Rett syndrome: review of biological abnormalities

Can J Neurol Sci. 2001 Feb;28(1):16-29. doi: 10.1017/s0317167100052513.

Abstract

The Rett syndrome (RS) is a peculiar, sporadic, atrophic disorder, almost entirely confined to females. After the first six months of life there is developmental slowing with reduced communication and head growth for about one year. This is followed by a rapid destructive stage with severe dementia and loss of hand skills (with frequent hand wringing), apraxia and ataxia, autistic features and irregular breathing with hyperventilation. Seizures often supervene. Subsequently there is some stabilization in a pseudo-stationary stage during the preschool to school years, associated with more emotional contact but also abnormalities of the autonomic and skeletal systems. After the age of 15-20 years, a late motor deterioration occurs with dystonia and frequent spasticity but seizures become milder. RS has generally been considered an X-linked disorder in which affected females represent a new mutation, with male lethality. Linkage studies suggested a critical region at Xq28. In 1999, mutations in the gene MECP2 encoding X-linked methyl cytosine-binding protein 2 (MeCP2) were found in a proportion of Rett girls. This protein can bind methylated DNA. Analyses are leading to much further investigation of mutants and their effects on genes. Neuropathological and electrophysiological studies of RS are described. Description of neurometabolic factors includes reduced levels of dopamine, serotonin, noradrenaline and choline acetyltransferase (ChAT) in brain, also estimation of nerve growth factors, endorphin, substance P, glutamate and other amino acids and their receptor levels. The results of neuroimaging are surveyed, including volumetric magnetic resonance imaging (MRI) and positron emission tomography (PET).

Publication types

  • Review

MeSH terms

  • Animals
  • Electroencephalography
  • Humans
  • Rett Syndrome / genetics
  • Rett Syndrome / metabolism
  • Rett Syndrome / physiopathology*