Skip to main content
Log in

Molecular determinants of P2Y2 nucleotide receptor function

Implications for proliferative and inflammatory pathways in astrocytes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In the mammalian nervous system, P2 nucleotide receptors mediate neurotransmission, release of proinflammatory cytokines, and reactive astrogliosis. Extracellular nucleotides activate multiple P2 receptors in neurons and glial cells, including G protein-coupled P2Y receptors and P2X receptors, which are ligand-gated ion channels. In glial cells, the P2Y2 receptor subtype, distinguished by its ability to be equipotently activated by ATP and UTP, is coupled to pro-inflammatory signaling pathways. In situ hybridization studies with rodent brain slices indicate that P2Y2 receptors are expressed primarily in the hippocampus and cerebellum. Astrocytes express several P2 receptor subtypes, including P2Y2 receptors whose activation stimulates cell proliferation and migration. P2Y2 receptors, via an RGD (Arg-Gly-Asp) motif in their first extracellular loop, bind to αvβ35 integrins, whereupon P2Y2 receptor activation stimulates integrin signaling pathways that regulate cytoskeletal reorganization and cell motility. The C-terminus of the P2Y2 receptor contains two Src-homology-3 (SH3)-binding domains that upon receptor activation, promote association with Src and transactivation of growth factor receptors. Together, our results indicate that P2Y2 receptors complex with both integrins and growth factor receptors to activate multiple signaling pathways. Thus, P2Y2 receptors present novel targets to control reactive astrogliosis in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gahtan E. and Overmier J.B. (1999) Inflammatory pathogenesis in Alzheimer’s disease: biological mechanisms and cognitive sequeli. Neurosci. Biobehav. Rev. 23(5), 615–633.

    Article  PubMed  CAS  Google Scholar 

  2. Rutka J.T., Murakami M., Dirks P.B., et al. (1997) Role of glial filaments in cells and tumors of glial origin: a review. J. Neurosurg. 87(3), 420–430.

    Article  PubMed  CAS  Google Scholar 

  3. Gendron F.P., Newbold N.L., Vivas-Mejia P.E., et al. (2003) Signal transduction pathways for P2Y2 and P2X7 nucleotide receptors that mediate neuroinflammatory responses in astrocytes and microglial cells. Biomed. Res. 14, 47–61.

    CAS  Google Scholar 

  4. Franke H., Kittner H., Grosche J., and Illes P. (2003) Enhanced P2Y1 receptor expression in the brain after sensitisation with d-amphetamine. Psychopharmacology (Berl.) 167, 187–194.

    CAS  Google Scholar 

  5. Weisman G.A., Garrad R.C., Erb L.J., Santos-Berrios C., and Gonzalez F.A. (1999) P2Y receptors in the nervous system: molecular studies of a P2Y2 receptor subtype from NG108-15 neuroblastoma x glioma hybrid cells. Prog. Brain Res. 120, 33–43.

    PubMed  CAS  Google Scholar 

  6. Burnstock G. (1972) Purinergic nerves. Pharmacol. Rev. 24(3), 509–581.

    PubMed  CAS  Google Scholar 

  7. Burnstock G., Campbell G., Satchell D., and Smythe A. (1970) Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br. J. Pharmacol. 40(4), 668–688.

    PubMed  CAS  Google Scholar 

  8. Burnstock G. and Wood J.N. (1996) Purinergic receptors: their role in nociception and primary afferent neurotransmission. Curr. Opin. Neurobiol. 6(4), 526–532.

    Article  PubMed  CAS  Google Scholar 

  9. Neary J.T., Rathbone M.P., Cattabeni F., Abbracchio M.P., and Burnstock G. (1996) Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci. 19(1), 13–18.

    Article  PubMed  CAS  Google Scholar 

  10. Vitolo O.V., Ciotti M.T., Galli C., Borsello T., and Calissano P. (1998) Adenosine and ADP prevent apoptosis in cultured rat cerebellar granule cells. Brain Res. 809(2), 297–301.

    Article  PubMed  CAS  Google Scholar 

  11. Ostrom R.S., Gregorian C., Drenan R.M., Gabot K., Rana B.K., and Insel P.A. (2001) Key role for constitutive cyclooxygenase-2 of MDCK cells in basal signaling and response to released ATP. Am. J. Physiol. Cell Physiol. 281(2), C524-C531.

