Skip to main content
Log in

Interactions of interleukin-1 with neurotrophic factors in the central nervous system

Beneficial or detrimental?

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Interleukin (IL)-1 is a multifunctional cytokine that plays a key role in mediating inflammation in the brain. Many different cell types in the brain express the IL-1 receptor and respond to this cytokine by activating cell-type-specific signaling pathways leading to distinct functional responses, which collectively comprise the inflammatory response in the brain. One key effect of IL-1 in the brain is the induction of trophic factor production by glial cells, which has traditionally been considered a neuroprotective response to injury or disease. However, recent studies have shown that nerve growth factor, which is regulated by IL-1, can induce neuronal survival or apoptosis via different receptors. This article examines the interaction of IL-1 with different trophic factors in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sims J. E., Gayle M. A., Slack J. L., et al. (1993) Interleukin 1 signaling occurs exclusively via the type 1 receptor. Proc. Natl. Acad. Sci. USA 90, 6155–6159.

    Article  PubMed  CAS  Google Scholar 

  2. O’Neill L. A. and Dinarello C. A. (2000) The IL-1 receptor/toll-like receptor superfamily: crucial receptors for inflammation and host defense. Immunol. Today 21, 206–209.

    Article  PubMed  CAS  Google Scholar 

  3. Hannum C. H., Wilcox C. J., Arend W. P., et al. (1990) Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor. Nature 343, 336–340.

    Article  PubMed  CAS  Google Scholar 

  4. Colotta F., Re F., Muzio M., et al. (1993) Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4. Science 261, 472–475.

    Article  PubMed  CAS  Google Scholar 

  5. Rothwell N. J. and Luheshi G. N. (2000) Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci. 23, 618–625.

    Article  PubMed  CAS  Google Scholar 

  6. Dascombe M. J. (1985) The pharmacology of fever. Progress Neurobiol. 25, 327–373.

    Article  CAS  Google Scholar 

  7. Fang J. D., Wang Y., and Krueger J. M. (1998) Effects of interleukin-1β[???] on sleep are mediated by the type 1 receptor. Am. J. Physiol. 43, R655-R660.

    Google Scholar 

  8. Berkenbosch F., Van Oers J., Del Rey A., Tilders F., and Besedovsky H. (1987) Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science 238, 524–526.

    Article  PubMed  CAS  Google Scholar 

  9. Sapolsky R., Rivier C., Yamamoto G., Plotsky P., and Vale W. (1987) Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science 238, 522–524.

    Article  PubMed  CAS  Google Scholar 

  10. Basu A., Krady J. K., and Levison S. W. (2004) Interleukin-1: a master regulator of neuroinflammation. J. Neurosci. Res. 78, 151–156.

    Article  PubMed  CAS  Google Scholar 

  11. John G. R., Lee S. C., Song X., Rivieccio M., and Brosnan C. F. (2005) IL-1-regulated resonses in astrocytes: relevance to injury and recovery. Glia 49, 161–176.

    Article  PubMed  Google Scholar 

  12. Vela J. M., Molina-Holgado E., Arevalo-Martin A., Almazan G., and Guaza C. (2002) Interleukin-1 regulates proliferation and differentiation of oligodendrocyte progenitor cells. Mol. Cell Neurosci. 20, 489–502.

    Article  PubMed  CAS  Google Scholar 

  13. Bellinger F. P., Madamba S., and Siggins G. R. (1993) Interleukin 1β inhibits synaptic strength and long-term potentiation in the rat CA1 hippocampus. Brain Res. 628, 227–234.

    Article  PubMed  CAS  Google Scholar 

  14. Murray C. A. and Lynch M. A. (1998) Evidence that increased hippocampal expression of the cytokine interleukin-1B is a common trigger for age- and stress-induced impairments in long-term potentiation. J. Neurosci. 18, 2974–2981.

    PubMed  CAS  Google Scholar 

  15. O’Connor J. J. and Coogan A. N. (1999) Actions of the pro-inflammatory cytokine IL-1 beta on central synaptic transmission. Exp. Physiol. 84, 601–614.

    Article  PubMed  CAS  Google Scholar 

  16. Vitkovic L., Bockaert J., and Jacque C. (2000) “Inflammatory” cytokines: neuromodulators in normal brain? J. Neurochem. 74, 457–471.

    Article  PubMed  CAS  Google Scholar 

  17. Nieto-Sampedro M. and Berman M. A. (1987) Interleukin-1-like activity in rat brain: sources, targets, and effect of injury. J. Neurosci. Res. 17, 214–219.

