Striatal dopaminergic afferents concentrate in GDNF-positive patches during development and in developing intrastriatal striatal grafts

J Comp Neurol. 1999 Apr 5;406(2):199-206. doi: 10.1002/(sici)1096-9861(19990405)406:2<199::aid-cne5>3.0.co;2-z.

Abstract

Glial cell line-derived neurotrophic factor (GDNF) has potent trophic action on fetal dopaminergic neurons. We have used a double immunocytochemical approach with antibodies that recognize GDNF and tyroxine hydroxylase (TH) or the phosphoprotein DARPP-32, to study the developmental pattern of their interactions in the rat striatum and in intrastriatal striatal transplants. Postnatally, at one day and also at 1 week, GDNF showed a patchy distribution in the striatum, together with a high level of expression in the lateral striatal border, similar to that observed for the striatal marker DARPP-32 and also for TH. In the adult striatum, there was diffuse, weak immunopositivity for GDNF, together with widespread expression of DARPP-32-positive neurons and TH-immunoreactive (TH-ir) fibers. In 1-week-old intrastriatal striatal transplants, there were some GDNF immunopositive patches within the grafts and although there was not an abundance of TH-positive fibers, the ones that were seen were located in GDNF-positive areas. This was clearly evident in 2-week-old transplants, where TH-ir fibers appeared selectively concentrated in GDNF-positive patches. This pattern was repeated in 3-week-old grafts. In co-transplants of mesencephalic and striatal fetal tissue (in a proportion of 1:4), TH-ir somata were located mainly at the borders of areas that were more strongly immunostained for GDNF, and TH-ir fibers were also abundant in these areas and were found in smaller numbers in regions that were weakly positive for GDNF. These results demonstrate that GDNF-ir is coincident with that for TH and DARPP-32, and suggest that GDNF release by fetal striatal neurons both in normal development and in developing striatal grafts may have not only a trophic but also a tropic influence on TH-ir fibers and may be one of the factors that regulate dopaminergic innervation of the striatum.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Newborn / growth & development*
  • Animals, Newborn / metabolism
  • Animals, Newborn / physiology
  • Cell Transplantation
  • Corpus Striatum / metabolism
  • Corpus Striatum / physiology*
  • Dopamine / metabolism*
  • Glial Cell Line-Derived Neurotrophic Factor
  • Mesencephalon / cytology
  • Nerve Growth Factors*
  • Nerve Tissue Proteins / metabolism*
  • Neurons, Afferent / physiology*
  • Neurons, Afferent / transplantation*
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Gdnf protein, rat
  • Glial Cell Line-Derived Neurotrophic Factor
  • Nerve Growth Factors
  • Nerve Tissue Proteins
  • Dopamine