    PubMed  CAS  Google Scholar 

  12. Ahmed S.M., Rzigalinski B.A., Willoughby K.A., Sitterding H.A., and Ellis E.F. (2000) Stretch-induced injury alters mitochondrial membrane potential and cellular ATP in cultured astrocytes and neurons. J. Neurochem. 74(5), 1951–1960.

    Article  PubMed  CAS  Google Scholar 

  13. Ciccarelli R., Di Iorio P., Giuliani P., et al. (1999) Rat cultured astrocytes release guanine-based purines in basal conditions and after hypoxia/hypoglycemia. Glia 25, 93–98.

    Article  PubMed  CAS  Google Scholar 

  14. Bergfeld G.R. and Forrester T. (1992) Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia. Cardiovasc. Res. 26(1), 40–47.

    PubMed  CAS  Google Scholar 

  15. Bodin P. and Burnstock G. (2001) Purinergic signalling: ATP release. Neurochem. Res. 26, 959–969.

    Article  PubMed  CAS  Google Scholar 

  16. Pedersen S.F., Nilius B., Lambert I.H., and Hoffmann E.K. (1999) Mechanical stress induces release of ATP from Ehrlich ascites tumor cells. Biochim. Biophys. Acta 1416, 271–284.

    Article  PubMed  CAS  Google Scholar 

  17. Sak K. and Webb T.E. (2002) A retrospective of recombinant P2Y receptor subtypes and their pharmacology. Arch. Biochem. Biophys. 397(1), 131–136.

    Article  PubMed  CAS  Google Scholar 

  18. Inbe H. Watanabe S., Miyawaki M., Tanabe E., and Encinas J.A. (2004) Identification and characterization of a cell-surface receptor, P2Y15, for AMP and adenosine. J. Biol. Chem. 279(19), 19,790–19,799.

    Article  CAS  Google Scholar 

  19. Burnstock G. (2000) P2X receptors in sensory neurones. Br. J. Anaesth. 84(4), 476–488.

    PubMed  CAS  Google Scholar 

  20. Ciccarelli R., Ballerini P., Sabatino G., et al. (2001) Involvement of astrocytes in purine-mediated reparative processes in the brain. Int. J. Dev. Neurosci. 19, 395–414.

    Article  PubMed  CAS  Google Scholar 

  21. O’Callaghan J.P. and Jensen K.F. (1992) Enhanced expression of glial fibrillary acidic protein and the cupric silver degeneration reaction can be used as sensitive and early indicators of neurotoxicity. Neurotoxicology 13(1), 113–122.

    PubMed  CAS  Google Scholar 

  22. Menet V., Prieto M., Privat A., and Gimenez y Ribotta M. (2003) Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. Proc. Natl. Acad. Sci. USA 100(15), 8999–9004.

    Article  PubMed  CAS  Google Scholar 

  23. Eddleston M. and Mucke L. (1993) Molecular profile of reactive astrocytesimplications for their role in neurologic disease. Neuroscience 54(1), 15–36.

    Article  PubMed  CAS  Google Scholar 

  24. Norton W.T., Aquino D.A., Hozumi I., Chiu F.C., and Brosnan C.F. (1992) Quantitative aspects of reactive gliosis: a review. Neurochem. Res. 17(9), 877–885.

    Article  PubMed  CAS  Google Scholar 

  25. Mcgraw J., Hiebert G.W., and Steeves J.D. (2001) Modulating astrogliosis after neurotrauma. J. Neurosci. Res. 63(2), 109–115.

    Article  PubMed  CAS  Google Scholar 

  26. Neary J.T., Baker L., Jorgensen S.L., and Norenberg M.D. (1994) Extracellular ATP induces stellation and increases glial fibrillary acidic protein content and DNA synthesis in primary astrocyte cultures. Acta Neuropathol. (Berl.) 87(1), 8–13.

    CAS  Google Scholar 

  27. Brambilla R. and Abbracchio M.P. (2001) Modulation of cyclooxygenase-2 and brain reactive astrogliosis by purinergic P2 receptors. Ann. NY Acad. Sci. 939, 54–62.