    Article  PubMed  CAS  Google Scholar 

  18. Giulian D. (1987) Ameloid microglia as effectors of inflammation in the central nervous system. J. Neurosci. Res. 18, 155–171.

    Article  PubMed  CAS  Google Scholar 

  19. Davies C. A., Loddick S. A., Toulmond S., Stroemer R. P., Hunt J., and Rothwell N. J. (1999) The progression and topographic distribution of interleukin-1beta expression after permanent middle cerebral artery occlusion in the rat. J. Cereb. Blood Flow Metab. 19, 87–98.

    Article  PubMed  CAS  Google Scholar 

  20. Pearson V. L., Rothwell N. J., and Toulmond S. (1999) Excitotoxic brain damage in the rat induces interleukin-1beta protein in microglia and astrocytes: correlation with the progression of cell death. Glia 25, 311–323.

    Article  PubMed  CAS  Google Scholar 

  21. Benveniste E. N. (1992) Cytokines: influence on glial cell gene expression and function. In: Neuroimmunoendocrinology, 52, Blalock J. E., ed. Karger, Basel, pp. 106–153.

    Google Scholar 

  22. Merrill J. E. and Benveniste E. N. (1996) Cytokines in inflammatory brain lesions: helpful and harmful. Trends Neurosci. 19, 331–338.

    Article  PubMed  CAS  Google Scholar 

  23. Basu A., Krady J. K., O’Malley M., Styren S. D., DeKosky S. T. and Levison S. W. (2002) The type 1 interleukin-1 receptor is essential for the efficient activation of microglia and the induction of multiple proinflammatory mediators in response to brain injury. J. Neurosci. 22, 6071–6082.

    PubMed  CAS  Google Scholar 

  24. Lee S. C., Liu W., Dickson D. W., Brosnan C. F. and Berman J. W. (1993) Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 beta. J. Immunol. 150, 2659–2667.

    PubMed  CAS  Google Scholar 

  25. Sparacio S. M., Zhang Y., Vilcek J., and Benveniste E. N. (1992) Cytokine regulation of interleukin-6 gene expression in astrocytes involves activation of an NF-κB-like nuclear protein. J. Neuroimmunol. 39, 231–242.

    Article  PubMed  CAS  Google Scholar 

  26. Chung I. Y. and Benveniste E. N. (1990) Tumor necrosis factor-a production by astrocytes: induction by lipopolysaccharide, IFN-g, and IL-1B. J. Immunol. 144, 2999–3007.

    PubMed  CAS  Google Scholar 

  27. Aloisi F., Care A., Borsellino G., et al. (1992) Production of hemolymphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-1 beta and tumor necrosis factor-alpha. J. Immunol. 149, 2358–2366.

    PubMed  CAS  Google Scholar 

  28. Cunningham E. T. Jr., Wada E., Carter D. B., Tracey D. E., Battey J. F., and De Souza E. B. (1992) In situ histochemical localization of type I interleukin-1 receptor messenger RNA in the central nervous system pituitary, and adrenal gland of the mouse. J. Neurosci. 12, 1101–1114.

    PubMed  CAS  Google Scholar 

  29. Yabuuchi K., Minami M., Katsumata S., and Satoh M. (1994) Localization of type 1 interleukin-1 receptor mRNA in rat brain. Mol. Brain Res. 27, 27–36.

    Article  PubMed  CAS  Google Scholar 

  30. Ericsson A., Liu C., Hart R. P. and Sawchenko P. E. (1995) Type 1 interleukin-1 receptor in the rat brain: distribution, regulation, and relationship to sites of IL-1 cellular activation. J. Comp. Neurol. 361, 681–698.

    Article  PubMed  CAS  Google Scholar 

  31. Friedman W. J. (2001) Cytokines regulate expression of the type 1 interleukin-1 receptor in rat hippocampal neurons and glia. Exp. Neurol. 168, 23–31.

    Article  PubMed  CAS  Google Scholar 

  32. Katsuki H., Nakai S., Hirai Y., Akaji K., Kiso Y., and Satoh M. (1990) Interleukin-1B inhibits long-term potentiation in the CA3 region of mouse hippocampal slices. Eur. J. Pharmacol. 181, 323–326.

    Article  PubMed  CAS  Google Scholar 

  33. Kelly A., Lynch A., Vereker E., et al. (2001) The anti-inflammatory cytokine, interleukin (IL)-10, blocks the inhibitory effect of IL-1 beta on long term potentiation. A role for JNK. J. Biol. Chem. 276, 45,564–45,572.

