Opposite modulation of cortical N-methyl-D-aspartate receptor-mediated responses by low and high concentrations of dopamine

Neuroscience. 1999;91(2):527-35. doi: 10.1016/s0306-4522(98)00604-6.

Abstract

To examine whether dopamine modulates cortical N-methyl-D-aspartate receptor-mediated glutamate transmission, whole-cell recordings were made from identified pyramidal cells located in layers V and VI of the medial prefrontal cortex of the rat using a slice preparation. In the presence of tetrodotoxin and the absence of Mg2+, a brief local application of N-methyl-D-aspartate evoked an inward current which was blocked by the N-methyl-D-aspartate antagonist dizocilpine maleate but not affected by the non-N-methyl-D-aspartate antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline, suggesting that the observed current is mediated by N-methyl-D-aspartate receptors located on recorded cells. Bath application of dopamine produced opposite effects on the N-methyl-D-aspartate current depending on the concentrations of dopamine applied. At low concentrations (<50 microM), dopamine enhanced the N-methyl-D-aspartate current, whereas at higher concentrations, dopamine suppressed the current. The same concentrations of dopamine did not significantly affect the inward current induced by the non-N-methyl-D-aspartate agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid. The enhancing effect of dopamine on the N-methyl-D-aspartate response was mimicked by the D1 agonist SKF38393 and blocked by the D1 antagonist SCH31966, whereas the suppressing effect was mimicked by the D2 agonist quinpirole and blocked by the D2 antagonist eticlopride. The above results suggest that dopamine at low concentrations acts preferentially on D1-like receptors to promote N-methyl-D-aspartate receptor-mediated transmission, while at high concentrations dopamine also activates D2-like receptors, leading to a suppression of the N-methyl-D-aspartate function. This differential modulation of N-methyl-D-aspartate function may have significant implications for understanding behaviors and disorders involving both cortical dopamine- and glutamate-mediated neurotransmission.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 1-Methyl-3-isobutylxanthine / pharmacology
  • 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine / pharmacology
  • Animals
  • Benzazepines / pharmacology
  • Dizocilpine Maleate / pharmacology
  • Dopamine / pharmacology*
  • Dopamine Agonists / pharmacology
  • Dopamine Antagonists / pharmacology
  • Dose-Response Relationship, Drug
  • Excitatory Amino Acid Antagonists / pharmacology*
  • In Vitro Techniques
  • Male
  • Membrane Potentials / drug effects
  • Prefrontal Cortex / drug effects
  • Prefrontal Cortex / physiology*
  • Pyramidal Cells / drug effects
  • Pyramidal Cells / physiology*
  • Quinoxalines / pharmacology
  • Quinpirole / pharmacology
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, N-Methyl-D-Aspartate / drug effects
  • Receptors, N-Methyl-D-Aspartate / physiology*
  • alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid / pharmacology

Substances

  • Benzazepines
  • Dopamine Agonists
  • Dopamine Antagonists
  • Excitatory Amino Acid Antagonists
  • Quinoxalines
  • Receptors, N-Methyl-D-Aspartate
  • ecopipam
  • Quinpirole
  • FG 9041
  • 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine
  • Dizocilpine Maleate
  • alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
  • 1-Methyl-3-isobutylxanthine
  • Dopamine