Actin filament disruption blocks cerebellar granule neurons at the unipolar stage of differentiation in vitro

J Neurobiol. 2000 Jun 15;43(4):313-28. doi: 10.1002/1097-4695(20000615)43:4<313::aid-neu1>3.0.co;2-2.

Abstract

Cerebellar granule neurons developing in vitro initially extend a single axon, with the Golgi apparatus and centrosome positioned at the base of this axon and then begin the transition to a bipolar morphology by rotating the Golgi-centrosome to the opposite pole of the cell and extending a secondary axon; granule cells reach a mature, complex morphology by extending multiple, short dendrites by 5-6 days in vitro. (Zmuda and Rivas, 1998. Cell Motil Cytoskel 41:18-38). To test the effects of actin depolymerization on this characteristic pattern of granule cell axonogenesis, cultured granule cells were treated with either cytochalasin D (CD) or latrunculin A (Lat A) to depolymerize filamentous actin. Although actin depolymerization did not inhibit initial axon extension, it prevented the cells from proceeding on to the transitional, bipolar, or complex stages of differentiation, effectively blocking the cells at the unipolar stage of differentiation. Although the Golgi apparatus resided at the base of the axon in nontreated unipolar cells, or at the opposite pole of the cell body in nontreated transitional cells, the Golgi was randomly localized within the cytoplasm of cells that had been treated with either CD or Lat A. These results show that the transition from the unipolar to the bipolar stage and on to more mature stages of granule cell differentiation is dependent on an intact actin cytoskeleton and suggest that the characteristic pattern of granule cell differentiation may be dependent on the repositioning of the Golgi-centrosome during morphological development.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Actins / metabolism
  • Actins / physiology*
  • Animals
  • Axons / physiology
  • Bridged Bicyclo Compounds, Heterocyclic / pharmacology
  • Cell Differentiation / physiology
  • Cell Polarity / drug effects*
  • Cell Polarity / physiology
  • Cell Survival / drug effects
  • Cells, Cultured
  • Cerebellum / cytology*
  • Cytochalasin D / pharmacology
  • Cytoskeleton / drug effects
  • Cytoskeleton / ultrastructure
  • Golgi Apparatus / physiology
  • Golgi Apparatus / ultrastructure
  • Mice
  • Mice, Inbred C57BL
  • Neurons / cytology*
  • Neurons / physiology
  • Neurons / ultrastructure
  • Nucleic Acid Synthesis Inhibitors / pharmacology
  • Polymers / metabolism
  • Thiazoles / pharmacology
  • Thiazolidines

Substances

  • Actins
  • Bridged Bicyclo Compounds, Heterocyclic
  • Nucleic Acid Synthesis Inhibitors
  • Polymers
  • Thiazoles
  • Thiazolidines
  • Cytochalasin D
  • latrunculin A