    Article  CAS  Google Scholar 

  34. Schneider H., Pitossi F., Balschun D., Wagner A., del Rey A., and Besedovsky H. O. (1998) A neuromodulatory role of interleukin-1beta in the hippocampus. Proc. Natl. Acad. Sci. USA 95, 7778–7783.

    Article  PubMed  CAS  Google Scholar 

  35. Ross F. M., Allan S. M., Rothwell N. J., and Verkhratsky A. (2003) A dual role for interleukin-1 in LTP in mouse hippocampal slices. J. Neuroimmunol. 144, 61–67.

    Article  PubMed  CAS  Google Scholar 

  36. Li Y., Liu L., Barger S. W., and Griffin W. S. T. (2003) Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J. Neurosci. 23, 1605–1611.

    PubMed  CAS  Google Scholar 

  37. O’Neill L. A. and Greene C. (1998) Signal transduction pathways activated by the IL-1 receptor family: ancient signaling machinery in mammals, insects, and plants. J. Leukoc. Biol. 63, 650–657.

    PubMed  CAS  Google Scholar 

  38. Friedman W. J., Thakur S., Seidman L., and Rabson A. B. (1996) Regulation of nerve growth factor mRNA by interleukin-1 in rat hippocampal astrocytes is mediated by NFκB. J. Biol. Chem. 271, 31,115–31,120.

    Article  CAS  Google Scholar 

  39. Heese K., Hock C., and Otten U. (1998) Inflammatory signals induce neurotrophin expression in human microglial cells. J. Neurochem. 70, 699–707.

    Article  PubMed  CAS  Google Scholar 

  40. Dunne A. and O’Neill L. (2003) The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Science STKE 171, re3.

    Google Scholar 

  41. O’Neill L. (2002) Signal transduction pathways activated by the IL-1 receptor/toll-like receptor superfamily. Curr. Top. Microbiol. Immunol. 270, 47–61.

    PubMed  CAS  Google Scholar 

  42. Coogan A. N., O’Neill L. A. J., and O’Connor J. J. (1999) The p38 mitogen-activated protein kinase inhibitor SB203580 antagonizes the inhibitory effects of interleukin-1 on long-term potentiation in the rat dentate gyrus in vitro. Neuroscience 93, 57–69.

    Article  PubMed  CAS  Google Scholar 

  43. Srinivasan D., Yen J. -H., Joseph D. J., and Friedman W. J. (2004) Cell type specific interleukin-1β signaling in the central nervous system. J. Neurosci. 24, 6482–6488.

    Article  PubMed  CAS  Google Scholar 

  44. Barde Y. A. (1990) The nerve growth factor family. Prog. Growth Factor Res. 2, 237–248.

    Article  PubMed  CAS  Google Scholar 

  45. Huang E. J. and Reichardt L. F. (2001) Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736.

    Article  PubMed  CAS  Google Scholar 

  46. Baloh R. H., Enomoto H., Johnson E. M. Jr., and Milbrandt J. (2000) The GDNF family ligands and receptors—implications for neural development. Curr. Opin. Neurobiol. 10, 103–110.

    Article  PubMed  CAS  Google Scholar 

  47. Patterson P. H. (1992) The emerging neuropoietic cytokine family: first CDF/LIF, CNTF, and IL-6; next ONC, MGF, GCSF? Curr. Opin. Neurobiol. 2, 94–97.

    Article  PubMed  CAS  Google Scholar 

  48. Murphy M., Dutton R., Koblar S., Cheema S., and Bartlett P. (1997) Cytokines which signal through the LIF receptor and their actions in the nervous system. Prog. Neurobiol. 52, 355–378.

    Article  PubMed  CAS  Google Scholar 

  49. Muller-Newen G. (2003) The cytokine receptor gp130: faithfully promiscuous. Science STKE 2003, PE40.

  50. Ip N. Y., Wiegand S. J., Morse J., and Rudge J. S. (1993) Injury-induced regulation of ciliary neurotrophic factor mRNA in the adult brain. Eur. J. Neurosci. 5, 25–33.

    Article  PubMed  CAS  Google Scholar 

  51. Herx L. M., Rivest S., and Yong V. W. (2000) Central nervous system-initiated inflammation and neurotrophism in trauma: IL-1 beta is required for the production of ciliary neurotrophic factor. J. Immunol. 165, 2232–2239.

    PubMed  CAS  Google Scholar 

  52. Winter C. G., Saotome Y., Levison S. W., and Hirsch D. (1995) A role for ciliary neurotrophic factor as an inducer of reactive gliosis, the glial response to central nervous system injury. Proc. Natl. Acad. Sci. USA 92, 5865–5869.