    Article  PubMed  CAS  Google Scholar 

  28. Brambilla R., Burnstock G., Bonazzi A., Ceruti S., Cattabeni F., and Abbracchio M.P. (1999) Cyclo-oxygenase-2 mediates P2Y receptor-induced reactive astrogliosis. Br. J. Pharmacol. 126(3), 563–567.

    Article  PubMed  CAS  Google Scholar 

  29. Brambilla R., Neary J.T., Cattabeni F., et al. (2002) Induction of COX-2 and reactive gliosis by P2Y receptors in rat cortical astrocytes is dependent on ERK1/2 but independent of calcium signalling. J. Neurochem. 83(6), 1285–1296.

    Article  PubMed  CAS  Google Scholar 

  30. Franke H., Krugel U., Schmidt R., Grosche J., Reichenbach A., and Illes P. (2001) P2 receptor-types involved in astrogliosis in vivo. Br. J. Pharmacol. 134, 1180–1189.

    Article  PubMed  CAS  Google Scholar 

  31. Franke H., Krugel U., and Illes P. (1999) P2 receptor-mediated proliferative effects on astrocytes in vivo. Glia 28(3), 190–200.

    Article  PubMed  CAS  Google Scholar 

  32. Neary J.T., Whittemore S.R., Zhu Q., and Norenberg M.D. (1994) Synergistic activation of DNA synthesis in astrocytes by fibroblast growth factors and extracellular ATP. J. Neurochem. 63(2), 490–494.

    Article  PubMed  CAS  Google Scholar 

  33. Lenz G., Gottfried C., Luo Z., et al. (2000) P2Y purinoceptor subtypes recruit different mek activators in astrocytes. Br. J. Pharmacol. 129(5), 927–936.

    Article  PubMed  CAS  Google Scholar 

  34. Jacques-Silva M.C., Rodnight R., Lenz G., et al. (2004) P2X7 receptors stimulate AKT phosphorylation in astrocytes. Br. J. Pharmacol. 141(7), 1106–1117.

    Article  PubMed  CAS  Google Scholar 

  35. Fumagalli M., Brambilla R., D’Ambrosi N., et al. (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: role of P2X and P2Y receptors. Glia 43, 218–230.

    Article  PubMed  Google Scholar 

  36. Kukley M., Barden J.A., Steinhauser C., and Jabs R. (2001) Distribution of P2X receptors on astrocytes in juvenile rat hippocampus. Glia 36(1), 11–21.

    Article  PubMed  CAS  Google Scholar 

  37. Khakh B.S., Smith W.B., Chiu C.S., Ju D., Davidson N., and Lester H.A. (2001) Activation-dependent changes in receptor distribution and dendritic morphology in hippocampal neurons expressing P2X2-green fluorescent protein receptors. Proc. Natl. Acad. Sci. USA 98(9), 5288–5293.

    Article  PubMed  CAS  Google Scholar 

  38. King B.F., Neary J.T., Zhu Q., Wang S., Norenberg M.D., and Burnstock G. (1996) P2 purinoceptors in rat cortical astrocytes: expression, calcium-imaging and signalling studies. Neuroscience 74(4), 1187–1196.

    PubMed  CAS  Google Scholar 

  39. Scemes E., Duval N., and Meda P. (2003) Reduced expression of P2Y1 receptors in connexin43-null mice alters calcium signaling and migration of neural progenitor cells. J. Neurosci. 23(36), 11,444–11,452.

    CAS  Google Scholar 

  40. Chen W.C. and Chen C.C. (1998) ATP-induced arachidonic acid release in cultured astrocytes is mediated by Gi protein coupled P2Y1 and P2Y2 receptors. Glia 22(4), 360–370.

    Article  PubMed  CAS  Google Scholar 

  41. Kim S.G., Soltysiak K.A., Gao Z.G., Chang T.S., Chung E., and Jacobson K.A. (2003) Tumor necrosis factor alpha-induced apoptosis in astrocytes is prevented by the activation of P2Y6, but not P2Y4 nucleotide receptors. Biochem. Pharmacol. 65(6), 923–931.

