Interplay between the gamma isoform of PKC and calcineurin in regulation of vulnerability to focal cerebral ischemia

J Cereb Blood Flow Metab. 2000 Feb;20(2):343-9. doi: 10.1097/00004647-200002000-00016.

Abstract

Protein phosphorylation and dephosphorylation mediated by protein kinases and protein phosphatases, respectively, represent essential steps in a variety of vital neuronal processes that could affect susceptibility to ischemic stroke. In this study, the role of the neuron-specific gamma isoform of protein kinase C (gammaPKC) in reversible focal ischemia was examined using mutant mice in which the gene for gammaPKC was knocked-out (gammaPKC-KO). A period of 150 minutes of unilateral middle cerebral artery and common carotid artery (MCA/CCA) occlusion followed by 21.5 hours of reperfusion resulted in significantly larger (P < 0.005) infarct volumes (n = 10; 31.1+/-4.2 mm3) in gammaPKC-KO than in wild-type (WT) animals (n = 12; 22.6+/-7.4 mm3). To control for possible differences related to genetic background, the authors analyzed Balb/cJ, C57BL/6J, and 129SVJ WT in the MCA/CCA model of focal ischemia. No significant differences in stroke volume were detected between these WT strains. Impaired substrate phosphorylation as a consequence of gammaPKC-KO might be corrected by inhibition of protein dephosphorylation. To test this possibility, gammaPKC-KO mice were treated with the protein phosphatase 2B (calcineurin) inhibitor, FK-506, before ischemia. FK-506 reduced (P < 0.008) the infarct volume in gammaPKC-KO mice (n = 7; 24.6+/-4.6 mm3), but at this dose in this model, had no effect on the infarct volume in WT mice (n = 7; 20.5+/-10.7 mm3). These results indicate that gammaPKC plays some neuroprotective role in reversible focal ischemia.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Brain / enzymology*
  • Brain Ischemia / drug therapy
  • Brain Ischemia / metabolism*
  • Brain Ischemia / pathology
  • Calcineurin / metabolism*
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Calcium-Calmodulin-Dependent Protein Kinases / analysis
  • Calcium-Calmodulin-Dependent Protein Kinases / metabolism
  • Female
  • Gene Expression Regulation, Enzymologic
  • Genetic Predisposition to Disease
  • Immunosuppressive Agents / pharmacology
  • Infarction, Middle Cerebral Artery / drug therapy
  • Infarction, Middle Cerebral Artery / metabolism
  • Infarction, Middle Cerebral Artery / pathology
  • Isoenzymes / analysis
  • Isoenzymes / genetics*
  • Isoenzymes / metabolism*
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Phosphorylation
  • Protein Kinase C / analysis
  • Protein Kinase C / genetics*
  • Protein Kinase C / metabolism*
  • Tacrolimus / pharmacology

Substances

  • Immunosuppressive Agents
  • Isoenzymes
  • protein kinase C gamma
  • Protein Kinase C
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Calcium-Calmodulin-Dependent Protein Kinases
  • Calcineurin
  • Tacrolimus