    Article  PubMed  CAS  Google Scholar 

  53. Levison S. W., Ducceschi M. H., Young G. M., and Wood T. L. (1996) Acute exposure to CNTF in vivo induces multiple components of reactive gliosis. Exp. Neurol. 141, 256–268.

    Article  PubMed  CAS  Google Scholar 

  54. Sendtner M., Kreutzberg G. W., and Thoenen H. (1990) Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Nature 345, 440,441.

    Article  PubMed  CAS  Google Scholar 

  55. Oppenheim R. W., Prevette D., Yin Q. W., Collins F., and MacDonald J. (1991) Control of embryonic motoneuron survival in vivo by ciliary neurotrophic factor. Science 251, 1616–1618.

    Article  PubMed  CAS  Google Scholar 

  56. Masu Y., Wolf E., Holtmann B., Sendtner M., Brem G., and Thoenen H. (1993) Disruption of the CNTF gene results in motor neuron degeneration. Nature 365, 27–32.

    Article  PubMed  CAS  Google Scholar 

  57. Richardson P. M. (1994) Ciliary neurotrophic factor: a review. Pharmacol. Ther. 63, 187–198.

    Article  PubMed  CAS  Google Scholar 

  58. Alberch J., Perez-Navarro E., and Canals J. M. (2004) Neurotrophic factors in Huntington’s disease. Prog. Brain Res. 146, 195–229.

    PubMed  CAS  Google Scholar 

  59. Louis J. C., Magal E., Takayama S., and Varon S. (1993) CNTF protection of oligodendrocytes against natural and tumor necrosis factor-induced death. Science 259, 689–692.

    Article  PubMed  CAS  Google Scholar 

  60. Linker R. A., Maurer M., Gaupp S., et al. (2002) CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine as modulator in neuroinflammation. Nat. Med. 8, 620–624.

    Article  PubMed  CAS  Google Scholar 

  61. Frautschy S. A., Walicke P. A., and Baird A. (1991) Localization of basic fibroblast growth factor and its mRNA after CNS injury. Brain Res. 553, 291–299.

    Article  PubMed  CAS  Google Scholar 

  62. Gomez-Pinilla F., Lee J. W., and Cotman C. W. (1992) Basic FGF in adult rat brain: cellular distribution and response to entorhinal lesion and fimbria-fornix transection. J. Neurosci. 12, 345–355.

    PubMed  CAS  Google Scholar 

  63. Alzheimer C. and Werner S. (2002) Fibroblast growth factors and neuroprotection. Adv. Exp. Med. Biol. 513, 335–351.

    PubMed  CAS  Google Scholar 

  64. Yoshimura S., Takagi Y., Harada J., et al. (2001) FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc. Natl. Acad. Sci. USA 98, 5874–5879.

    Article  PubMed  CAS  Google Scholar 

  65. Jiang F., Levison S. W., and Wood T. L. (1999) Ciliary neurotrophic factor induces expression of the IGF type I receptor and FGF receptor 1 mRNAs in adult rat brain oligodendrocytes. J. Neurosci. Res. 57, 447–457.

    Article  PubMed  CAS  Google Scholar 

  66. Albrecht P. J., Dahl J. P., Stoltzfus O. K., Levenson R., and Levison S. W. (2002) Ciliary neurotrophic factor activates spinal cord astrocytes, stimulating their production and release of fibroblast growth factor-2, to increase motor neuron survival. Exp. Neurol. 173, 46–62.

    Article  PubMed  CAS  Google Scholar 

  67. Gomez-Pinilla F., Vu L., and Cotman C. W. (1995) Regulation of astrocyte proliferation by FGF-2 and heparan sulfate in vivo. J. Neurosci. 15, 2021–2029.

    PubMed  CAS  Google Scholar 

  68. Belluardo N., Wu G., Mudo G., Hansson A. C., Pettersson R., and Fuxe K. (1997) Comparative localization of fibroblast growth factor receptor-1,-2, and -3 mRNAs in the rat brain: in situ hybridization analysis. J. Comp. Neurol. 379, 226–246.

    Article  PubMed  CAS  Google Scholar 

  69. Jing S., Wen D., Yu Y., et al. (1996) GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-a, a novel receptor for GDNF. Cell 85, 1113–1124.

    Article  PubMed  CAS  Google Scholar 

  70. Trupp M., Arenas E., Fainzilber M., et al. (1996) Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381, 785–789.

    Article  PubMed  CAS  Google Scholar 

  71. Durbec P., Marcos-Gutierrez C. V., Kilkenny C., et al. (1996) GDNF signalling through the ret receptor tyrosine kinase. Nature 381, 789–793.