    Article  PubMed  CAS  Google Scholar 

  42. Moore D.J., Murdock P.R., Watson J.M., et al. (2003) GPR105, a novel Gi/o-coupled UDP-glucose receptor expressed on brain glia and peripheral immune cells, is regulated by immunologic challenge: possible role in neuroimmune function. Brain Res. Mol. Brain Res. 118(1–2), 10–23.

    Article  PubMed  CAS  Google Scholar 

  43. Lustig K.D., Erb L., Landis D.M., et al. (1992) Mechanisms by which extracellular ATP and UTP stimulate the release of prostacyclin from bovine pulmonary artery endothelial cells. Biochim. Biophys. Acta 1134(1), 61–72.

    Article  PubMed  CAS  Google Scholar 

  44. Seye C.I., Kong Q., Erb L., et al. (2002) Functional P2Y2 nucleotide receptors mediate uridine 5′-triphosphate-induced intimal hyperplasia in collared rabbit carotid arteries. Circulation 106(21), 2720–2726.

    Article  PubMed  CAS  Google Scholar 

  45. Pillois X., Chaulet H., Belloc I., Dupuch F., Desgranges C., and Gadeau A.P. (2002) Nucleotide receptors involved in UTP-induced rat arterial smooth muscle cell migration. Circ. Res. 90(6), 678–681.

    Article  PubMed  CAS  Google Scholar 

  46. Kunapuli S.P. and Daniel J.L. (1998) P2 receptor subtypes in the cardiovascular system. Biochem. J. 336(3), 513–523.

    PubMed  CAS  Google Scholar 

  47. Kim K.C., Park H.R., Shin C.Y., Akiyama T., and Ko K.H. (1996) Nucleotide-induced mucin release from primary hamster tracheal surface epithelial cells involves the P2u purinoceptor. Eur. Respir. J. 9(7), 1579.

    PubMed  CAS  Google Scholar 

  48. Berti-Mattera L.N., Wilkins P.L., Madhun Z., and Suchovsky D. (1996) P2-purigenic receptors regulate phospholipase C and adenylate cyclase activities in immortalized Schwann cells. Biochem. J. 314(2), 555–561.

    PubMed  CAS  Google Scholar 

  49. Ho C., Hicks J., and Salter M.W. (1995) A novel P2-purinoceptor expressed by a subpopulation of astrocytes from the dorsal spinal cord of the rat. Br. J. Pharmacol. 116(7), 2909–2918.

    PubMed  CAS  Google Scholar 

  50. Kirishuk S., Scherer J., Kettenmann H., and Verkhratsky A. (1995) Activation of P2-purinoreceptors triggered Ca2+ release from InsP3-sensitive internal stores in mammalian oligodendrocytes. J. Physiol. 483(1), 41–57.

    Google Scholar 

  51. Miyagi Y., Kobayashi S., Ahmed A., Nishimura J., Fukui M., and Kanaide H. (1996) P2U purinergic activation leads to the cell cycle progression from the G1 to the S and M phases but not from the G0 to G1 phase in vascular smooth muscle cells in primary culture. Biochem. Biophys. Res. Commun. 222(2), 652–658.

    Article  PubMed  CAS  Google Scholar 

  52. Muscella A., Elia M.G., Greco S., Storelli C., and Marsigliante S. (2003) Activation of P2Y2 receptor induces c-FOS protein through a pathway involving mitogen-activated protein kinases and phosphoinositide 3-kinases in HeLa cells. J. Cell. Physiol. 195(2), 234–240.

    Article  PubMed  CAS  Google Scholar 

  53. Seye C.I., Yu N., Jain R., et al. (2003) The P2Y2 nucleotide receptor mediates UTP-induced vascular cell adhesion molecule-1 expression in coronary artery endothelial cells. J. Biol. Chem. 278(27), 24,960–24,965.

    Article  CAS  Google Scholar 

  54. Koshiba M., Apasov S., Sverdlov V., et al. (1997) Transient up-regulation of P2Y2 nucleotide receptor mRNA expression is an immediate early gene response in activated thymocytes. Proc. Natl. Acad. Sci. USA 94(3), 831–836.

