The lower limit of pitch as determined by rate discrimination

J Acoust Soc Am. 2000 Sep;108(3 Pt 1):1170-80. doi: 10.1121/1.1287843.

Abstract

This paper is concerned with the lower limit of pitch for complex, harmonic sounds, like the notes produced by low-pitched musical instruments. The lower limit of pitch is investigated by measuring rate discrimination thresholds for harmonic tones filtered into 1.2-kHz-wide bands with a lower cutoff frequency, F(c), ranging from 0.2 to 6.4 kHz. When F(c) is below 1 kHz and the harmonics are in cosine phase, rate discrimination threshold exhibits a rapid, tenfold decrease as the repetition rate is increased from 16 to 64 Hz, and over this range, the perceptual quality of the stimuli changes from flutter to pitch. When F(c) is increased above 1 kHz, the slope of the transition from high to low thresholds becomes shallower and occurs at progressively higher rates. A quantitative comparison of the cosine-phase thresholds with subjective estimates of the existence region of pitch from the literature shows that the transition in rate discrimination occurs at approximately the same rate as the lower limit of pitch. The rate discrimination experiment was then repeated with alternating-phase harmonic tones whose envelopes repeat at twice the repetition rate of the waveform. In this case, when F(c) is below 1 kHz, the transition in rate discrimination is shifted downward by almost an octave relative to the transition in the cosine-phase thresholds. The results support the hypothesis that in the low-frequency region, the pitch limit is determined by a temporal mechanism, which analyzes time intervals between peaks in the neural activity pattern. It seems that temporal processing of pitch is limited to time intervals less than 33 ms, corresponding to a pitch limit of about 30 Hz.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Auditory Threshold / physiology
  • Humans
  • Pitch Perception / physiology*