    Article  PubMed  CAS  Google Scholar 

  72. Oppenheim R. W., Houenou L. J., Johnson J. E., et al. (1995) Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Nature 373, 344–346.

    Article  PubMed  CAS  Google Scholar 

  73. Lin L. -F. H., Doherty D. H., Lile J. D., Bektesh S., and Collins F. (1993) GDNF: a gial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1132.

    Article  PubMed  CAS  Google Scholar 

  74. Beck K. D., Valverde J., Alexi T., et al. (1995) Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 373, 339–341.

    Article  PubMed  CAS  Google Scholar 

  75. Arenas E., Trupp M., Åkerud P., and Ibáñez C. F. (1995) GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo. Neuron 15, 1465–1473.

    Article  PubMed  CAS  Google Scholar 

  76. Perez-Navarro E., Arenas E., Reiriz J., Calvo N., and Alberch J. (1996) Glial cell line-derived neurotrophic factor protects striatal calbindin-immunoreactive neurons from excitotoxic damage. Neuroscience 75, 345–352.

    Article  PubMed  CAS  Google Scholar 

  77. Henderson C. E., Phillips H. S., Pollock R. A., et al. (1994) GDNF: a potent survival factor for motoneurons present in peripheral nerve and nuscle. Science 266, 1062–1064.

    Article  PubMed  CAS  Google Scholar 

  78. Yan Q., Matheson C., and Lopez O. T. (1995) In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature 373, 341–344.

    Article  PubMed  CAS  Google Scholar 

  79. Tomac A., Lindqvist E., Lin L. -F. H., et al. (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373, 335–339.

    Article  PubMed  CAS  Google Scholar 

  80. Humpel C., Hoffer B., Strömberg I., Bektesh S., Collins F., and Olson L. (1994) Neurons of the hippocampal formation express glial cell line-derived neurotrophic factor messenger RNA in response to kainate-induced excitation. Neuroscience 59, 791–795.

    Article  PubMed  CAS  Google Scholar 

  81. Barbacid M. (1994) The trk family of neurotrophin receptors. J. Neurobiol. 25, 1386–1403.

    Article  PubMed  CAS  Google Scholar 

  82. Friedman W. J. and Greene L. A. (1999) Neurotrophin signaling via Trks and p75. Exp. Cell Res. 253, 131–142.

    Article  PubMed  CAS  Google Scholar 

  83. Patapoutian A. and Reichardt L. F. (2001) Trk receptors: mediators of neurotrophin action. Curr. Opin. Neurobiol. 11, 272–280.

    Article  PubMed  CAS  Google Scholar 

  84. Levi-Montalcini R. and Angeletti P. U. (1968) The nerve growth factor. Physiol. Rev. 48, 534–569.

    PubMed  CAS  Google Scholar 

  85. Levi-Montalcini R. (1987) The nerve growth factor 35 years later. Science 237, 1154–1162.

    Article  PubMed  CAS  Google Scholar 

  86. Thoenen H. and Barde Y. A. (1980) Physiology of nerve growth factor. Physiol. Rev. 60, 1284–1335.

    PubMed  CAS  Google Scholar 

  87. Barde Y. A. (1994) Neurotrophins: a family of proteins supporting the survival of neurons. Prog. Clin. Biol. Res. 390, 45–56.

    PubMed  CAS  Google Scholar 

  88. Kaplan D. R., Hempstead B., Martin-Zanca D., Chao M. V., and Parada L. F. (1991) The trk proto-oncogene product is a receptor for nerve growth factor. Science 252, 554–558.

    Article  PubMed  CAS  Google Scholar 

  89. Klein R., Jing S., Nanduri V., O’Rourke E., and Barbacid M. (1991) The trk proto-oncogene encodes a receptor for nerve growth factor. Cell 65, 189–197.

    Article  PubMed  CAS  Google Scholar 

  90. Hofer M. M. and Barde Y. -A. (1988) Brain-derived neurotrophic factor prevents neuronal death in vivo. Nature 331, 261,262.

    Article  PubMed  CAS  Google Scholar 

  91. Oppenheim R. W., Yin Q. W., Prevette D., and Yan Q. (1992) Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature 360, 755–757.

    Article  PubMed  CAS  Google Scholar 

  92. Klein R., Smeyne R. J., Wurst W., et al. (1993) Targeted disruption of the trkB neurotrophin receptor gene rsults in nervous system lesions and neonatal death. Cell 75, 113–122.

    PubMed  CAS  Google Scholar 

  93. Minichiello L. and Klein R. (1996) TrkB and TrkC neurotrophin receptors cooperate in promoting survival of hippocampal and cerebellar granule neurons. Genes Dev. 10, 2849–2858.