    Article  PubMed  CAS  Google Scholar 

  55. Turner J.T., Weisman G.A., and Camden J.M. (1997) Upregulation of P2Y2 nucleotide receptors in rat salivary gland cells during short-term culture. Am. J. Physiol. 273(3), C1100-C1107.

    PubMed  CAS  Google Scholar 

  56. Xu J., Chalimoniuk M., Shu Y., et al. (2003) Prostaglandin E2 production in astrocytes: regulation by cytokines, extracellular ATP, and oxidative agents. Prostaglandins Leukotriene Essent. Fatty Acids 69(6), 437–448.

    Article  CAS  Google Scholar 

  57. Xu J., Weng Y.I., Simonyi A., et al. (2002) Role of PKC and MAPK in cytosolic PLA2 phosphorylation and arachidonic acid release in primary murine astrocytes. J. Neurochem. 83(2), 259–270.

    Article  PubMed  CAS  Google Scholar 

  58. Welch B.D., Carlson N.G., Shi H., Myatt L., and Kishore B.K. (2003) P2Y2 receptor-stimulated release of prostaglandin E2 by rat inner medullary collecting duct preparations. Am. J. Physiol. Renal Physiol. 285(4), F711-F721.

    PubMed  CAS  Google Scholar 

  59. Mohaupt M.G., Fischer T., Schwobel J., Sterzel R.B., and Schulze-Lohoff E. (1998) Activation of purinergic P2Y2 receptors inhibits inducible NO synthase in cultured rat mesangial cells. Am. J. Physiol. 275(1), F103-F110.

    PubMed  CAS  Google Scholar 

  60. Yamakuni H., Kawaguchi N., Ohtani Y., et al. (2002) ATP induces leukemia inhibitory factor mRNA in cultured rat astrocytes. J. Neuroimmunol. 129(1–2), 43–50.

    Article  PubMed  CAS  Google Scholar 

  61. Hou M., Moller S., Edvisson L., and Erlinge D. (2000) Cytokines induce upregulation of vascular P2Y2 receptors and increased mitogenic responses to UTP and ATP. Arterioscler. Thromb. Vasc. Biol. 20(9), 2064–2069.

    PubMed  CAS  Google Scholar 

  62. Hou M., Moller S., Edvinsson L., and Erlinge D. (1999) MAPKK-dependent growth factor-induced upregulation of P2Y2 receptors in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 258(3), 648–652.

    Article  PubMed  CAS  Google Scholar 

  63. Marrelli S.P., Khorovets A., Johnson T.D., Childres W.F., and Bryan R.M., Jr. (1999) P2 purinoceptor-mediated dilations in the rat middle cerebral artery after ischemia-reperfusion. Am. J. Physiol. 276(1), H33-H41.

    PubMed  CAS  Google Scholar 

  64. Kannan S. (2003) Neutrophil chemotaxis: potential role of chemokine receptors in extracellular nucleotide induced Mac-1 expression. Med. Hypotheses 61(5,6), 577–579.

    Article  PubMed  CAS  Google Scholar 

  65. Turner J.T., Park M., Camden J.M., and Weisman G.A. (1998) Salivary gland nucleotide receptors. Changes in expression and activity related to development and tissue damage. Ann. NY Acad. Sci. 842, 70–75.

    Article  PubMed  CAS  Google Scholar 

  66. Dennis E.A. (1994) Diversity of group types, regulation, and function of phospholipase A2. J. Biol. Chem. 269(18), 13,057–13,060.

    CAS  Google Scholar 

  67. Balsinde J., Winstead M.V., and Dennis E.A. (2002) Phospholipase A2 regulation of arachidonic acid mobilization. FEBS Lett. 531(1), 2–6.

    Article  PubMed  CAS  Google Scholar 

  68. Martin K.A., Kertesy S.B., and Dubyak G.R. (1997) Down-regulation of P2U-purinergic nucleotide receptor messenger RNA expression during in vitro differentiation of human myeloid leukocytes by phorbol esters or inflammatory activators. Mol. Pharmacol. 51(1), 97–108.

    PubMed  CAS  Google Scholar 

  69. Gendron F.P., Chalimoniuk M., Strosznajder J., et al. (2003) P2X7 nucleotide receptor activation enhances IFNγ-induced type II nitric oxide synthase activity in BV-2 microglial cells. J. Neurochem. 87(2), 344–352.

