascia dentata granule cells. Cereb. Cortex 10, 946–951.

    Article  PubMed  CAS  Google Scholar 

  71. Jin X., Hu H., Mathers P.H., and Agmon A. (2003) Brain-derived neurotrophic factor mediates activity-dependent dendritic growth in nonpyramidal neocortical interneurons in developing organotypic cultures. J. Neurosci. 23, 5662–5673.

    PubMed  CAS  Google Scholar 

  72. McAllister A.K., Katz L.C., and Lo D.C. (1996) Neurotrophin regulation of cortical dendritic growth requires activity. Neuron 17, 1057–1064.

    Article  PubMed  CAS  Google Scholar 

  73. McKinney R.A., Capogna M., Durr R., Gahwiler B.H., and Thompson S.M. (1999) Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat. Neurosci. 2, 44–49.

    Article  PubMed  CAS  Google Scholar 

  74. Spitzer N.C., Kingston P.A., Manning T.J., and Conklin M.W. (2002) Outside and in: Development of neuronal excitability. Curr. Opin. Neurobiol. 12, 315–323.

    Article  PubMed  CAS  Google Scholar 

  75. Suster M.L. and Bate M. (2002) Embryonic assembly of a central pattern generator without sensory input. Nature 416, 174–178.

    Article  PubMed  CAS  Google Scholar 

  76. Baines R.A., Seugnet L., Thompson A., Salvaterra P.M., and Bate M. (2001) Regulation of synaptic connectivity: Levels of Fasciclin II influence synaptic growth in the Drosophila CNS. J. Neurosci. 22, 6587–6595.

    Google Scholar 

  77. Sweeney S.T., Broadie K., Keane J., Niemann H., and O’Kane J. (1995) Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341–351.

    Article  PubMed  CAS  Google Scholar 

  78. Verhage M., Maia A.S., Plomp J.J., Brussaard A.B., Heeroma J.H., Vermeer H., et al. (2000) Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864–869.

    Article  PubMed  CAS  Google Scholar 

  79. Wu G.Y., Malinow R., and Cline H.T. (1996) Maturation of central glutamatergic synapses. Science 174, 972–976.

    Article  Google Scholar 

  80. Cantallops I., Haas H., and Cline H.T. (2000) CPG15 expression enhances presynaptic axon growth and retinotectal synapse maturation. Nat. Neurosci. 3, 498–503.

    Google Scholar 

  81. Rajan I. and Cline H.A.T. (1998) Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J. Neurosci. 18, 7836–7846.

    PubMed  CAS  Google Scholar 

  82. Isaac J.T., Crair M.C., Nicoll R.A., and Malenka R.C. (1997) Silent synapses during development of thalamocortical inputs. Neuron 18, 269–280.

    Article  PubMed  CAS  Google Scholar 

  83. Kalb R.G. (1994) Regulation of motor neuron dendrite growth by NMDA receptor activation. Development 120, 3063–3071.

    PubMed  CAS  Google Scholar 

  84. Iwasato T., Datwani A., Wolf A.M., Nishiyama H., Taguchi Y., Tonegawa S., et al. (2000) Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406, 726–731.

    Article  PubMed  CAS  Google Scholar 

  85. Chevaleyre V., Moos F.C., and Desarmenien M.G. (2000) Interplay between presynaptic and postsynaptic activities is required for dendritic plasticity and synaptogenesis in the supraoptic nucleus. J. Neurosci. 22, 265–273.

    Google Scholar 

  86. Lohman C., Myhr K.L., and Wong R.O.L. (2002) Transmitter-evoked local calcium release stabilizes developing dendrites. Nature 418, 177–181.

    Article  CAS  Google Scholar 

  87. Tank D.W., Sugimori M., Connor J.A., and Llinas R. (1988) Spatially resolved calcium dynamics in mammalian Purkinje cells. Science 242, 773–777.

    Article  PubMed  CAS  Google Scholar 

  88. Berridge M.J. (1998) Neuronal calcium signaling. Neuron 21, 13–26.

    Article  PubMed  CAS  Google Scholar 

  89. Yuste R., Mejewska A., and Holthoff K. (2000) From form to function: Calcium compartmentalization in dendritic spines. Nature Neurosci. 3, 653–659.

    Article  PubMed  CAS  Google Scholar 

  90. Hardingham G.E., Chawla S., Johnon C.M., and Bading H. (1997) Distinct functions of nuclear and cytoplasmatic calcium in the control of gene expression. Nature 385, 260–265.

    Article  PubMed  CAS  Google Scholar 

  91. West A.E., Griffith E.C., and Greenberg M.E. (2002) Regulation of transcription factors by neuronal activity. Nat. Rev. Neurosci. 3, 921–931.

