Phosphatidylinositol 3-kinase activity in murine motoneuron disease: the progressive motor neuropathy mouse

Neuroscience. 2001;103(1):257-66. doi: 10.1016/s0306-4522(00)00551-0.

Abstract

A murine model of motoneuron disease, the pmn/pmn mouse, shows a reduction in the retrograde transport of fluorescent probes applied directly onto the cut end of sciatic nerve. Brain-derived neurotrophic factor (BDNF), when co-applied with fluorescent tracers, increases the number of retrograde labelled motoneurons. We demonstrate here that spinal cord tissue from pmn/pmn mice had significantly reduced phosphatidylinositol 3-kinase activity and expression in the particulate fraction compared to controls, without changes in the activities or expression of the downstream kinases, protein kinase B/Akt or Erk1. Systemic administration of BDNF augmented phosphatidylinositol 3-kinase specific activity in spinal cord tissue from pmn/pmn and control mice, with a greater elevation in the particulate fractions of pmn/pmn mice than in controls. We examined the effect of inhibitors of phosphatidylinositol 3-kinase and mitogen-activated protein kinase kinase on the retrograde labelling of motoneurons, 24h following the direct application of inhibitors and Fluorogold to the cut end of sciatic nerve in control and pmn/pmn mice (labelling index). The mitogen-activated protein kinase kinase inhibitor PD 98059 had no effect on the labelling index in control or pmn/pmn mice. In the absence of exogenous BDNF, phosphatidylinositol 3-kinase inhibitors reduced the number of labelled motoneurons in control mice, without changing the labelling index in pmn/pmn. Co-application of phosphatidylinositol 3-kinase inhibitors with BDNF to the cut end of sciatic nerve blocked the action of BDNF on retrograde labelling in pmn/pmn mice. These results indicate that the retrograde labelling of motoneurons is mediated by phosphatidylinositol 3-kinase-dependent and -independent pathways. In pmn/pmn mice, phosphatidylinositol 3-kinase activity in spinal neurons is below the level required for optimal retrograde labelling of motoneurons and labelling can be augmented by the administration of growth factors stimulating phosphatidylinositol 3-kinase activity. The data indicate that phosphatidylinositol 3-kinase activity is important in the uptake and/or retrograde transport of substances by motoneurons and is altered in this model of motoneuron diseases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain-Derived Neurotrophic Factor / pharmacology
  • Mice
  • Mice, Mutant Strains
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinase Kinases / metabolism
  • Mitogen-Activated Protein Kinases / metabolism
  • Motor Neuron Disease / enzymology*
  • Motor Neurons / enzymology*
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Protein Serine-Threonine Kinases*
  • Proto-Oncogene Proteins / metabolism
  • Proto-Oncogene Proteins c-akt
  • Ribosomal Protein S6 Kinases / metabolism
  • Spinal Cord / enzymology

Substances

  • Brain-Derived Neurotrophic Factor
  • Proto-Oncogene Proteins
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt
  • Ribosomal Protein S6 Kinases
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases
  • Mitogen-Activated Protein Kinase Kinases