    Article  PubMed  CAS  Google Scholar 

  94. Sendtner M., Holtman B., Kolbeck R., Thoenen H., and Barde Y. -A. (1992) Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature 360, 757–759.

    Article  PubMed  CAS  Google Scholar 

  95. Spina M. B., Squinto S. P., Miller J., Lindsay R. M., and Hyman C. (1992) Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: involvement of the glutathione system. J. Neurochem. 59, 99–106.

    Article  PubMed  CAS  Google Scholar 

  96. Yan Q., Elliott J., and Snider W. D. (1992) Brain-derived neurotrophic factor rescues spinal motor neurons from axotomy-induced cell death. Nature 360, 753–755.

    Article  PubMed  CAS  Google Scholar 

  97. Giehl K. M. and Tetzlaff W. (1996) BDNF and NT-3, but not NGF, prevent axotomy-induced death of rat corticospinal neurons in vivo. Eur. J. Neurosci. 8, 1167–1175.

    Article  PubMed  CAS  Google Scholar 

  98. Alcantara S., Frisen J., del Rio J. A., Soriano E., Barbacid M., and Silos-Santiago I. (1997) TrkB signaling is required for postnatal survival of CNS neurons and protects hippocampal and motor neurons from axotomy-induced cell death. J. Neurosci. 17, 3623–3633.

    PubMed  CAS  Google Scholar 

  99. Patterson S. L., Abel T., Deuel T. A. S., Martin K. C., Rose J. C., and Kandel E. R. (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16, 1137–1145.

    Article  PubMed  CAS  Google Scholar 

  100. Korte M., Griesbeck O., Gravel C., et al. (1996) Virus-mediated gene transfer into hippocampal CA1 region restores long-term potentiation in brain-derived neurotrophic factor mutant mice. Proc. Natl. Acad. Sci. USA 93, 12,547–12,552.

    Article  CAS  Google Scholar 

  101. Martinez A., Alcantara S., Borrell V., et al. (1998) TrkB and TrkC signaling are required for maturation and synaptogenesis of hippocampal connections. J. Neurosci. 18, 7336–7350.

    PubMed  CAS  Google Scholar 

  102. Holtzman D. M., Li Y., Parada L. F., et al. (1992) p140trk mRNA marks NGF-responsive forebrain neurons: evidence that trk gene expression is induced by NGF. Neuron 9, 465–478.

    Article  PubMed  CAS  Google Scholar 

  103. Fagan A. M., Garber M., Barbacid M., Silos-Santiago I., and Holtzman D. M. (1997) A role for trkA during maturation of striatal and basal forebrain cholinergic neurons in vivo. J. Neurosci. 17, 7644–7654.

    PubMed  CAS  Google Scholar 

  104. Ringstedt T., Lagercrantz H., and Persson H. (1993) Expression of members of the trk family in the developing postnatal rat brain. Dev. Brain Res. 72, 119–131.

    Article  CAS  Google Scholar 

  105. Williams L. R., Varon S., Peterson G. M., Wictorin K., Björklund A., and Gage F.H. (1986) Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc. Natl. Acad. Sci. USA 83, 9231–9235.

    Article  PubMed  CAS  Google Scholar 

  106. Fischer W., Wictorin K., Björklund A., Williams L. R., Varon S., and Gage F. H. (1987) Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329, 65–68.

    Article  PubMed  CAS  Google Scholar 

  107. Kromer L. F. (1987) Nerve growth factor treatment after brain injury prevents neuronal death. Science 235, 214–216.

    Article  PubMed  CAS  Google Scholar 

  108. Ayer LeLievre C., Olson L., Ebendal T., Seiger A., and Persson H. (1988) Expression of the beta-nerve growth factor gene in hippocampal neurons. Science 240, 1339–1341.

    Article  PubMed  CAS  Google Scholar 

  109. Phillips H. D., Hains J. M., Laramee G. R., Rosenthal A., and Winslow J. W. (1990) Widespread expression of BDNF but not NT-3 by target areas of basal forebrain cholinergic neurons. Science 250, 290–294.

    Article  PubMed  CAS  Google Scholar 

  110. Maisonpierre P. C., Belluscio L., Friedman B., et al. (1990) NT-3, BDNF, and NGF in the developing rat nervous system: Parallel as well as reciprocal patterns of expression. Neuron 5, 501–509.

    Article  PubMed  CAS  Google Scholar 

  111. Ernfors P., Merlio J.-P., and Persson H. (1992) Cells expressing mRNA for neurotrophins and their receptors during embryonic rat development. Eur. J. Neurosci. 4, 1140–1158.