    Article  PubMed  CAS  Google Scholar 

  92. Redmond L., Kashani A., and Gosh A. (2002) Calcium regulation of dendritic growth via CaM kinase IV and Creb-mediated transcription. Neuron 34, 999–1010.

    Article  PubMed  CAS  Google Scholar 

  93. McAllister A.K., Lo D.C., and Katz L.C. (1995) Neurotrophin regulation of dendritic growth in developing visual cortex. Neuron 15, 791–803.

    Article  PubMed  CAS  Google Scholar 

  94. Nakayama A.Y., Harris M.B., and Luo L. (2000) Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J. Neurosci. 20, 5329–5338.

    PubMed  CAS  Google Scholar 

  95. Ruchhoeft M.L., Ohnuma S., McNeill L., Holt C.E., and Harris W.A. (1999) The neuronal architecture of Xenopus retinal ganglion cells is sculpted by rho-family GTPases in vivo. J. Neurosci. 19, 8454–8463.

    PubMed  CAS  Google Scholar 

  96. Li Z., Van Aelst L., and Cline H.T. (2000) Rho GTPases regulate distinct aspects of dendritic growth in Xenopus central neurons in vivo. Nat. Neurosci. 3, 217–225.

    Article  PubMed  CAS  Google Scholar 

  97. Li Z., Aisenman C.D., and Cline H.T. (2002) Regulation of Rac and Rho GTPases by crosstalk and neuronal activity in vivo. Neuron 33, 741–750.

    Article  PubMed  CAS  Google Scholar 

  98. Wu G.Y. and Cline H.T. (1998) Stabilization of dendritic arbor structure in vivo by CaM KII. Science 279, 222–226.

    Article  PubMed  CAS  Google Scholar 

  99. Zhou D.J. and Cline H.T. (1999) Coordinated regulation of retinal axon and tectal cell growth by endogenous CaM KII in vivo. J. Neurosci. 19, 8909–8918.

    Google Scholar 

  100. Eshete F. and Fields R.D. (2001) Spike frequency decoding and automonous activation of calcium calmodulin dependent protein kinase II in dorsal root ganglion neurons. J. Neurosci. 21, 6694–6705.

    PubMed  CAS  Google Scholar 

  101. Miller S., Yasuda M., Coats M.E., Jones Y., Martone M.E., and Mayford M. (2002) Disruption of dendritic translation of CaMKIIa impairs stabilization of synaptic plasticity and memory consolidation. Neuron 36, 507–519.

    Article  PubMed  CAS  Google Scholar 

  102. Vaillant A.R., Zanassi P., Walsh G.S., Aumont A., Alonso A., and Miller F.D. (2002) Signaling mechanisms underlying reversible, activity-dependent dendrite formation. Neuron 34, 985–998.

    Article  PubMed  CAS  Google Scholar 

  103. Miller F. and Kaplan D.R. (2003) Signaling mechanisms underlying dendrite formation. Curr. Opin. Neurobiol. 13, 391–398.

    Article  PubMed  CAS  Google Scholar 

  104. Gould E., Woolley C.S., and McEwen B.S. (1991) The hippocampal formation: Morphological changes induced by thyroid, gonadal and adrenal hormones. Psychoneuroendocrinol. 16, 67–84.

    Article  CAS  Google Scholar 

  105. Kawata M. (1995) Roles of steroid hormones and their receptors in structural organization in the nervous system. Neurosci. Res. 24, 1–46.

    Article  PubMed  CAS  Google Scholar 

  106. Levine R.B. and Weeks J.C. (1996) Cell culture approaches to understanding the actions of steroid hormones on the insect nervous system. Dev. Neurosci. 18, 73–86.

    PubMed  CAS  Google Scholar 

  107. Sapolsky R.M. (1996) Why stress is bad for your brain. Science 273, 749–750.

    Article  PubMed  CAS  Google Scholar 

  108. Sapolsky R.M. (1996) Stress, glucocorticoids, and damage to the nervous system: The current state of confusion. Stress 1, 1–19.

    CAS  PubMed  Google Scholar 

  109. Mussa G.C., Mussa F., Bretto R., Zambelli M.C., and Silvestro L. (2001) Influence of thyroid in nervous system growth. Minerva Pediatr. 53, 325–353.

    PubMed  CAS  Google Scholar 

  110. Nicholson J.L. and Altman J. (1972) Synaptogenesis in the rat cerebellum: Effects of early hypo- and hyperthyroidism. Science 176, 530–532.