    Article  PubMed  CAS  Google Scholar 

  70. Kopp S. (2001) Neuroendocrine, immune, and local responses related to temporomandibular disorders. J. Orofac. Pain 15(1), 9–28.

    PubMed  CAS  Google Scholar 

  71. Vancheri C., Mastruzzo C., Sortino M.A., and Crimi N. (2004) The lung as a privileged site for the beneficial actions of PGE2. Trends Immunol. 25(1), 40–46.

    Article  PubMed  CAS  Google Scholar 

  72. Karaki S.I. and Kuwahara A. (2004) Regulation of intestinal secretion involved in the interaction between neurotransmitters and prostaglandin E2. Neurogastroenterol. Motil. 1, 96–99.

    Article  Google Scholar 

  73. Ferreira S.H., Moncada S., and Vane J.R. (1997) Prostaglandins and the mechanism of analgesia produced by aspirin-like drugs. 1973. Br. J. Pharmacol. 120(4 Suppl.), 401–412; discussion 399–400.

    PubMed  CAS  Google Scholar 

  74. Erb L., Liu J., Ockerhausen J., et al. (2001) An RGD sequence in the P2Y2 receptor interacts with αvβ3 integrins and is required for Go-mediated signal transduction. J. Cell Biol. 153(3), 491–501.

    Article  PubMed  CAS  Google Scholar 

  75. Li J.M., Fan L.M., Shah A., and Brooks G. (2003) Targeting αvβ3 and α5β1 for gene delivery to proliferating VSMCs: synergistic effect of TGF-β1. Am. J. Physiol. Heart Circ. Physiol. 285, H1123-H1131.

    PubMed  CAS  Google Scholar 

  76. Hutchings H., Ortega N., and Plouet J. (2003) Extracellular matrix-bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation. FASEB J. 17(11), 1520–1522.

    PubMed  CAS  Google Scholar 

  77. Pidgeon G.P., Tang K., Cai Y.L., Piasentin E., and Honn K.V. (2003) Overexpression of platelet-type 12-lipoxygenase promotes tumor cell survival by enhancing αvβ3 and αvβ5 integrin expression. Cancer Res. 63(14), 4258–4267.

    PubMed  CAS  Google Scholar 

  78. Zhang H., Li Z., Viklund E.K., and Stromblad S. (2002) P21-activated kinase 4 interacts with integrin αvβ5 and regulates αvβ5-mediated cell migration. J. Cell Biol. 158, 1287–1297.

    Article  PubMed  CAS  Google Scholar 

  79. Greig A.V., Linge C., Terenghi G., Mcgrouther D.A., and Burnstock G. (2003) Purinergic receptors are part of functional signaling system for proliferation and differentiation of human epidermal keratinocytes. J. Invest. Dermatol. 120(6), 1007–1015.

    Article  PubMed  CAS  Google Scholar 

  80. Schafer R., Sedehizade F., Welte T., and Reiser G. (2003) ATP- and UTP-activated P2Y receptors differently regulate proliferation of human lung epithelial tumor cells. Am. J. Physiol. Lung Cell. Mol Physiol. 285(2), L376-L385.

    PubMed  Google Scholar 

  81. Wilden P.A., Agazie Y.M., Kaufman R., and Halenda S.P. (1998) ATP-stimulated smooth muscle cell proliferation requires independent ERK and PI3K signaling pathways. Am. J. Physiol. 275(4,) H1209-H1215.

    PubMed  CAS  Google Scholar 

  82. Gungabissoon R.A. and Bamburg J.R. (2003) Regulation of growth cone actin dynamics by ADF/cofilin. J. Histochem. Cytochem. 51(4), 411–420.

    PubMed  CAS  Google Scholar 

  83. Lin T., Zeng L., Liu Y., et al. (2003) Rho-ROCK-LIMK-cofilin pathway regulates shear stress activation of sterol regulatory element binding proteins. Circ. Res. 92(12), 1296–1304.

    Article  PubMed  CAS  Google Scholar 

  84. Rodgers E.E. and Theibert A.B. (2002) Functions of PI 3-kinase in development of the nervous system. Int. J. Dev. Neurosci. 20(3–5), 187–197.