    Article  PubMed  Google Scholar 

  112. Spranger M., Lindholm D., Bandtlow C., et al. (1990) Regulation of nerve growth factor (NGF) synthesis in the rat central nervous system: comparison between the effects of interleukin-1 and various growth factors in astrocyte cultures and in vivo. Eur. J. Neurosci. 2, 69–76.

    Article  PubMed  Google Scholar 

  113. Gadient R. A., Cron K. C., and Otten U. (1990) Interleukin-1 beta and tumor necrosis factor-alpha synergistically stimulate nerve growth factor (NGF) release from cultured rat astrocytes. Neurosci. Lett. 117, 335–340.

    Article  PubMed  CAS  Google Scholar 

  114. Carman-Krzan M., Vigé X., and Wise B. C. (1991) Regulation by interleukin-1 of nerve growth factor secretion and nerve growth factor mRNA expression in rat primary astroglial cultures. J. Neurochem. 56, 636–643.

    Article  PubMed  CAS  Google Scholar 

  115. Oderfeld-Nowak B. and Bacia A. (1994) Expression of astroglial nerve growth factor in damaged brain. Acta. Neurobiol. Exp. 54, 73–80.

    CAS  Google Scholar 

  116. Goss J. R., O’Malley M. E., Zou L., Styren S. D., Kochanek P. M., and DeKoskey S. T. (1998) Astrocytes are the major source of nerve growth factor upregulation following traumatic brain injury in the rat. Exp. Neurol. 149, 301–309.

    Article  PubMed  CAS  Google Scholar 

  117. Micera A., Vigneti E., and Aloe L. (1998) Changes of NGF presence in nonneuronal cells in response to experimental allergic encephalomyelitis in Lewis rats. Exp. Neurol. 154, 41–46.

    Article  PubMed  CAS  Google Scholar 

  118. Gage F. H., Batchelor P., Chen K. S., et al. (1989) NGF receptor reexpression and NGF-mediated cholinergic neuronal hypertrophy in the damaged adult neostriatum. Neuron 2, 1177–1184.

    Article  PubMed  CAS  Google Scholar 

  119. Ernfors P., Henschen A., Olson L., and Persson H. (1989) Expression of nerve growth factor receptor mRNA is developmentally regulated and increased after axotomy in rat spinal cord motoneurons. Neuron 2, 1605–1613.

    Article  PubMed  CAS  Google Scholar 

  120. Peterson S. and Bogenmann E. (2003) Osmotic swelling induces p75 neurotrophin receptor (p75NTR) expression via nitric oxide. J. Biol. Chem. 278, 33,943–33,950.

    CAS  Google Scholar 

  121. Casaccia-Bonnefil P., Kong H., and Chao M. V. (1998) Neurotrophins: the biological paradox of survival factors eliciting apoptosis [see comments]. Cell Death Differ. 5, 357–364.

    Article  PubMed  CAS  Google Scholar 

  122. Barker P. A. (1998) p75NTR: a study in contrasts [see comments]. Cell Death Differ. 5, 346–356.

    Article  PubMed  CAS  Google Scholar 

  123. Miller F. D. and Kaplan D. R. (1998) Life and death decisions: a biological role for the p75 neurotrophin receptor [editorial; comment]. Cell Death Differ. 5, 343–345.

    Article  PubMed  CAS  Google Scholar 

  124. Rabizadeh S., Oh J., Zhong L., et al. (1993) Induction of apoptosis by the low-affinity NGF receptor. Science 261, 345–358.

    Article  PubMed  CAS  Google Scholar 

  125. Casaccia-Bonnefil P., Carter B. D., Dobrowsky R. T., and Chao M. V. (1996) Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383, 716–719.

    Article  PubMed  CAS  Google Scholar 

  126. Frade J. M., Rodriguez-Tebar A., and Barde Y. A. (1996) Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 383, 166–168.

    Article  PubMed  CAS  Google Scholar 

  127. Friedman W. J. (2000) Neurotrophins induce death of hippocampal neurons via the p75 receptor. J. Neurosci. 20, 6340–6346.

    PubMed  CAS  Google Scholar 

  128. Roux P. P., Colicos M. A., Barker P. A., and Kennedy T. E. (1999) p75 neurotrophin receptor expression is induced in apoptotic neurons after seizure. J. Neurosci. 19, 6887–6896.

    PubMed  CAS  Google Scholar 

  129. Troy C. M., Friedman J. E., and Friedman W. J. (2002) Mechanisms of p75-mediated death of hippocampal neurons: role of caspases. J. Biol. Chem. 277, 34,295–34,302.

