On the role of space and time in auditory processing

Trends Cogn Sci. 2001 Aug 1;5(8):340-348. doi: 10.1016/s1364-6613(00)01704-6.

Abstract

Unlike visual and tactile stimuli, auditory signals that allow perception of timbre, pitch and localization are temporal. To process these, the auditory nervous system must either possess specialized neural machinery for analyzing temporal input, or transform the initial responses into patterns that are spatially distributed across its sensory epithelium. The former hypothesis, which postulates the existence of structures that facilitate temporal processing, is most popular. However, I argue that the cochlea transforms sound into spatiotemporal response patterns on the auditory nerve and central auditory stages; and that a unified computational framework exists for central auditory, visual and other sensory processing. Specifically, I explain how four fundamental concepts in visual processing play analogous roles in auditory processing.