    Article  PubMed  CAS  Google Scholar 

  111. Woolley C.S., Gould E., and McEwen B.S. (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res. 531, 225–231.

    Article  PubMed  CAS  Google Scholar 

  112. Toran-Allerand C.D., Singh M., and Setalo G. Jr. (1999) Novel mechanisms of estrogen action in the brain: New players in an old story. Front. Neuroendocrinol. 20, 97–121.

    Article  PubMed  CAS  Google Scholar 

  113. Bottjer S.W. and Arnold A.P. (1997) Developmental plasticity in neural circuits for a learned behavior. Annu. Rev. Neurosci. 20, 459–481.

    Article  PubMed  CAS  Google Scholar 

  114. Truman J.W. and Reiss S.E. (1988) Hormonal regulation of the shape of identified motoneurons in the moth, Manduca sexta. J. Neurosci. 8, 765–775.

    PubMed  CAS  Google Scholar 

  115. Weeks J.C. and Levine R.B. (1990) Postembryonic neuronal plasticity and its hormonal control during insect metamorphosis. Annu. Rev. Neurosci. 13, 569–592.

    Article  Google Scholar 

  116. Murphy D.D. and Segal M. (1996) Regulation of dendritic spine density in cultured rat hippocampal neurons by steroid hormones. J. Neurosci. 16, 4059–4068.

    PubMed  CAS  Google Scholar 

  117. Matheson S.F. and Levine R.B. (1999) Steroid hormone enhancement of neurite outgrowth in identified insect motor neurons involves specific effects on growth cone form and function. J. Neurobiol. 38, 27–45.

    Article  PubMed  CAS  Google Scholar 

  118. Grunewald B. and Levine R.B. (1998) Ecdysteroid control of ionic current development in Manduca sexta motoneurons. J. Neurobiol. 37, 211–223.

    Article  PubMed  CAS  Google Scholar 

  119. Segal M. and Murphy D.D. (2001) Estradiol induces formation of dendritic spines in hippocampal neurons: Functional correlates. Hormones and Behavior 40, 156–159.

    Article  PubMed  CAS  Google Scholar 

  120. Consoulas C. (2003) A steroid-regulated gene is required for dendritic growth of motoneurons during metamorphosis of Drosophila melanogaster. In Proceedings of the 29th Göttingen Neurobiology Conference, Elsner N. and Zimmermann H., eds., Thieme, Stuttgart, New York, abstr 88.

    Google Scholar 

  121. Purves D., Snider W.D., and Voyvodic T. (1988) Trophic regulation of nerve cell morphology and innervation in the autonomic system. Nature 336, 123–128.

    Article  PubMed  CAS  Google Scholar 

  122. Horch H.W. and Katz L.C. (2002) BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat. Neurosci. 5, 1177–1184.

    Article  PubMed  CAS  Google Scholar 

  123. Gorski J.A., Zeiler S.R., Tamowski S., and Jones K.R. (2003) Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. J. Neurosci. 23, 6856–6865.

    PubMed  CAS  Google Scholar 

  124. Whitford K.L., Marillat V., Stein E., Goodman C.S., Tessier-Lavigne M., Chedotal A., et al. (2002) Regulation of cortical dendrite development by Slit-Robo interactions. Neuron 33, 47–61.

    Article  PubMed  CAS  Google Scholar 

  125. Chklovskii D.B. (2000) Optimal sizes of dendritic and axonal arbors in a topographic projection. J. Neurophysiol. 83, 2113–2119.

    PubMed  CAS  Google Scholar 

  126. Gao F.B., Kohwi M., Brenman J.E., Jan L.Y., and Jan Y.N. (2000) Control of dendritic field formation in Drosophila: The roles of flamingo and competition between homologous neurons. Neuron 28, 91–101.

    Article  PubMed  CAS  Google Scholar 

  127. Gao F.B. and Bogert B.A. (2003) Genetic control of dendritic morphogenesis in Drosophila. Trends Neurosci. 26, 262–268.

    Article  PubMed  CAS  Google Scholar 

  128. Grueber W.B., Ye B., Moore A.W., Jan L.Y., and Jan Y.N. (2003) Dendrites of distinct classes of Drosophila sensory neurons show different capacities for homotypic repulsion. Curr. Biol. 13, 618–626.

    Article  PubMed  CAS  Google Scholar 

  129. Mizrahi A. and Libersat F. (2001) Synaptic reorganization induced by selective photoablation of an identified neuron. J. Neurosci. 21, 9280–9290.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Libersat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libersat, F., Duch, C. Mechanisms of dendritic maturation. Mol Neurobiol 29, 303–320 (2004). https://doi.org/10.1385/MN:29:3:303

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:29:3:303

Index Entries

Navigation