    Article  CAS  Google Scholar 

  130. Beattie M. S., Harrington A. W., Lee R., et al. (2002) ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron 36, 375–386.

    Article  PubMed  CAS  Google Scholar 

  131. Carter B. D. and Lewin G. R. (1997) Neurotrophins live or let die: does p75 decide? Neuron 18, 187–190.

    Article  PubMed  CAS  Google Scholar 

  132. Casaccia-Bonnefil P., Gu C., Khursigara G., and Chao M. V. (1999) p75 neurotrophin receptor as a modulator of survival and death decisions. Microsc. Res. Tech. 45, 217–224.

    Article  PubMed  CAS  Google Scholar 

  133. Lee R., Kermani P., Teng K. K., and Hempstead B. L. (2001) Regulation of cell survival by secreted proneurotrophins. Science 294, 1945–1948.

    Article  PubMed  CAS  Google Scholar 

  134. Chao M. V. and Bothwell M. (2002) Neurotrophins: to cleave or not to cleave. Neuron 33, 9–12.

    Article  PubMed  CAS  Google Scholar 

  135. Ibanez C. (2002) Jekyll-Hyde neurotrophins: the story of proNGF. Trends Neurosci. 25, 284–286.

    Article  PubMed  CAS  Google Scholar 

  136. Hempstead B. L. (2002) The many faces of p75NTR. Curr. Opin. Neurobiol. 12, 260–267.

    Article  PubMed  CAS  Google Scholar 

  137. Seidah N. G., Benjannet S., Pareek S., et al. (1996) Cellular processing of the nerve growth factor precursor by the mammalian pro-protein convertases. Biochem. J. 314 (Pt 3), 951–960.

    PubMed  CAS  Google Scholar 

  138. Fahnestock M., Michalski B., Xu B., and Coughlin M. D. (2001) The precursor pronerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease. Mol. Cell Neurosci. 18, 210–220.

    Article  PubMed  CAS  Google Scholar 

  139. Pang P. T., Teng H. K., Zaitsev E., et al. (2004) Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306, 487–491.

    Article  PubMed  CAS  Google Scholar 

  140. Harrington A., Leiner B., Blechschmitt C., et al. (2004) Secreted proNGF is a pathophysiological death-inducing ligand after adult CNS injury. Proc. Natl. Acad. Sci. USA 101, 6226–6230.

    Article  PubMed  CAS  Google Scholar 

  141. Nykjaer A., Lee R., Teng K., et al. (2004) Sortilin is essential for proNGF-induced neuronal cell death. Nature 427, 843–848.

    Article  PubMed  CAS  Google Scholar 

  142. Hempstead B. L., Martin-Zanca D., Kaplan D. R., and Chao M. V. (1991) High affinity NGF binding requires co-expression of the trk proto-oncogene and the low affinity NGF receptor. Nature 350, 678–683.

    Article  PubMed  CAS  Google Scholar 

  143. Wang K. C., Kim J. A., Sivasankaran R., Segal R., and He Z. (2002) p75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420, 74–78.

    Article  PubMed  CAS  Google Scholar 

  144. Wong S. T., Henley J. R., Kanning K. C., Huang K. H., Bothwell M., and Poo M. M. (2002) A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat. Neurosci. 11, 11.

    Google Scholar 

  145. Chao M. V. (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat. Rev. Neurosci. 4, 299–309.

    Article  PubMed  CAS  Google Scholar 

  146. Barker P. A. (2004) p75NTR is positively promiscuous: novel partners and new insights. Neuron 42, 529–533.

    Article  PubMed  CAS  Google Scholar 

  147. Salehi A. H., Roux P. P., Kubu C. J., et al. (2000) NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron 27, 279–288.

    Article  PubMed  CAS  Google Scholar 

  148. Salehi A. H., Xanthoudakis S., and Barker P. A. (2002) NRAGE, a p75 neurotrophin receptor-interacting protein, induces caspase activation and cell death through a JNK-dependent mitochondrial pathway. J. Biol. Chem. 277, 48,043–48,050.

    Article  CAS  Google Scholar 

  149. Linggi M. S., Burke T. L., Williams B. B., et al. (2005) NRIF is an essential mediator of apoptotic signaling by the p75 neurotrophin receptor. J. Biol. Chem. 8, 155–167.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilma J. Friedman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, W.J. Interactions of interleukin-1 with neurotrophic factors in the central nervous system. Mol Neurobiol 32, 133–144 (2005). https://doi.org/10.1385/MN:32:2:133

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:32:2:133

Index Entries

Navigation