    Article  PubMed  CAS  Google Scholar 

  85. Chan-Ling T. and Stone J. (1991) Factors determining the migration of astrocytes into the developing retina: migration does not depend on intact axons or patent vessels. J. Comp. Neurol. 303(3), 375–386.

    Article  PubMed  CAS  Google Scholar 

  86. Ellison J.A., Velier J.J., Spera P., et al. (1998) Osteopontin and its integrin receptor αvβ3 are upregulated during formation of the glial scar after focal stroke. Stroke 29(8), 1698–1706; discussion 1707.

    PubMed  CAS  Google Scholar 

  87. Cao W., Luttrell L.M., Medvedev A.V., et al. (2000) Direct binding of activated c-Src to the beta 3-adrenergic receptor is required for MAP kinase activation. J. Biol. Chem. 275(49), 38,131–38,134.

    Article  CAS  Google Scholar 

  88. Green S.A. and Liggett S.B. (1994) A prolinerich region of the third intracellular loop imparts phenotypic beta 1-versus beta 2-adrenergic receptor coupling and sequestration. J. Biol. Chem. 269(42), 26,215–26,219.

    CAS  Google Scholar 

  89. Tang Y., Hu L.A., Miller W.E., et al. (1999) Identification of the endophilins (SH3p4/p8/p13) as novel binding partners for the beta1-adrenergic receptor. Proc. Natl. Acad. Sci. USA 96(22), 12,559–12,564.

    Article  CAS  Google Scholar 

  90. Oldenhof J., Vickery R., Anafi M., et al. (1998) SH3 binding domains in the dopamine D4 receptor. Biochemistry 37(45), 15,726–15,736.

    Article  CAS  Google Scholar 

  91. Luttrell L.M., Della Rocca G.J., Van Biesen T., Luttrell D.K., and Lefkowitz R.J. (1997) Gβγ subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. A scaffold for G protein-coupled receptor-mediated Ras activation. J. Biol. Chem. 272(7), 4637–4644.

    Article  PubMed  CAS  Google Scholar 

  92. Andreev J., Galisteo M.L., Kranenburg O., et al. (2001) Src and Pyk2 mediate G-protein-coupled receptor activation of epidermal growth factor receptor (EGFR) but are not required for coupling to the mitogen-activated protein (MAP) kinase signaling cascade. J. Biol. Chem. 276(23), 20,130–20,135.

    Article  CAS  Google Scholar 

  93. Soltoff S.P. (1998) Related adhesion focal tyrosine kinase and the epidermal growth factor receptor mediate the stimulation of mitogenactivated protein kinase by the G-protein-coupled P2Y2 receptor. Phorbol ester or [Ca2+]i elevation can substitute for receptor activation. J. Biol. Chem. 273, 23,110–23,117.

    CAS  Google Scholar 

  94. Soltoff S.P., Avraham H., Avraham S., and Cantley L.C. (1998) Activation of P2Y2 receptors by UTP and ATP stimulates mitogen-activated kinase activity through a pathway that involves related adhesion focal tyrosine kinase and protein kinase C. J. Biol. Chem. 273(5), 2653–2660.

    Article  PubMed  CAS  Google Scholar 

  95. Liu J., Liao Z., Camden J., et al. (2004) Src homology 3 binding sites in the P2Y2 nucleotide receptor interact with Src and regulate activities of Src, proline-rich tyrosine kinase 2, and growth factor receptors. J. Biol. Chem. 279(9), 8212–8218.

    Article  PubMed  CAS  Google Scholar 

  96. Avraham H., Park S.Y., Schinkmann K., and Avraham S. (2000) RAFTK/Pyk2-mediated cellular signalling. Cell Signal. 12(3), 123–133.

    Article  PubMed  CAS  Google Scholar 

  97. Du Q.S., Ren X.R., Xie Y., Wang Q., Mei L., and Xiong W.C. (2001) Inhibition of PYK2-induced actin cytoskeleton reorganization, PYK2 autophosphorylation and focal adhesion targeting by FAK. J. Cell Sci. 114(16), 2977–2987.

