Sequential administration of GDNF into the substantia nigra and striatum promotes dopamine neuron survival and axonal sprouting but not striatal reinnervation or functional recovery in the partial 6-OHDA lesion model

Exp Neurol. 2000 Feb;161(2):503-16. doi: 10.1006/exnr.1999.7296.

Abstract

Glial cell line-derived neurotrophic factor (GDNF) has prominent survival-promoting effects on lesioned nigrostriatal dopamine neurons, but understanding of the conditions under which functional recovery can be obtained remains to be acquired. We report here the time course of nigrostriatal axon degeneration in the partial lesion model of Parkinson's disease and the morphological and functional effects of sequential administration of GDNF in the substantia nigra (SN) and striatum during the first 5 weeks postlesion. By 1 day postlesion, the nigrostriatal axons had retracted back to the level of the caudal globus pallidus. Over the next 6 days axonal retraction progressed down to the SN, and during the following 7 weeks 74% of tyrosine hydroxylase-positive (TH(+)) and 84% of retrogradely labeled nigral neurons were lost, with a more pronounced loss in the rostral part of the SN. GDNF administration protected 70 and 72% of the nigral TH(+) and retrogradely labeled cell bodies, respectively, but did not prevent the die-back of the lesioned nigrostriatal axons. Although clear signs of sprouting were observed close to the injection site in the striatum as well as in the globus pallidus, the overall DA innervation of the striatum [as measured by [(3)H]-N-[1-(2-benzo(b)thiopenyl)cyclohexyl]piperidine-binding autoradiography] was not improved by the GDNF treatment. Moreover, the lesion-induced deficits in forelimb akinesia and drug-induced rotation were not attenuated. We conclude that functional recovery in the partial lesion model depends not only on preservation of the nigral cell bodies, but more critically on the ability of GDNF to promote significant reinnervation of the denervated striatum.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Axonal Transport
  • Axons / drug effects*
  • Axons / physiology
  • Axons / ultrastructure
  • Body Weight / drug effects
  • Cell Survival / drug effects
  • Corpus Striatum / cytology
  • Corpus Striatum / drug effects*
  • Corpus Striatum / physiology
  • Dopamine / metabolism*
  • Female
  • Forelimb / innervation
  • Glial Cell Line-Derived Neurotrophic Factor
  • Microinjections
  • Motor Activity / drug effects
  • Nerve Degeneration / chemically induced
  • Nerve Degeneration / pathology
  • Nerve Degeneration / physiopathology
  • Nerve Growth Factors*
  • Nerve Regeneration
  • Nerve Tissue Proteins / administration & dosage
  • Nerve Tissue Proteins / pharmacology*
  • Neurons / cytology
  • Neurons / drug effects*
  • Neurons / physiology
  • Neuroprotective Agents / administration & dosage
  • Neuroprotective Agents / pharmacology*
  • Oxidopamine / toxicity
  • Prosencephalon / drug effects
  • Prosencephalon / physiology
  • Rats
  • Rats, Sprague-Dawley
  • Substantia Nigra / cytology
  • Substantia Nigra / drug effects*
  • Substantia Nigra / physiology
  • Time Factors
  • Tyrosine 3-Monooxygenase / metabolism

Substances

  • Gdnf protein, rat
  • Glial Cell Line-Derived Neurotrophic Factor
  • Nerve Growth Factors
  • Nerve Tissue Proteins
  • Neuroprotective Agents
  • Oxidopamine
  • Tyrosine 3-Monooxygenase
  • Dopamine