    PubMed  CAS  Google Scholar 

  98. Lim I.J., Phan T.T., Tan E.K., et al. (2003) Synchronous activation of ERK and phosphatidylinositol 3-kinase pathways is required for collagen and extracellular matrix production in keloids. J. Biol. Chem. 278(42), 40,851–40,858.

    Article  CAS  Google Scholar 

  99. Menu E., Kooijman R., Van Valckenborgh E., et al. (2004) Specific roles for the PI3K and the MEK-ERK pathway in IGF-1-stimulated chemotaxis, VEGF secretion and proliferation of multiple myeloma cells: study in the 5T33MM model. Br. J. Cancer 90(5), 1076–1083.

    Article  PubMed  CAS  Google Scholar 

  100. Ding X.Z., Tong W.G., and Adrian T.E. (2003) Multiple signal pathways are involved in the mitogenic effect of 5(S)-HETE in human pancreatic cancer. Oncology 65(4), 285–294.

    Article  PubMed  CAS  Google Scholar 

  101. Schafer M., Schafer C., Ewald N., Piper H.M., and Noll T. (2003) Role of redox signaling in the autonomous proliferative response of endothelial cells to hypoxia. Circ. Res. 92(9), 1010–1015.

    Article  PubMed  CAS  Google Scholar 

  102. Johnson G.L. and Lapadat R. (2002) Mitogenactivated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911–1912.

    Article  PubMed  CAS  Google Scholar 

  103. Daub H., Wallasch C., Lankenau A., Herrlich A., and Ullrich A. (1997) Signal characteristics of G protein-transactivated EGF receptor. EMBO J. 16(23), 7032–7044.

    Article  PubMed  CAS  Google Scholar 

  104. Qiao M., Shapiro P., Kumar R., and Passaniti A. (2004) Insulin-like growth factor-1 regulates endogenous RUNX2 activity in endothelial cells through a PI3K/ERK-dependent and Akt-independent signaling pathway. J. Biol. Chem. [E-pub ahead of press].

  105. Okkenhaug K. and Vanhaesebroeck B. (2003) PI3K in lymphocyte development, differentiation and activation. Nat. Rev. Immunol. 3(4), 317–330.

    Article  PubMed  CAS  Google Scholar 

  106. Neary J.T., Kang Y., Bu Y., Yu E., Akong K., and Peters C.M. (1999) Mitogenic signaling by ATP/P2Y purinergic receptors in astrocytes: involvement of a calcium-independent protein kinase C, extracellular signal-regulated protein kinase pathway distinct from the phosphatidylinositol-specific phospholipase C/calcium pathway. J. Neurosci. 19(11), 4211–4220.

    PubMed  CAS  Google Scholar 

  107. Neary J.T., Zhu Q., Kang Y., and Dash P.K. (1996) Extracellular ATP induces formation of AP-1 complexes in astrocytes via P2 purinoceptors. Neuroreport 7(18), 2893–2896.

    Article  PubMed  CAS  Google Scholar 

  108. Neary J.T., McCarthy M., Cornell-Bell A., and Kang Y. (1999) Trophic signaling pathways activated by purinergic receptors in rat and human astroglia. Prog. Brain Res. 120, 323–332.

    Article  PubMed  CAS  Google Scholar 

  109. Santiago-Perez L.I., Flores R.V., Santos-Berrios C., et al. (2001) P2Y2 nucleotide receptor signaling in human monocytic cells: activation, desensitization and coupling to mitogen-activated protein kinases. J. Cell Physiol. 187(2), 196–208.

    Article  PubMed  CAS  Google Scholar 

  110. Gendron F.P., Neary J.T., Theiss P.M., Sun G.Y., Gonzalez F.A., and Weisman G.A. (2003) Mechanisms of P2X7 receptor-mediated ERK1/2 phosphorylation in human astrocytoma cells. Am. J. Physiol. Cell Physiol. 284(2), C571-C581.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Weisman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisman, G.A., Wang, M., Kong, Q. et al. Molecular determinants of P2Y2 nucleotide receptor function. Mol Neurobiol 31, 169–183 (2005). https://doi.org/10.1385/MN:31:1-3:169

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:31:1-3:169

Index Entries

Navigation